JP2001000996A - Operation method of membrane separation type septic tank and membrane separation type septic tank - Google Patents
Operation method of membrane separation type septic tank and membrane separation type septic tankInfo
- Publication number
- JP2001000996A JP2001000996A JP11178309A JP17830999A JP2001000996A JP 2001000996 A JP2001000996 A JP 2001000996A JP 11178309 A JP11178309 A JP 11178309A JP 17830999 A JP17830999 A JP 17830999A JP 2001000996 A JP2001000996 A JP 2001000996A
- Authority
- JP
- Japan
- Prior art keywords
- membrane separation
- air
- tank
- nitrification
- supplying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Treatment Of Biological Wastes In General (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、膜分離装置及び前
記膜分離装置に気泡を供給する散気装置を硝化槽に内装
してあると共に、前記散気装置に空気を供給する給気装
置を備えた膜分離型浄化槽の運転方法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air supply device in which a membrane separation device and an air diffusion device for supplying air bubbles to the film separation device are installed in a nitrification tank, and air is supplied to the air diffusion device. The present invention relates to a method of operating a membrane separation type septic tank provided.
【0002】[0002]
【従来の技術】従来、この種の膜分離型浄化槽として
は、間欠曝気により前記給気装置を、停止状態と高容量
給気状態とに切り替え可能に構成したものが知られてい
る。ここで、このような膜分離型浄化槽の運転方法とし
ては、前記給気装置の運転状態を、脱窒時には前記停止
状態とし、又、硝化時には前記高容量給気状態とするこ
とが知られており、これによって、脱窒時には、前記硝
化槽内に生息する嫌気性菌(以下、「脱窒菌」とい
う。)による脱窒反応を維持し、又、硝化時には、高容
量の給気を行なうことによって好気性菌による硝化反応
を促進させつつ、前記膜分離装置に備えた平膜の表面に
気泡を接触させて膜面のクリーニングを行なっていた。2. Description of the Related Art Heretofore, as a membrane separation type septic tank of this type, there is known a type in which the air supply device can be switched between a stopped state and a high-capacity air supply state by intermittent aeration. Here, as an operation method of such a membrane separation type septic tank, it is known that the operation state of the air supply device is set to the stop state at the time of denitrification, and to the high capacity air supply state at the time of nitrification. Accordingly, at the time of denitrification, the denitrification reaction by anaerobic bacteria (hereinafter, referred to as "denitrifying bacteria") living in the nitrification tank is maintained, and at the time of nitrification, a large volume of air is supplied. Thus, while the nitrification reaction by the aerobic bacteria is promoted, bubbles are brought into contact with the surface of the flat membrane provided in the membrane separation device to clean the membrane surface.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、前記硝
化時に、前述した膜面のクリーニング作用を維持しつつ
固液分離するために、前記給気装置を高容量運転し続け
ると、溶存酸素(以下、「DO」という。)の供給が過
剰となって、前記好気性菌による硝化反応が過度に進行
する虞があった。硝化過多となった被処理水はpHが酸
性に傾いているために、前記膜分離型浄化槽外へ排出す
るためには中和しなければならず、又、浄化槽内におい
て硝化反応と脱窒反応を繰り返して行なう場合に、前記
高容量給気状態において、過度の給気によって酸性度が
上昇しやすく、これにより、前記脱窒菌に過大な負荷が
かかることとなり、脱窒反応が阻害されるという問題点
があった。特に小容量の脱窒槽を備えた膜分離型浄化槽
においては、前記膜分離槽へのDOの供給が過剰になり
易いため、脱窒効率が低下して前記膜分離型浄化槽の脱
窒能力が低下し易いという問題点があった。However, during the nitrification, if the air supply device is continuously operated at a high capacity in order to perform solid-liquid separation while maintaining the above-mentioned film surface cleaning action, the dissolved oxygen (hereinafter, referred to as "dissolved oxygen") will be described. The supply of “DO”) may be excessive, and the nitrification reaction by the aerobic bacteria may proceed excessively. The treated water that has become excessively nitrified has to be neutralized in order to discharge it to the outside of the membrane separation type septic tank because the pH is inclined to acidic, and the nitrification reaction and the denitrification reaction are performed in the septic tank. Is repeatedly performed, in the high-volume air supply state, the acidity is likely to increase due to excessive air supply, whereby an excessive load is applied to the denitrifying bacteria, and the denitrification reaction is inhibited. There was a problem. In particular, in a membrane separation type septic tank equipped with a small-capacity denitrification tank, the supply of DO to the membrane separation tank tends to be excessive, so that the denitrification efficiency is reduced and the denitrification capacity of the membrane separation type purification tank is reduced. There was a problem that it was easy to do.
【0004】従って、本発明の目的は、上記欠点に鑑
み、十分に脱窒が行なわれる膜分離型浄化槽の運転方法
を提供することにある。[0004] Accordingly, an object of the present invention is to provide a method of operating a membrane separation type septic tank in which denitrification is sufficiently performed in view of the above-mentioned drawbacks.
【0005】[0005]
【課題を解決するための手段】この目的を達成するため
の本発明の膜分離型浄化槽の運転方法の特徴手段は、膜
分離装置及び前記膜分離装置に気泡を供給する散気装置
を硝化槽に内装してあると共に、前記散気装置に空気を
供給する給気装置を備えた膜分離型浄化槽の運転方法に
おいて、前記給気装置から前記硝化槽に空気を供給する
にあたって、脱窒反応が進行可能且つ被処理水を攪拌可
能な低容量の空気を供給する脱窒工程、前記脱窒工程で
供給される量より高容量であって、硝化反応が進行可能
な中容量の空気を供給する硝化工程、前記硝化工程で供
給される量より高容量であって、前記膜分離装置が運転
可能な高容量の空気を供給する膜分離工程を切り替えて
行なう点にある。又、この目的を達成するための本発明
の膜分離型浄化槽の特徴構成は、膜分離装置及び前記膜
分離装置に気泡を供給する散気装置を硝化槽に内装して
あると共に、前記散気装置に空気を供給する給気装置を
備えた膜分離型浄化槽において、前記給気装置の空気吐
出量を、脱窒反応が進行可能且つ被処理水を攪拌可能な
低容量、硝化反応が進行可能な中容量、又は、前記膜分
離装置が運転可能な高容量に切り替えて運転する給気装
置制御機構を備えた点にある。そして、これらの作用効
果は、以下の通りである。In order to achieve the above object, a method of operating a membrane separation type septic tank according to the present invention is characterized in that a membrane separation apparatus and an air diffuser for supplying air bubbles to the membrane separation apparatus are provided in a nitrification tank. In the method for operating a membrane separation type septic tank equipped with an air supply device for supplying air to the diffuser, the denitrification reaction is performed when air is supplied from the air supply device to the nitrification tank. A denitrification step of supplying low-volume air that can proceed and stir the water to be treated, and supply a medium-volume air that is higher in volume than the amount supplied in the denitrification step and that allows the nitrification reaction to proceed. The point is that the nitrification step and the membrane separation step of supplying a high volume of air that is higher in volume than the amount supplied in the nitrification step and that can operate the membrane separation apparatus are performed by switching. In order to achieve this object, the membrane separation type septic tank of the present invention has a characteristic configuration in which a nitrification tank is provided with a membrane separation device and an air diffuser for supplying air bubbles to the membrane separation device. In a membrane separation type septic tank equipped with an air supply device for supplying air to the device, the air discharge amount of the air supply device can be reduced to allow a denitrification reaction to proceed and to stir the water to be treated, and a nitrification reaction can proceed. An air supply device control mechanism that operates by switching to a medium capacity or a high capacity that can operate the membrane separation device is provided. And these effects are as follows.
【0006】発明者らは、硝化反応時に、前記平膜の表
面をクリーニングするに足りる高容量の空気を前記硝化
槽に供給し続ければ、硝化反応が過度に進行するという
知見を経験的に得た。そして、鋭意研究の結果、硝化反
応時に前記給気装置から吐出供給する空気の量を、前記
膜分離装置の稼動時と比較して低く設定することによっ
て、被処理水に含まれるDO濃度を低下させ、これによ
って、硝化の進行を鈍化し、前記被処理液の硝化傾向の
過多を解消することに想到した。即ち、膜分離装置及び
前記膜分離装置に気泡を供給する散気装置を硝化槽に内
装してあると共に、前記散気装置に空気を供給する給気
装置を備えた膜分離型浄化槽を運転する際に、前記給気
装置から前記硝化槽に空気を供給するにあたって、脱窒
工程では、DOの持ち込みが問題とならない程度の低容
量の空気を前記硝化槽に供給して、この槽に収容されて
いる前記被処理水を攪拌するので、前記被処理水に含ま
れる夾雑物の沈着を防止することができると共に、脱窒
反応の進行を促進することができる。そして、従来同時
に進行していた膜分離と硝化反応を時間的に分離して別
工程とし、膜分離工程においては、従来どおりに高容量
の空気を前記散気装置に供給して前記平膜膜面のクリー
ニングを行ないつつ固液分離を行ない、硝化工程におい
ては、前記膜分離工程と比べて空気供給量を減少させる
ことによって硝化反応を制御して、前記被処理水が硝化
過多となるのを抑制する。このようにして、前記膜分離
型浄化槽の特性、前記被処理水の状態に合わせて、前記
3種の空気供給状態を組み合せて前記給気装置を運転す
ることにより、前記被処理水の脱窒反応と硝化反応のバ
ランスを調整容易とすることができる。従って、本発明
に係る運転方法を採用することによって、被処理水の浄
化が困難な場合、例えば、前記硝化槽が小容量であった
り、高濃度の有機物を含有する原水を処理する場合であ
っても、前記膜分離型浄化槽から放出する被処理水の全
窒素量を低く抑えることができる。The inventors have empirically obtained the knowledge that the nitrification reaction proceeds excessively if a large volume of air sufficient to clean the surface of the flat membrane is continuously supplied to the nitrification tank during the nitrification reaction. Was. As a result of intensive research, the DO concentration contained in the water to be treated was reduced by setting the amount of air discharged from the air supply device during the nitrification reaction to be lower than that during the operation of the membrane separation device. Thus, the present inventors have conceived to slow down the progress of nitrification and to eliminate the excessive tendency of nitrification of the liquid to be treated. That is, a membrane separation device and a diffuser for supplying air bubbles to the membrane separator are installed in a nitrification tank, and a membrane separation type purification tank equipped with an air supply for supplying air to the diffuser is operated. In supplying the air from the air supply device to the nitrification tank, in the denitrification step, a small amount of air is supplied to the nitrification tank so that the carry-in of DO is not a problem. Since the water to be treated is stirred, the deposition of impurities contained in the water to be treated can be prevented, and the progress of the denitrification reaction can be promoted. Then, the membrane separation and the nitrification reaction, which have conventionally proceeded simultaneously, are temporally separated into a separate step. In the membrane separation step, a high volume of air is supplied to the air diffuser as in the past, and the flat membrane The solid-liquid separation is performed while cleaning the surface, and in the nitrification step, the nitrification reaction is controlled by reducing the amount of air supply compared to the membrane separation step, so that the water to be treated becomes excessively nitrified. Suppress. In this way, by operating the air supply device in combination with the three types of air supply conditions according to the characteristics of the membrane separation type septic tank and the state of the water to be treated, the denitrification of the water to be treated is performed. The balance between the reaction and the nitrification reaction can be easily adjusted. Therefore, by adopting the operation method according to the present invention, when it is difficult to purify the water to be treated, for example, when the nitrification tank has a small capacity, or when the raw water containing a high concentration of organic matter is treated. However, the total nitrogen amount of the water to be treated discharged from the membrane separation type septic tank can be kept low.
【0007】更に、膜分離装置及び前記膜分離装置に気
泡を供給する散気装置を硝化槽に内装してあると共に、
前記散気装置に空気を供給する給気装置を備えた膜分離
型浄化槽に、前記給気装置の空気吐出量を、低容量、中
容量又は高容量に切り替えて運転する給気装置制御機構
を設けることによって、低容量給気状態においては、前
記膜分離槽に供給された空気が被処理水を攪拌しつつ脱
窒反応が進行し、中容量給気状態においては、硝化反応
が進行し、又、高容量給気状態においては、前記平膜膜
面のクリーニングを行ないつつ固液分離をすることがで
きる。Further, a membrane separation device and an air diffuser for supplying air bubbles to the membrane separation device are installed in a nitrification tank.
In a membrane separation type septic tank equipped with an air supply device for supplying air to the air diffusion device, an air supply device control mechanism that operates by switching the air discharge amount of the air supply device to low capacity, medium capacity or high capacity. By providing, in a low volume supply state, the denitrification reaction proceeds while the air supplied to the membrane separation tank stirs the water to be treated, and in a medium volume supply state, the nitrification reaction proceeds, In a high-volume air supply state, solid-liquid separation can be performed while cleaning the flat membrane surface.
【0008】[0008]
【発明の実施の形態】以下に本発明の実施の形態を図面
に基づいて説明する。図2及び図3に示すように、本発
明に係る膜分離型浄化槽は、上流側から沈殿分離槽N
1、流量調整槽E1、膜分離槽E2を記載順に備え、被
処理水が移流するように構成してある。Embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 2 and FIG. 3, the membrane separation type septic tank according to the present invention comprises a sedimentation separation tank N from the upstream side.
1. A flow control tank E1 and a membrane separation tank E2 are provided in the stated order so that the water to be treated flows.
【0009】前記沈殿分離槽(夾雑物除去槽)N1は、
流入口Iから浄化槽内に流入した被処理水の原水を受け
て、その被処理水中の夾雑物を沈殿除去しつつ、内部に
生息する嫌気性菌により被処理水を嫌気処理し、移送路
N2を介して前記流量調整槽E1に移流自在に構成にし
てある。The sedimentation separation tank (contaminant removal tank) N1 comprises:
Receiving the raw water of the water to be treated flowing into the septic tank from the inflow port I, the water to be treated is anaerobically treated by anaerobic bacteria living therein while sedimentation and removal of impurities in the water to be treated are carried out. Through the flow control tank E1.
【0010】前記流量調整槽(脱窒槽)E1は、前記沈
殿分離槽N1から流入した比較的固形成分濃度の低い被
処理水を脱窒菌により嫌気処理しつつ、一次貯留して被
処理水量を調整する。前記流量調整槽E1には、被処理
水を汲み上げて前記膜分離槽E2に移送させる移送ポン
プPを内装してあり、前記被処理水の膜分離処理量に対
応して定常的に被処理水を前記膜分離槽E2に移送する
構成にしてある。前記流量調整槽E1にはその他、前記
膜分離槽E2からのオーバーフロー水を環流させる戻り
管5を配置して、前記膜分離槽E2での水位が一定以上
あがらないように構成してある。The flow rate adjusting tank (denitrification tank) E1 is used for anaerobic treatment of the water to be treated having a relatively low solid component concentration flowing from the sedimentation separation tank N1 with denitrifying bacteria, and is temporarily stored to adjust the amount of the water to be treated. I do. The flow rate adjusting tank E1 is provided with a transfer pump P for pumping up the water to be treated and transferring it to the membrane separation tank E2. Is transferred to the membrane separation tank E2. In addition, a return pipe 5 for circulating the overflow water from the membrane separation tank E2 is disposed in the flow rate adjustment tank E1, so that the water level in the membrane separation tank E2 does not rise more than a certain level.
【0011】前記膜分離槽(硝化槽)E2は、図5に示
すように、多数の平膜1を並設してなる膜分離装置Mを
内装してなり、その膜分離装置Mの下方には、前記膜分
離装置Mに気泡を供給してその膜面に汚泥等が付着する
のを防止し、且つ、前記膜分離槽E2内に循環流を形成
しながら被処理水に酸素を供給する散気装置Dを内装
し、前記膜分離装置Mのそれぞれの平膜1には集水管M
1を連設して、被処理水を浄化槽外へ取り出すべく集水
管M1の先端を外部に臨ませてある。図4に示すよう
に、前記平膜1は、濾板1Bを不織布1Cで挟み込み、
更に、前記濾板1Bを挟み込んだ不織布1Cの外側から
ポリオレフィン製の微多孔性膜1A、1Aで挟み込んだ
ユニットとして形成してあり、図5に示すように、複数
個のユニットをケース4に収容してある。As shown in FIG. 5, the membrane separation tank (nitrification tank) E2 is provided with a membrane separation device M in which a number of flat membranes 1 are juxtaposed, and is provided below the membrane separation device M. Supplies bubbles to the membrane separation device M to prevent sludge and the like from adhering to the membrane surface, and supplies oxygen to the water to be treated while forming a circulating flow in the membrane separation tank E2. A diffuser D is installed, and a water collecting pipe M is provided on each flat membrane 1 of the membrane separator M.
The front end of the water collecting pipe M1 faces the outside in order to take out the water to be treated out of the septic tank. As shown in FIG. 4, the flat membrane 1 sandwiches a filter plate 1B with a nonwoven fabric 1C,
Further, it is formed as a unit sandwiched between the microporous membranes 1A and 1A made of polyolefin from the outside of the nonwoven fabric 1C sandwiching the filter plate 1B. As shown in FIG. I have.
【0012】次に、散気装置D及びその制御について説
明する。図5に示すように、前記散気装置Dは、前記膜
分離槽E2内に配置された散気管2に対して前記膜分離
槽E2の上面に配置された給気装置3によって空気を供
給するように構成してある。ここで、前記給気装置3と
しては、前記散気管2に空気を供給する3つの散気用第
1、第2、第3空気吐出部A、B、Cを備えた散気用ブ
ロワ3を採用している。Next, the air diffuser D and its control will be described. As shown in FIG. 5, the air diffusing device D supplies air to the air diffusing pipe 2 arranged in the membrane separation tank E2 by an air supply device 3 arranged on the upper surface of the membrane separation tank E2. It is configured as follows. Here, the air supply device 3 includes an air blower 3 having three air diffusion first, second, and third air discharge units A, B, and C for supplying air to the air diffusion pipe 2. Has adopted.
【0013】前記散気装置Dを制御する制御機構Wは、
第一スイッチ8、第2スイッチ9からなる回路で構成し
てあると共に、前記膜分離槽E2の運転状態を脱窒、硝
化、膜分離モードに分類し、夫々の運転時間及び運転順
序を手動設定可能なコントローラ7が連係している。散
気用の第1空気吐出部Aには、電源が直接接続され、常
時作動するように配線してある。一方、第2、第3空気
吐出部B、Cは、前記第一スイッチ8、第2スイッチ9
に接続されており、前記コントローラ7からの信号によ
って、入り切り制御されるように配線してある。A control mechanism W for controlling the air diffuser D includes:
It is composed of a circuit composed of a first switch 8 and a second switch 9, and the operation state of the membrane separation tank E2 is classified into denitrification, nitrification, and membrane separation modes, and each operation time and operation order are manually set. Possible controllers 7 are linked. A power supply is directly connected to the first air discharging portion A for air diffusion, and is wired so as to operate constantly. On the other hand, the second and third air discharge units B and C are connected to the first switch 8 and the second switch 9 respectively.
, And are wired so as to be turned on and off by a signal from the controller 7.
【0014】前記制御機構Wは、前記コントローラ7の
設定が脱窒モードにあるときには、第一スイッチ8、第
2スイッチ9ともに切り(OFF)状態として、第1空
気吐出部Aのみを駆動し、小容量の空気を、前記散気装
置Dを通じて前記膜分離槽E2に供給する。そして、前
記コントローラ7の設定が硝化モードにあるときには、
第一スイッチ8を入り(ON)状態、第2スイッチ9を
切り(OFF)状態とし、第1空気吐出部Aと第2空気
吐出部Bを駆動し、中容量の空気を前記膜分離槽E2に
供給する。又、前記コントローラ7の設定が膜分離モー
ドにあるときには、第一スイッチ8、第2スイッチ9と
もに入り(ON)状態として、第1〜第3空気吐出部
A、B、Cを駆動し大容量の空気を前記膜分離槽E2に
供給する。When the setting of the controller 7 is in the denitrification mode, the control mechanism W turns off the first switch 8 and the second switch 9 (OFF) and drives only the first air discharge section A, A small volume of air is supplied to the membrane separation tank E2 through the air diffuser D. When the setting of the controller 7 is in the nitrification mode,
The first switch 8 is turned on (ON), the second switch 9 is turned off (OFF), and the first air discharging unit A and the second air discharging unit B are driven, and a medium volume of air is discharged from the membrane separation tank E2. To supply. When the controller 7 is in the membrane separation mode, the first switch 8 and the second switch 9 are both turned on (ON) to drive the first to third air discharge units A, B, and C, and Is supplied to the membrane separation tank E2.
【0015】前記コントローラ7に、時間Δt1、Δt
2、Δt3の間隔で、夫々脱窒、硝化、膜分離モード運
転を繰り返し行なう運転条件を入力すると、図1に示す
ように、先ず、前記膜分離槽E2には、Δt1の間、D
O濃度が脱窒に適した範囲に収まる程度の低容量の空気
が供給されて、前記被処理水は攪拌されつつ、嫌気菌に
よって脱窒処理が施される。続いて、Δt2の間、中容
量の空気が供給されることによって、前記膜分離槽E2
内は好気的環境に移行し、前記好気菌の働きによって、
前記被処理水は適度に硝化される。そして、Δt3の
間、前記平膜1をクリーニングするに足りる大容量の空
気を供給しつつ前記膜分離装置Mを稼動させることによ
って、集水管M1を通じて、被処理水を前記膜分離型浄
化槽外へ取り出すことができる。The controller 7 supplies time Δt1, Δt
When the operating conditions for repeatedly performing the denitrification, nitrification, and membrane separation mode operations are input at intervals of 2. and Δt3, as shown in FIG.
A low-volume air is supplied so that the O concentration falls within a range suitable for denitrification, and the water to be treated is subjected to denitrification by anaerobic bacteria while stirring. Subsequently, during the time period Δt2, a medium volume of air is supplied, whereby the membrane separation tank E2 is supplied.
The interior shifts to an aerobic environment, and by the action of the aerobic bacteria,
The water to be treated is appropriately nitrified. Then, during Δt3, the membrane separation device M is operated while supplying a large volume of air sufficient to clean the flat membrane 1, so that the water to be treated is taken out of the membrane separation type purification tank through the water collecting pipe M1. Can be taken out.
【0016】例えば、膜分離槽を備えた膜分離型浄化槽
(5人槽タイプ)を、従来の脱窒モードと膜分離モード
を交互に行なう運転方法で運転すると、放出される被処
理水の全窒素濃度が15mg/リットル以下レベルであ
った。ここで、本発明に係る運転方法に則って、前記膜
分離型浄化槽を、低容量(40リットル/分)、中容量
(80リットル/分)、高容量(120リットル/分)
の吐出量で、記載順に5:1:1の時間比で運転するサ
イクルを構成して、このサイクルを繰り返して運転する
ことによって、前記膜分離型浄化槽から放出される被処
理水の全窒素濃度を10mg/リットル以下に抑制する
ことができた。For example, when a membrane separation type purification tank (five-person tank type) provided with a membrane separation tank is operated by a conventional operation method in which a denitrification mode and a membrane separation mode are alternately operated, the total amount of the water to be treated discharged is increased. Nitrogen concentration was below 15 mg / liter. Here, in accordance with the operation method according to the present invention, the membrane separation type septic tank is provided with a low capacity (40 liters / minute), a medium capacity (80 liters / minute), and a high capacity (120 liters / minute).
And a cycle of 5: 1: 1 operation in the stated order with a discharge rate of, and by repeating this cycle, the total nitrogen concentration of the water to be treated discharged from the membrane separation type purification tank Was controlled to 10 mg / liter or less.
【0017】〔別実施形態〕以下に別実施形態を説明す
る。本発明に係る膜分離型浄化槽を運転するにあたっ
て、前記脱窒、硝化、膜分離モードの順序及び遂行時間
は、前記被処理水の脱窒・硝化バランスを適正化するこ
とができれば、必ずしも、前記実施形態にあるように、
前記脱窒、硝化、膜分離モードを記載順に遂行するサイ
クルを繰り返す必要はない。従って、使用する膜分離型
浄化槽に合わせて最適化すれば良く、例えば、図6
(a)に示すように、前記脱窒モードと前記硝化モード
を複数回繰り返して、十分に被処理水中の窒素化合物を
分解除去した後に、前記膜分離モードに移行して前記膜
分離型浄化槽から放出しても良く、又、硝化が進行し易
い場合には、図6(b)に示すように、前記脱窒モード
の遂行時間を、前記硝化モードの遂行時間に対して長め
に設定しても良い。ここで、前記コントローラ7に代え
て、手動で前記給気装置の運転モードを切り替える構成
をとっても良く、又、両者を併設してあっても良い。そ
して、前記被処理水のpH値又はDO濃度をモニタリン
グする機構を前記コントローラ7に接続して、pH値が
低い場合又はDO濃度が高い場合に脱窒モードの期間を
延長、又は、遂行回数を増加させるように設定してある
と、脱窒・硝化バランスを保持し易い。又、前記膜分離
槽E2に供給する空気量は、ブロワ3当たりの給気量を
増減して制御する構成に代えて、複数のブロワ3を備え
た給気装置とし、前記ブロワの稼動台数を制御する構成
を採用しても良い。更に又、前記脱窒槽と前記硝化槽と
の間で循環流を形成する構成に代えて、前記硝化槽の水
位が設定水位に達するまで前記脱窒槽から前記被処理水
を汲み上げるように、前記移送ポンプを制御する構成を
とることもできる。[Other Embodiment] Another embodiment will be described below. When operating the membrane separation type septic tank according to the present invention, the denitrification, nitrification, the order and the execution time of the membrane separation mode are not necessarily the same as long as the denitrification / nitrification balance of the water to be treated can be optimized. As in the embodiment,
It is not necessary to repeat the cycle of performing the denitrification, nitrification, and membrane separation modes in the stated order. Therefore, it may be optimized in accordance with the membrane separation type septic tank to be used.
As shown in (a), after the denitrification mode and the nitrification mode are repeated a plurality of times to sufficiently decompose and remove nitrogen compounds in the water to be treated, the mode shifts to the membrane separation mode, and the membrane separation type septic tank is removed. When the nitrification is likely to proceed, and as shown in FIG. 6B, the time for performing the denitrification mode is set to be longer than the time for performing the nitrification mode. Is also good. Here, instead of the controller 7, a configuration may be adopted in which the operation mode of the air supply device is manually switched, or both may be provided together. Then, a mechanism for monitoring the pH value or the DO concentration of the water to be treated is connected to the controller 7, and when the pH value is low or the DO concentration is high, the period of the denitrification mode is extended or the number of times of execution is increased. If it is set to increase, it is easy to maintain the denitrification / nitrification balance. Further, the amount of air supplied to the membrane separation tank E2 is changed to an air supply device having a plurality of blowers 3 instead of a configuration in which the amount of air supplied per blower 3 is increased or decreased. A configuration for controlling may be adopted. Further, instead of forming a circulation flow between the denitrification tank and the nitrification tank, the transfer is performed so that the water to be treated is pumped from the denitrification tank until the water level of the nitrification tank reaches a set water level. A configuration for controlling the pump may be employed.
【図1】本発明に係る運転方法による膜分離槽への空気
供給量のタイムチャートFIG. 1 is a time chart of an air supply amount to a membrane separation tank by an operation method according to the present invention.
【図2】本発明に係る膜分離型浄化槽の縦断面図FIG. 2 is a longitudinal sectional view of a membrane separation type septic tank according to the present invention.
【図3】本発明に係る膜分離型浄化槽の横断面図FIG. 3 is a cross-sectional view of a membrane separation type septic tank according to the present invention.
【図4】平膜構造を示す斜視図FIG. 4 is a perspective view showing a flat membrane structure.
【図5】散気装置と膜分離装置を示す制御構成図FIG. 5 is a control configuration diagram showing an air diffuser and a membrane separation device.
【図6】別実施形態に係る運転方法による膜分離槽への
空気供給量のタイムチャートFIG. 6 is a time chart of an air supply amount to a membrane separation tank by an operation method according to another embodiment.
3 給気装置(ブロワ) D 散気装置 M 膜分離装置 W 給気装置制御機構 E2 硝化槽(膜分離槽) 3 Air supply device (blower) D Air diffuser M Membrane separation device W Air supply device control mechanism E2 Nitrification tank (Membrane separation tank)
Claims (2)
供給する散気装置を硝化槽に内装してあると共に、前記
散気装置に空気を供給する給気装置を備えた膜分離型浄
化槽の運転方法において、 前記給気装置から前記硝化槽に空気を供給するにあたっ
て、 脱窒反応が進行可能且つ被処理水を攪拌可能な低容量の
空気を供給する脱窒工程、 前記脱窒工程で供給される量より高容量であって、硝化
反応が進行可能な中容量の空気を供給する硝化工程、 前記硝化工程で供給される量より高容量であって、前記
膜分離装置が運転可能な高容量の空気を供給する膜分離
工程を切り替えて行なう膜分離型浄化槽の運転方法。1. A membrane separation type purification tank in which a nitrification tank is provided with a membrane separation device and an air diffusion device for supplying air bubbles to the membrane separation device, and an air supply device for supplying air to the diffusion device is provided. In the operation method, in supplying air from the air supply device to the nitrification tank, a denitrification step of supplying low-volume air capable of allowing a denitrification reaction to proceed and stirring water to be treated, A nitrification step of supplying a medium volume of air that is higher in volume than the supplied amount and in which the nitrification reaction can proceed, the volume is higher than the amount supplied in the nitrification step, and the membrane separation device is operable. A method of operating a membrane separation type septic tank that switches between membrane separation steps for supplying a large volume of air.
供給する散気装置を硝化槽に内装してあると共に、前記
散気装置に空気を供給する給気装置を備えた膜分離型浄
化槽において、前記給気装置の空気吐出量を、脱窒反応
が進行可能且つ被処理水を攪拌可能な低容量、硝化反応
が進行可能な中容量、又は、前記膜分離装置が運転可能
な高容量に切り替えて運転する給気装置制御機構を備え
た膜分離型浄化槽。2. A membrane separation type purification tank in which a nitrification tank is provided with a membrane separation device and an air diffusion device for supplying air bubbles to the membrane separation device, and an air supply device for supplying air to the diffusion device is provided. In the above, the air discharge amount of the air supply device is set to a low capacity capable of advancing the denitrification reaction and stirring the water to be treated, a medium capacity capable of advancing the nitrification reaction, or a high capacity capable of operating the membrane separation device Septic tank with an air supply device control mechanism that operates by switching to
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11178309A JP2001000996A (en) | 1999-06-24 | 1999-06-24 | Operation method of membrane separation type septic tank and membrane separation type septic tank |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11178309A JP2001000996A (en) | 1999-06-24 | 1999-06-24 | Operation method of membrane separation type septic tank and membrane separation type septic tank |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001000996A true JP2001000996A (en) | 2001-01-09 |
Family
ID=16046233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11178309A Pending JP2001000996A (en) | 1999-06-24 | 1999-06-24 | Operation method of membrane separation type septic tank and membrane separation type septic tank |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001000996A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6863817B2 (en) | 2002-12-05 | 2005-03-08 | Zenon Environmental Inc. | Membrane bioreactor, process and aerator |
WO2014034836A1 (en) * | 2012-08-30 | 2014-03-06 | 東レ株式会社 | Membrane surface washing method in membrane separation activated sludge method |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6268594A (en) * | 1985-09-19 | 1987-03-28 | Kurita Water Ind Ltd | Treatment of organic waste water |
JPH0550081A (en) * | 1991-08-09 | 1993-03-02 | Kubota Corp | Treatment of sewage in spetic tank |
JPH0768294A (en) * | 1993-09-06 | 1995-03-14 | Kubota Corp | Wastewater treatment method |
JPH1015574A (en) * | 1996-07-09 | 1998-01-20 | Kubota Corp | Sewage treatment apparatus |
JPH1034177A (en) * | 1996-07-29 | 1998-02-10 | Matsushita Electric Works Ltd | Purifying tank |
JPH10128355A (en) * | 1996-11-06 | 1998-05-19 | Kubota Corp | Septic tank |
JPH10249391A (en) * | 1997-03-11 | 1998-09-22 | Kubota Corp | Waste water treating device |
JPH10263596A (en) * | 1997-03-25 | 1998-10-06 | Kubota Corp | Septic tank |
JPH11114594A (en) * | 1997-10-14 | 1999-04-27 | Sumitomo Heavy Ind Ltd | Treatment of waste water |
JPH11128983A (en) * | 1997-11-04 | 1999-05-18 | Sumitomo Heavy Ind Ltd | Treatment of waste water |
JPH11151497A (en) * | 1997-11-20 | 1999-06-08 | Sumitomo Heavy Ind Ltd | Waste water treating device |
-
1999
- 1999-06-24 JP JP11178309A patent/JP2001000996A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6268594A (en) * | 1985-09-19 | 1987-03-28 | Kurita Water Ind Ltd | Treatment of organic waste water |
JPH0550081A (en) * | 1991-08-09 | 1993-03-02 | Kubota Corp | Treatment of sewage in spetic tank |
JPH0768294A (en) * | 1993-09-06 | 1995-03-14 | Kubota Corp | Wastewater treatment method |
JPH1015574A (en) * | 1996-07-09 | 1998-01-20 | Kubota Corp | Sewage treatment apparatus |
JPH1034177A (en) * | 1996-07-29 | 1998-02-10 | Matsushita Electric Works Ltd | Purifying tank |
JPH10128355A (en) * | 1996-11-06 | 1998-05-19 | Kubota Corp | Septic tank |
JPH10249391A (en) * | 1997-03-11 | 1998-09-22 | Kubota Corp | Waste water treating device |
JPH10263596A (en) * | 1997-03-25 | 1998-10-06 | Kubota Corp | Septic tank |
JPH11114594A (en) * | 1997-10-14 | 1999-04-27 | Sumitomo Heavy Ind Ltd | Treatment of waste water |
JPH11128983A (en) * | 1997-11-04 | 1999-05-18 | Sumitomo Heavy Ind Ltd | Treatment of waste water |
JPH11151497A (en) * | 1997-11-20 | 1999-06-08 | Sumitomo Heavy Ind Ltd | Waste water treating device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6863817B2 (en) | 2002-12-05 | 2005-03-08 | Zenon Environmental Inc. | Membrane bioreactor, process and aerator |
WO2014034836A1 (en) * | 2012-08-30 | 2014-03-06 | 東レ株式会社 | Membrane surface washing method in membrane separation activated sludge method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4508694B2 (en) | Water treatment method and apparatus | |
JP4059790B2 (en) | Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method | |
JP3963497B2 (en) | Organic wastewater treatment method and apparatus | |
JP2009285582A (en) | Membrane separation activated sludge treatment apparatus and its method | |
JP2001000996A (en) | Operation method of membrane separation type septic tank and membrane separation type septic tank | |
JP2003117578A (en) | Repairing method for bioreaction region in biotreatment equipment for sewage | |
JP2005081273A (en) | Method for operating activated sludge treatment system and membrane separation unit used for its operation method | |
JP5456238B2 (en) | Membrane separator | |
JP4105006B2 (en) | Water treatment system and water treatment method | |
JP2004249235A (en) | Membrane separation device of activated sludge treatment system, membrane separation method, and activated sludge treatment system equipped with membrane separation device | |
JPH1110193A (en) | Method and apparatus for shared carrier nitrification denitrification reaction | |
JP4307275B2 (en) | Wastewater treatment method | |
JPH09141291A (en) | Water treating device | |
JPH10290994A (en) | Septic tank | |
JP2004249236A (en) | Water treatment system using oxidation ditch method and water treatment method | |
JP7121823B2 (en) | Membrane separation activated sludge treatment device, membrane separation activated sludge treatment method and raw water supply device | |
JP6632192B2 (en) | Blower and wastewater treatment system | |
JP2001246390A (en) | Two bed juxtaposition type aerobic filter bed tank, septic tank and operation method thereof | |
JP2016175041A (en) | Wastewater treatment system | |
JP4865997B2 (en) | Operation method of sewage treatment apparatus and sewage treatment apparatus | |
JP2000042587A (en) | Biological waste water treating device | |
JP4342045B2 (en) | Septic tank operation | |
JPH0655194A (en) | Organic-contaminated water treatment device | |
JPH0957262A (en) | Method for dissolving air into water to be treated in septic tank and septic tank | |
JP2004358411A (en) | Membrane separation unit for activated sludge treatment system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060328 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060524 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060921 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070201 |