JP2000514773A - Lithium manganese oxyfluoride for electrodes for Li-ion batteries - Google Patents

Lithium manganese oxyfluoride for electrodes for Li-ion batteries

Info

Publication number
JP2000514773A
JP2000514773A JP10512903A JP51290398A JP2000514773A JP 2000514773 A JP2000514773 A JP 2000514773A JP 10512903 A JP10512903 A JP 10512903A JP 51290398 A JP51290398 A JP 51290398A JP 2000514773 A JP2000514773 A JP 2000514773A
Authority
JP
Japan
Prior art keywords
compound
battery
capacity
cycling stability
lithium manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10512903A
Other languages
Japanese (ja)
Inventor
アマツッチ,グレン,ジー.
タラスコン,ジーン―マリー.
Original Assignee
テルコーディア テクノロジーズ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/706,546 external-priority patent/US5674645A/en
Application filed by テルコーディア テクノロジーズ インコーポレイテッド filed Critical テルコーディア テクノロジーズ インコーポレイテッド
Publication of JP2000514773A publication Critical patent/JP2000514773A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0072Mixed oxides or hydroxides containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/54Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [Mn2O4]-, e.g. Li(CoxMn2-x)04, Li(MyCoxMn2-x-y)O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • H01M4/1315Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx containing halogen atoms, e.g. LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

(57)【要約】 一般式Li1+xyMn2-x-y4-zzを有し、上記一般式中、Mは金属、たとえばCo、Cr、またはFe、x≦0.4、y≦0.3、および0.05≦z≦1.0である酸フッ化リチウムマンガン電極成分層間材料の使用により、Liイオン蓄電池のサイクリング安定性および容量が改善される。 (57) Abstract: have the general formula Li 1 + x M y Mn 2 -xy O 4-z F z, in the general formula, M is a metal, for example Co, Cr or Fe, x ≦ 0.4, , Y ≦ 0.3, and 0.05 ≦ z ≦ 1.0, the use of the lithium manganese oxyfluoride electrode component interlayer material improves the cycling stability and capacity of the Li-ion battery.

Description

【発明の詳細な説明】 Liイオン蓄電池用電極のための酸フッ化リチウムマンガン 発明の背景 本発明は、Liイオン蓄電池の活性電極材料として有用な、酸化リチウムマン ガン層間化合物に関するものであり、特にこのような化合物の酸フッ化錯体、お よびこのような蓄電池のサイクリング安定性および容量を改善するためのこれら 錯体の使用に関するものである。 酸化リチウムマンガン層間化合物、すなわちLiMn24は、再充電可能なL iイオン電解二次電池、および複合電池製造のための有効で経済的な材料である ことが次第に証明されている。成功したこの種の電池は、米国特許第5,296 ,318号および第5,460,904号に記載されている。これらの電池は、 かなりなレベルの電気的蓄積容量、および広範囲の電圧にわたっての再充電サイ クリング安定性を有するが、これらの特性は近代の電子装置および適用分野の、 次第に厳しくなる必要条件を満たすには、全面的に満足なものであるとは考えら れていない。 上記の特性を改善するため、広範な研究が行われており、そのような作業の結 果、LiMn24スピネルの構造的パラメータ、たとえば化合物のa軸格子寸法 の変動が、電池の最終的性能に著しい影響を与えることが判明した。逆に、この ような構造的パラメータは、層間化合物の構造、およびその合成条件に大幅に依 存することがわかっている。この点で、たとえば、8.23Å未満のa軸パラメ ータが、長期のサイクルにわたって望ましい再充電安定性を促進させることが、 一般に認められている。 この利点のあるパラメータ範囲を達成するための手法には、米国特許第5,4 25,932号にTarasconが記載した、Mnの原子価を高くすることによりa軸 寸法が小さくなる利点を得るため、およびTarasconらがJ.Electrochem.Soc.、 Vol.138、No.10、p.2859〜2864、1991年10月で言及したような、陽イオン 置換、または欧州特許第390,185号に示唆されたような、Mn原子の一部 をCo、Cr、もしくはFeで置換するなどの、合成条件の厳密な制御が含まれ る。他の何人かの研究者は、サイクリング安定性を改善する効果的な手段として 、代表的構造式(Li)tet[Mn2-xLi]oct4に従って、Mnの置換から同 様の効果を得るために、リチウム挿入のレベルを増大することを推奨しているが 、この方法は、初期のMn置換に見られたように、電池の容量を犠牲にすること になることが判明している。 これらの以前に行われた方策に反して、サイクリング安定性と電池容量の両方 の同時改善を達成する手段を提供し、長寿命で高電力使用が可能な電池の製造を 可能にするため、陰イオン置換を利用している。 発明の概要 当発明者は、名目上のLiMn24の酸素原子の一部をフッ素で陰イオン置換 することにより、従来の慣行の不適切さが改善できることを発見した。このよう な置換は、単独では好ましい範囲を超えてa軸パラメータの拡大が生じることが 当初観察されたが、明らかにMnの原子価の減少のため、MnのLi置換を同時 に増加することにより、a軸寸法が8.23Å未満の最適範囲への劇的な変化を 驚異的に達成することを、さらに研究を行うことにより見いだした。これらのフ ッ素置換電極材料を有する電解型電池は、その後驚異的な電池容量とともに、サ イクリング安定性を示した。 これらの有益な酸フッ化物スピネル誘導体の製造は、適切な前駆物質化合物、 代表的にはLi2CO3、LiF、およびMnO2の化学量的混合物を約800℃ でアニーリングする米国特許第5,425,932号でTarasconが言及している ような、通常の方法に従って最も簡単に行われる。これらの誘導体は、上述の欧 州特許第390,185号の、陽イオン置換の前駆物質を含むものでもよい。従 来の電解型電池の改善を達成するため効果的に使用することができる、得られた 層間材料は、したがって、一般式Li1+xyMn2-x-y4-zzで表される。 上記一般式中、MはCo、Cr、Feなどの金属、x≦0.4、y≦0.3、お よび0.05≦z≦1.0である。 主として式成分xおよびz、すなわちLiおよびFを変化させた酸フッ化化合 物により調製した一連の電池用陽極組成物を、X線回折分析により試験を行い、 得られたa軸の格子定数を決定した後、上述の特許に記載されているような通常 の方法により試験用電池に組み込んだ。この電池を反復充電/放電サイクリング にかけ、化合物の構造が、電池が示す電気的蓄積容量のレベルに与える影響を、 一般に電極化合物のmAhr/gで、サイクリング安定性、すなわち長期のサイ クリングにわたって初期のレベルを維持する能力とともに決定した。 図面の簡単な説明 本発明を、添付した図面を参照して説明する。 図1は、本発明の化合物Li1+xyMn2-x-y4-zz(Mは金属、x=0. 1、y=0、z=0.1)のX線回折パターンである。 図2は、本発明の化合物Li1+xyMn2-x-y4-zz(Mは金属、x=0. 05、y=0、z≦0.5)の、a軸格子寸法とzとの関係を示すグラフである 。 図3は、図2の陽極化合物を含む電池の、容量およびサイクリング安定性と、 充電サイクルの回数とのグラフによる比較である。 図4は、従来のLi1+xMn24電極化合物を含む電池と、本発明の化合物を 含む電池の、容量およびサイクリング安定性と、充電サイクルの回数とのグラフ による比較である。 図5は、本発明の化合物Li1+xyMn2-x-y4-zz(Mは金属、x≦0. 2、y=0、z≦0.4)の、a軸格子寸法とzとのグラフによる比較である。 図6は、本発明の化合物Li1+xyMn2-x-y4-zz(Mは金属、x=0、 y=0、z≦0.4)を含む電池の、容量およびサイクリング安定性と、充電サ イクルの回数とのグラフによる比較である。 図7は、本発明の化合物Li1+xyMn2-x-y4-zz(Mは金属、x=0. 1、y=0、z≦0.4)を含む電池の、容量およびサイクリング安定性と、充 電サイクルの回数とのグラフによる比較である。 図8は、本発明の化合物Li1+xyMn2-x-y4-zz(Mは金属、x=0. 2、y=0、z≦0.4)を含む電池の、容量およびサイクリング安定性と、充 電サイクルの回数とのグラフによる比較である。 図9は、本発明の化合物Li1+xyMn2-x-y4-zz(Mは金属、x=0、 y=0.2、z≦0.1)を含む電池の、容量およびサイクリング安定性と、充 電サイクルの回数とのグラフによる比較である。 発明の説明 従来の慣行に使用されるLi1+xMn24層間材料(本発明の式Li1+xyM n2-x-y4-zzでの呼称によれば、y=0、z=0の場合)を、上述の米国特 許第5,425,932号に記載された方法に従って、主要な前駆物質の化学量 的混合物、たとえば9.23重量部のLi2CO3を43.46部のMnO2の混 合物を使用して、名目上のLiMn24を得て、性能対照サンプルとして使用す るために調製した。これらの対照サンプルの電池を、後述する本発明の材料のサ ンプルとともに、同様に製作し、上記特許明細書に全般的に記載されているよう に、定電流および定電位試験により試験を行った。このような試験用電池は、実 用的方策として、リチウム箔陰極を具備するものとした。これは、実験により、 この方法で得られた性能の結果が、他の上述の特許明細書に記載されたLiイオ ン電池組成物により得られた結果に匹敵することが確認されたためである。それ にもかかわらず、この結果における相関性をさらに確認するため、本発明の材料 を含むLiイオン組成物により、以下に示す追加試験を行った。 実施例1 本発明の層間材料の典型的な調製では、化学量的比率の前駆物質、MnO2( EMD型)、Li2CO3、およびLiFを、60.94:12.82:1の重量 比で、めのう製乳鉢および乳棒で完全に混合し、この混合物をアルミナ製るつぼ に入れ、対照サンプルの方法により空気中でアニーリングを行い、Li1+xyM n2-x-y4-zz(x=0.1、y=0、z=0.1)、すなわちLi1.1Mn1. 93.90.1の試験用組成物を得た。具体的には、混合物を一定速度で約12時 間かけて800℃の温度まで加熱し、この温度で約12時間保持した。次にこの サンプルを一定速度で約24時間かけて室温まで冷却した。混合/粉砕の後、サ ンプルを5時間かけて800℃の温度まで再加熱し、この温度で約12時間保持 した後、約24時間かけて室温まで最終的に冷却した。得られた酸フッ化化合物 を、CuKαX線回折(XRD)試験機で特性を測定し、図1に示すグラフのパ ターンを得た。このパターンの明らかに画定されたピークによって、良く結晶化 された単一相の合成生成物であることが確認された。 実施例2 本発明の一連の酸フッ化化合物を、前駆物質化合物を適切に組み合わせて同様 に調製し、Li1+xMyMn2-x-y4-zzを得た。この式で、x=0.05、y =0、z=0、0.05、0.10、0.15、0.20、0.35、および0 .50とした。得られたサンプルの特性をXRDで測定し、各a軸の格子定数を 計算した。図2に示すように、これらの定数のプロットが、フッ素置換の増加を 追跡し、これを示す一定の増加を示している。 同サンプルのそれぞれ一部に、約10%の導電性炭素および5%のポリフッ化 ビニリデンのバインダを配合し、アルミニウム箔基板上に層として形成し、試験 電池用陽極とした。通常の方法で、リチウム箔電極と、炭酸エチレンと炭酸ジメ チルの2:1の混合物にLiPF6を溶解した1M電解質溶液を飽和させた介在 するガラスファイバ隔離板とを通常の方法で配置して、サンプル電極は試験用電 池を形成し、これをC/5速度(全サイクル時間5時間以上)で3.4〜4.5 Vの範囲で充電/放電サイクリングを行った。各電池の容量を、35サイクルの 期間まで追跡したところ、その特性、すなわち電池のサイクリング安定性の、再 充電の繰り返しによる変化速度を示す図3に見られるような徴候が判明した。線 31〜36は、上述のフッ素置換量zが0.05から0.5への増加を反映して いる。図2および図3に示す結果を比較すると、a軸寸法が好ましい限度である 約8.23Åを超えて増大するにつれて、容量およびサイクリング安定性がとも に失われる一般的傾向が、図形的に確認される。 実施例3 Liのみ変化させた従来の技術による一連の無置換層間化合物、すなわち、L i1+xyMn2-x-y4-zzで、x=0.05、0.075、および0.1とし 、y=0,z=0としたものを調製し、同様の方法で試験したところ、この変 数の、得られた電池の容量およびサイクリング安定性への影響が示された。図4 に、Li含有量の増加を示した線41〜43として見られるように、その変動の みでサイクリング安定性は改善されるが、電池の容量は顕著に減少する。実施例 1の酸フッ化(x=0.1、z=0.1)化合物を用いて作成した、追加の電池 の性能も、図4に線44で示したが、本発明により得られる驚異的な効果を反映 している。特に、Li含有量が類似している線43および44を比較すると、こ のフッ素置換との組み合わせから得られる容量とサイクリング安定性の両方の著 しい改善がわかる。 実施例4 一連の酸フッ化化合物を、LiとFの両方を変化させて、すなわちLi1+xy Mn2-x-y4-zzの式で、x=0、0.1および0.2、y=0、z=0、0 .05、0.1、0.2および0.4として調製した。各シリーズのa軸格子定 数の変化を、Liの増加を示す線52〜56として図5に示すが、LiおよびF の、組み合わせのこのパラメータの最適範囲を得ることへの著しい影響を示して いる。 実施例5 x=0とした実施例4の一連の化合物を、上述の方法で試験した電池を製造す るのに用いた。フッ素含有量の増加を示す線61〜65として図6に示す結果は 、Li:Fの比でFの量が好ましい化合物の容量とサイクリング安定性への影響 を示している。 実施例6 x=0.1とした実施例4の一連の化合物を、上述の方法で試験した電池を製 造するのに用いた。フッ素含有量の増加を示す線71〜75として図7に示す結 果は、Li:Fの比でFの量がよく均衡がとれているものほど容量とサイクリン グ安定性が改善されることを示している。実施例7 x=0.2とした実施例4の一連の化合物を、上述の方法で試験した電池を製 造するのに用いた。フッ素含有量の増加を示す線81〜85として図8に示す結 果は、Li:Fの比でFの量がさらによく均衡がとれているものほど、特にサイ クリング安定性に影響することを示している。実施例9 陽イオン(Cr)置換と陰イオン置換の両方を行った本発明の一連の化合物、 Li1+xyMn2-x-y4-zzで、x=0、y=0.2、z=0、0.05、お よび0.1としたものを、適切な化学量の前駆物質、たとえばMnO2、Li2C O3、Cr23、およびLiFの重量比を10.3:2.31:1.0:0.0 86としたもの(LiCr0.2Mn1.83.90.05)を組み合わせて、上記の方 法により調整した。得られた材料を用いて試験用電池を作成したところ、その性 能改善は、フッ素含有量の増加を示す線92〜96として図9に示すように、上 述の結果に匹敵するものであった。同様の結果は、陽イオンのCoおよびFe置 換によっても得ることができる。 実施例10 実施例6の陽極材料により、上述の米国特許第5,460,904号に記載さ れているように、石油コークスの陰極と、ポリビニリデン共重合体マトリックス 電解質/隔離板エレメントを使用して、一連のLiイオン電池を作製した。反復 充電サイクリング試験により、実施例6に匹敵する電池容量とサイクリング安定 性が示された。 本発明の他の実施形態も、上記説明に照らし合わせて、熟練した技術者には明 らかになり、このような変形態様は、添付した請求の範囲に詳述するように本発 明の範囲内に含まれることが意図される。DETAILED DESCRIPTION OF THE INVENTION          Lithium manganese oxyfluoride for electrodes for Li-ion batteries                                Background of the Invention   The present invention relates to a lithium oxide mangan useful as an active electrode material for a Li-ion storage battery. The present invention relates to intercalation compounds, especially oxyfluoride complexes of such compounds, And to improve the cycling stability and capacity of such batteries It relates to the use of the complex.   Lithium manganese oxide intercalation compound, namely LiMnTwoOFourIs a rechargeable L It is an effective and economical material for manufacturing i-ion electrolytic secondary batteries and composite batteries Is gradually being proven. A successful battery of this type is disclosed in US Pat. , 318 and 5,460,904. These batteries are Significant levels of electrical storage capacity and recharge sites over a wide range of voltages Despite its cling stability, these properties can be found in modern electronic devices and applications. In order to meet the increasingly stringent requirements, it is believed that they are entirely satisfactory. Not.   Extensive research has been done to improve these properties and the consequences of such work. Fruit, LiMnTwoOFourSpinel structural parameters, such as the a-axis lattice dimensions of the compound Has been found to significantly affect the final performance of the battery. Conversely, this Such structural parameters are highly dependent on the structure of the intercalation compound and its synthesis conditions. I know it exists. In this respect, for example, an a-axis parameter of less than 8.23 ° Data promotes the desired recharge stability over long cycles. It is generally accepted.   Techniques for achieving this advantageous parameter range include US Pat. No. 25,932, described by Tarascon, by increasing the valence of Mn, the a-axis To take advantage of the reduced size, and Tarascon et al. Electrochem. Soc., Vol.138, No.10, p.2859-2864, cation as mentioned in October 1991 Substitution or part of a Mn atom as suggested in EP 390,185 Strict control of synthesis conditions, such as substituting Co with Cr, or Fe You. Some other researchers have suggested that effective measures to improve cycling stability , Representative structural formula (Li)tet[Mn2-xLi]octOFourFrom the substitution of Mn It is recommended to increase the level of lithium insertion to achieve the same effect, This method sacrifices battery capacity, as seen in the early Mn substitutions. Has been found to be.   Contrary to these previous measures, both cycling stability and battery capacity A means of achieving simultaneous improvement of To make this possible, an anion substitution is used.                                Summary of the Invention   The inventor has proposed that the nominal LiMnTwoOFourAnion substitution of some oxygen atoms with fluorine It has been found that doing so can improve the inadequacy of conventional practices. like this Substitution alone may cause an increase in the a-axis parameter beyond the preferred range. Although initially observed, Mn was simultaneously replaced with Li due to a decrease in the valence of Mn. The dramatic change to the optimal range where the a-axis dimension is less than 8.23 °. A phenomenal achievement has been found by further research. These files Electrolyte batteries with nitrogen-substituted electrode materials have subsequently been used with It showed cycling stability.   The production of these beneficial oxyfluoride spinel derivatives involves the use of suitable precursor compounds, Typically LiTwoCOThree, LiF, and MnOTwoAbout 800 ° C. Tarascon mentions in US Patent No. 5,425,932 annealing at It is most easily done according to the usual method. These derivatives are No. 390,185, which may include a cation-substituted precursor. Obedience Can be used effectively to achieve the improvement of conventional electrolytic cells, obtained The interlayer material therefore has the general formula Li1 + xMyMn2-xyO4-zFzIt is represented by In the above general formula, M is a metal such as Co, Cr, and Fe, x ≦ 0.4, y ≦ 0.3, and And 0.05 ≦ z ≦ 1.0.   Acid fluorinated compounds with mainly the formula components x and z, ie Li and F A series of anode compositions for batteries prepared from the products were tested by X-ray diffraction analysis, After determining the lattice constant of the obtained a-axis, the usual method as described in the above-mentioned patent is applied. Was incorporated into the test battery by the method described above. Repeated charge / discharge cycling of this battery The effect of the compound structure on the level of electrical storage capacity exhibited by the battery, In general, the cycling stability, that is, the long-term size, is determined by the mAhr / g of the electrode compound. The decision was made with the ability to maintain the initial level over the cling.                             BRIEF DESCRIPTION OF THE FIGURES   The present invention will be described with reference to the accompanying drawings.   FIG. 1 shows the compound Li of the present invention.1 + xMyMn2-xyO4-zFz(M is a metal, x = 0. 1, y = 0, z = 0.1).   FIG. 2 shows the compound Li of the present invention.1 + xMyMn2-xyO4-zFz(M is a metal, x = 0. 05, y = 0, z ≦ 0.5) is a graph showing the relationship between the a-axis lattice dimension and z. .   FIG. 3 shows the capacity and cycling stability of a battery comprising the anode compound of FIG. It is a graph comparison with the number of charging cycles.   FIG. 4 shows conventional Li1 + xMnTwoOFourA battery containing an electrode compound and a compound of the present invention Graph of capacity and cycling stability of batteries, including number of charge cycles It is a comparison by.   FIG. 5 shows the compound Li of the present invention.1 + xMyMn2-xyO4-zFz(M is a metal, x ≦ 0. 2, y = 0, z ≦ 0.4) is a graph comparison between the a-axis lattice dimension and z.   FIG. 6 shows the compound Li of the present invention.1 + xMyMn2-xyO4-zFz(M is a metal, x = 0, y = 0, z ≦ 0.4), the capacity and cycling stability of the battery This is a graph comparison with the number of cycles.   FIG. 7 shows the compound Li of the present invention.1 + xMyMn2-xyO4-zFz(M is a metal, x = 0. 1, y = 0, z ≦ 0.4), and the capacity and cycling stability of the battery. It is a graph comparison with the number of power cycles.   FIG. 8 shows the compound Li of the present invention.1 + xMyMn2-xyO4-zFz(M is a metal, x = 0. 2, y = 0, z ≦ 0.4) and the capacity and cycling stability of the battery. It is a graph comparison with the number of power cycles.   FIG. 9 shows the compound Li of the present invention.1 + xMyMn2-xyO4-zFz(M is a metal, x = 0, y = 0.2, z ≦ 0.1), the capacity and cycling stability and It is a graph comparison with the number of power cycles.                                Description of the invention   Li used in conventional practice1 + xMnTwoOFourInterlayer material (formula Li of the present invention)1 + xMyM n2-xyO4-zFzAccording to the designation in the above, the case of y = 0 and z = 0) is No. 5,425,932, stoichiometry of key precursors Mixture, for example, 9.23 parts by weight of LiTwoCOThreeTo 43.46 parts of MnOTwoBlend of Nominal LiMn using the compoundTwoOFourAnd use it as a performance control sample. Prepared for These control samples were prepared using the materials of the present invention described below. With the sample, and as described generally in the above patent specification. Then, a test was performed by a constant current and constant potential test. Such test batteries are actually As a practical measure, a lithium foil cathode was provided. This is, by experiment, The performance results obtained in this way are consistent with the Li ion described in the other aforementioned patent specifications. This is because it was confirmed that the results were comparable to the results obtained with the battery composition. It Nevertheless, to further confirm the correlation in this result, the materials of the invention The following additional tests were performed using a Li ion composition containing.                                 Example 1   In a typical preparation of the interlayer material of the present invention, a stoichiometric proportion of the precursor, MnOTwo( EMD type), LiTwoCOThree, And LiF at a weight of 60.94: 12.82: 1. In a ratio, mix thoroughly with an agate mortar and pestle and mix this mixture with an alumina crucible. And annealed in the air by the method of the control sample to obtain Li1 + xMyM n2-xyO4-zFz(X = 0.1, y = 0, z = 0.1), that is, Li1.1Mn1. 9 O3.9F0.1Was obtained. Specifically, the mixture is allowed to flow at a constant speed for about 12:00. Heated to a temperature of 800 ° C. over a period of time and held at this temperature for about 12 hours. Then this The sample was cooled to room temperature at a constant rate over about 24 hours. After mixing / milling, Reheat the sample to a temperature of 800 ° C over 5 hours and hold at this temperature for about 12 hours After that, it was finally cooled to room temperature over about 24 hours. Obtained oxyfluoride compound Was measured with a CuKα X-ray diffraction (XRD) tester, and the plot of the graph shown in FIG. Got a turn. Crystallized well due to clearly defined peaks in this pattern It was confirmed to be a single-phase synthesized product.                                 Example 2   A series of oxyfluoride compounds of the present invention, with appropriate combination of precursor compounds And Li1 + xMyMn2-xyO4-zFzI got In this equation, x = 0.05, y = 0, z = 0, 0.05, 0.10, 0.15, 0.20, 0.35, and 0 . 50. The characteristics of the obtained sample were measured by XRD, and the lattice constant of each a-axis was calculated. Calculated. As shown in FIG. 2, plots of these constants show the increase in fluorine substitution. Track and show a constant increase indicating this.   Approximately 10% conductive carbon and 5% polyfluoride Compounded with vinylidene binder, formed as a layer on aluminum foil substrate, and tested This was used as a battery anode. The lithium foil electrode, ethylene carbonate and carbon dioxide LiPF in a 2: 1 mixture of chills6With saturated 1M electrolyte solution containing The sample electrode is placed in a conventional manner with the glass fiber separator A pond is formed and this is run at C / 5 rate (over 5 hours of total cycle time) from 3.4 to 4.5. Charge / discharge cycling was performed in the V range. The capacity of each battery is Tracking over time, its properties, namely the cycling stability of the battery, Signs such as those shown in FIG. 3 showing the rate of change due to repeated charging were found. line 31 to 36 reflect the above-mentioned increase in the fluorine substitution amount z from 0.05 to 0.5. I have. Comparing the results shown in FIGS. 2 and 3, the a-axis dimension is the preferred limit As it increases beyond about 8.23%, both capacity and cycling stability The general tendency to be lost is graphically confirmed.                                 Example 3   A series of unsubstituted intercalation compounds according to the prior art in which only Li is changed, ie, L i1 + xMyMn2-xyO4-zFzWhere x = 0.05, 0.075, and 0.1 , Y = 0, z = 0 were prepared and tested in the same manner. The number had an effect on the capacity and cycling stability of the resulting cells. FIG. In addition, as can be seen from the lines 41 to 43 showing the increase in Li content, Alone improves cycling stability, but battery capacity is significantly reduced. Example Additional battery made using 1 oxyfluoride (x = 0.1, z = 0.1) compound 4 is also shown by the line 44 in FIG. 4 and reflects the surprising effect obtained by the present invention. are doing. In particular, comparing lines 43 and 44 with similar Li contents, Both capacity and cycling stability obtained from the combination of We can see new improvements.                                 Example 4   A series of oxyfluoride compounds are produced by changing both Li and F, namely Li1 + xMy Mn2-xyO4-zFzWhere x = 0, 0.1 and 0.2, y = 0, z = 0, 0 . Prepared as 05, 0.1, 0.2 and 0.4. A-axis lattice constant for each series The change in number is shown in FIG. 5 as lines 52-56 indicating an increase in Li, but with Li and F Shows the significant effect of combinations on obtaining the optimal range of this parameter I have.                                 Example 5   A series of compounds of Example 4 where x = 0 was used to produce batteries tested in the manner described above. Used for The results shown in FIG. 6 as lines 61-65 indicating an increase in fluorine content are , Li: F ratio where the amount of F is preferred The effect on compound capacity and cycling stability Is shown.                                 Example 6   A series of compounds of Example 4 where x = 0.1 was used to prepare batteries tested in the manner described above. Used to build. Lines 71 to 75 indicating an increase in the fluorine content are shown in FIG. The result is that the more balanced the amount of F in the Li: F ratio, the better the capacity and cyclin This shows that the stability is improved.Example 7   A series of compounds of Example 4 where x = 0.2 was used to prepare batteries tested in the manner described above. Used to build. The lines 81 to 85 showing the increase in the fluorine content are shown in FIG. The result is that the more well balanced the amount of F in the Li: F ratio, especially the size This indicates that it affects cling stability.Example 9   A series of compounds of the present invention, both cation (Cr) substituted and anion substituted; Li1 + xMyMn2-xyO4-zFzWhere x = 0, y = 0.2, z = 0, 0.05, and And 0.1 are replaced by appropriate stoichiometric precursors such as MnOTwo, LiTwoC OThree, CrTwoOThree, And LiF in a weight ratio of 10.3: 2.31: 1.0: 0.0. 86 (LiCr0.2Mn1.8O3.9F0.05) In combination with the above Adjusted by the method. When a test battery was made using the obtained material, The performance improvement is shown in FIG. 9 as lines 92-96 indicating an increase in fluorine content. It was comparable to the result described. Similar results were obtained with the Co and Fe positions of the cations. It can also be obtained by exchange.                                Example 10   According to the anode material of Example 6, the anode material described in the above-mentioned US Pat. No. 5,460,904 is used. As shown, a petroleum coke cathode and a polyvinylidene copolymer matrix A series of Li-ion batteries were made using electrolyte / separator elements. Repetition Battery cycle and cycling stability comparable to Example 6 by charging cycling test Sex was shown.   Other embodiments of the invention will also be apparent to those skilled in the art in light of the above description. For clarity, such variations are disclosed in the appended claims. It is intended to be included within the scope of the description.

Claims (1)

【特許請求の範囲】 1.一般式Li1+xyMn2-X-y4-zzを有し、上記一般式中、Mは金属、x ≦0.4、y≦0.3、および0.05≦Z≦1.0であることを特徴とする酸 フッ化リチウムマンガン。 2.MがCo、Cr、またはFeであることを特徴とする請求項1に記載の化合 物。 3.x≦0.2、y=0、および0.05≦z≦0.4であることを特徴とする 請求項2に記載の化合物。 4.0.1≦x≦0.2、y=0、および0.05≦z≦0.4であることを特 徴とする請求項2に記載の化合物。 5.0.1≦x≦0.2、y=0、および0.05≦z≦0.2であることを特 徴とする請求項2に記載の化合物。 6.0.05≦x≦0.2、y≦0.3、および0.05≦z≦0.2であるこ とを特徴とする請求項2に記載の化合物。 7.陽極、陰極、およびこれらの間に配置された隔離板を具備する蓄電池であっ て、上記陽極が一般式Li1+xyMn2-x-y4-zzを有し、上記一般式中、M は金属、x≦0.4、y≦0.3、および0.05≦z≦1.0である層間化合 物であることを特徴とする蓄電池。 8.MがCo,Cr、またはFeであることを特徴とする請求項7に記載の蓄電 池。 9.x≦0.2、y=0、および0.05≦z≦0.4であることを特徴とする 請求項8に記載の蓄電池。 10.0.1≦x≦0.2、y=0、および0.05≦z≦0.4であることを 特徴とする請求項8に記載の蓄電池。 11.0.1≦x≦0.2、y=0、および0.05≦z≦0.2であることを 特徴とする請求項8に記載の蓄電池。 12.0.05≦x≦0.2、y≦0.3、および0.05≦z≦0.2である ことを特徴とする請求項8に記載の蓄電池。[Claims] 1. Has the general formula Li 1 + x M y Mn 2 -Xy O 4-z F z, in the general formula, M is a metal, x ≦ 0.4, y ≦ 0.3 , and 0.05 ≦ Z ≦ Lithium manganese oxyfluoride, characterized by being 1.0. 2. The compound according to claim 1, wherein M is Co, Cr, or Fe. 3. 3. The compound according to claim 2, wherein x≤0.2, y = 0 and 0.05≤z≤0.4. 4. The compound according to claim 2, wherein 0.1 ≦ x ≦ 0.2, y = 0, and 0.05 ≦ z ≦ 0.4. 5. The compound according to claim 2, wherein 0.1 ≦ x ≦ 0.2, y = 0, and 0.05 ≦ z ≦ 0.2. 6. The compound according to claim 2, wherein 0.05 ≦ x ≦ 0.2, y ≦ 0.3, and 0.05 ≦ z ≦ 0.2. 7. An anode, a cathode, and a battery having a separator disposed therebetween, said anode having a general formula Li 1 + x M y Mn 2 -xy O 4-z F z, the general formula Wherein M 1 is a metal and an interlayer compound satisfying x ≦ 0.4, y ≦ 0.3, and 0.05 ≦ z ≦ 1.0. 8. The storage battery according to claim 7, wherein M is Co, Cr, or Fe. 9. 9. The storage battery according to claim 8, wherein x ≦ 0.2, y = 0, and 0.05 ≦ z ≦ 0.4. 10. The storage battery according to claim 8, wherein 0.1 ≦ x ≦ 0.2, y = 0, and 0.05 ≦ z ≦ 0.4. 11. The storage battery according to claim 8, wherein 0.1 ≦ x ≦ 0.2, y = 0, and 0.05 ≦ z ≦ 0.2. 12. The storage battery according to claim 8, wherein 0.05 ≦ x ≦ 0.2, y ≦ 0.3, and 0.05 ≦ z ≦ 0.2.
JP10512903A 1996-09-06 1997-09-04 Lithium manganese oxyfluoride for electrodes for Li-ion batteries Pending JP2000514773A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/706,546 1996-09-06
US08/706,546 US5674645A (en) 1996-09-06 1996-09-06 Lithium manganese oxy-fluorides for li-ion rechargeable battery electrodes
PCT/US1997/015588 WO1998010476A1 (en) 1996-09-06 1997-09-04 Lithium manganese oxy-fluorides for li-ion rechargeable battery electrodes

Publications (1)

Publication Number Publication Date
JP2000514773A true JP2000514773A (en) 2000-11-07

Family

ID=56289789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10512903A Pending JP2000514773A (en) 1996-09-06 1997-09-04 Lithium manganese oxyfluoride for electrodes for Li-ion batteries

Country Status (5)

Country Link
EP (1) EP0947012A4 (en)
JP (1) JP2000514773A (en)
AU (1) AU711516B2 (en)
CA (1) CA2263662A1 (en)
WO (1) WO1998010476A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151080A (en) * 2000-11-15 2002-05-24 Sony Corp Positive pole active material, non-aqueous electrolyte battery, and those manufacturing method
JP2009043546A (en) * 2007-08-08 2009-02-26 Hitachi Ltd Lithium secondary battery
JP2018116927A (en) * 2017-01-19 2018-07-26 パナソニックIpマネジメント株式会社 Positive electrode active material and battery

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100296877B1 (en) * 1999-05-27 2001-07-12 김순택 Positive active material for lithium secondary battery and lithium secondary by using the same
EP1119062A3 (en) * 2000-01-21 2003-07-09 New Billion Investments Limited Rechargeable solid state chromium-fluorine-lithium electric battery
JP2001319653A (en) * 2000-05-12 2001-11-16 Hitachi Maxell Ltd Non-aqueous secondary battery
US7556655B2 (en) 2003-03-14 2009-07-07 3M Innovative Properties Company Method of producing lithium ion cathode materials

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2098953A5 (en) * 1970-07-31 1972-03-10 Anvar
JPH06243871A (en) * 1993-02-16 1994-09-02 Sanyo Electric Co Ltd Nonaqueous secondary battery
US5460904A (en) * 1993-08-23 1995-10-24 Bell Communications Research, Inc. Electrolyte activatable lithium-ion rechargeable battery cell
US5296318A (en) * 1993-03-05 1994-03-22 Bell Communications Research, Inc. Rechargeable lithium intercalation battery with hybrid polymeric electrolyte
US5425932A (en) * 1993-05-19 1995-06-20 Bell Communications Research, Inc. Method for synthesis of high capacity Lix Mn2 O4 secondary battery electrode compounds
US5370949A (en) * 1993-07-09 1994-12-06 National Research Council Of Canada Materials for use as cathodes in lithium electrochemical cells
JPH07240200A (en) * 1994-02-28 1995-09-12 Fuji Photo Film Co Ltd Nonaqueous secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151080A (en) * 2000-11-15 2002-05-24 Sony Corp Positive pole active material, non-aqueous electrolyte battery, and those manufacturing method
JP2009043546A (en) * 2007-08-08 2009-02-26 Hitachi Ltd Lithium secondary battery
JP2018116927A (en) * 2017-01-19 2018-07-26 パナソニックIpマネジメント株式会社 Positive electrode active material and battery
JP7065341B2 (en) 2017-01-19 2022-05-12 パナソニックIpマネジメント株式会社 Positive electrode active material and battery

Also Published As

Publication number Publication date
EP0947012A4 (en) 2000-02-09
AU4799697A (en) 1998-03-06
EP0947012A1 (en) 1999-10-06
CA2263662A1 (en) 1998-03-12
AU711516B2 (en) 1999-10-14
WO1998010476A1 (en) 1998-03-12

Similar Documents

Publication Publication Date Title
US5674645A (en) Lithium manganese oxy-fluorides for li-ion rechargeable battery electrodes
US5759720A (en) Lithium aluminum manganese oxy-fluorides for Li-ion rechargeable battery electrodes
JP3164583B2 (en) Method for synthesizing high-capacity Li lower x Mn lower 2 O lower 4 electrode compound for secondary battery
US6017654A (en) Cathode materials for lithium-ion secondary cells
JP4856847B2 (en) Positive electrode active material for secondary battery and method for producing the same
Ein‐Eli et al. LiNi x Cu0. 5− x Mn1. 5 O 4 Spinel Electrodes, Superior High‐Potential Cathode Materials for Li Batteries: I. Electrochemical and Structural Studies
JP3606289B2 (en) Cathode active material for lithium battery and method for producing the same
JP5236878B2 (en) Lithium oxide electrodes for lithium cells and batteries
KR20200141457A (en) Doped layered oxide material containing O3/P2 mixed phase sodium
KR20100060362A (en) Positive active material for a lithium secondary battery, method of preparing thereof, and lithium secondary battery comprising the same
EP2415105B1 (en) High voltage negative active material for a rechargeable lithium battery
JP6986879B2 (en) Positive electrode active material particle powder for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery
JP2000514773A (en) Lithium manganese oxyfluoride for electrodes for Li-ion batteries
KR101196962B1 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery
KR102580743B1 (en) Cathode active material, and lithium ion battery including the same
US20230092675A1 (en) Cathode material and process
JP2003238162A (en) Lithium manganese composite oxide powder and its manufacturing method
JP4234334B2 (en) Lithium manganese composite oxide for secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
US5932374A (en) Lithium magnesium manganese oxy-fluorides for Li-ion rechargeable battery electrodes
KR20050052266A (en) Method of preparing positive active material for rechargeable lithium battery and positive active material for rechargeable lithium battery comprising the same
KR20000032033A (en) Active material for lithium secondary battery and fabrication method of the same
KR102515175B1 (en) Cathode active material for secondary battery and method for manufacturing a cathode active material
KR102580745B1 (en) Cathode active material, and lithium ion battery including the same
KR20180025028A (en) Manufacturing method of nickel rich cathod active material and nickel rich cathod active material made by the same
KR102502377B1 (en) Lithium-nikel composite oxide, method of preparing the same, and lithium secondary battery comprising the same