JP2000351163A - Tubular molding and its manufacture - Google Patents

Tubular molding and its manufacture

Info

Publication number
JP2000351163A
JP2000351163A JP2000103595A JP2000103595A JP2000351163A JP 2000351163 A JP2000351163 A JP 2000351163A JP 2000103595 A JP2000103595 A JP 2000103595A JP 2000103595 A JP2000103595 A JP 2000103595A JP 2000351163 A JP2000351163 A JP 2000351163A
Authority
JP
Japan
Prior art keywords
fiber
resin
layer
reinforcing
tubular molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000103595A
Other languages
Japanese (ja)
Inventor
Kimihiro Ikezaki
公裕 池崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2000103595A priority Critical patent/JP2000351163A/en
Publication of JP2000351163A publication Critical patent/JP2000351163A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)

Abstract

PROBLEM TO BE SOLVED: To avoid a breakage or a decrease in a strength due to an increase in a weight or a decrease in a quality level by setting a resin content of one or more fiber-reinforced resin layers each for reinforcing a circumferential direction without gap in a plurality of fiber-reinforced resin layers to a specific ratio. SOLUTION: A resin content of at least one circumferentially oriented fiber- reinforced resin layer of the tubular molding obtained by laminating a plurality of fiber-reinforced resin layers is set to 13 to 25 wt.%. An upper limit value and a lower limit value of a width of reinforcing fiber for forming the resin layer of a low resin content are set to a predetermined value from a point of a reinforcing efficiency. As a reinforcing fiber bundle, a carbon fiber, a glass fiber, an aramid fiber or the like is used. As the resin for constituting the tubular molding, a resin used for a fiber reinforcing resin such as an epoxy resin, unsaturated polyester resin, vinyl ester resin or the like is used. The resin layer is formed by winding the bundle on a mandrel or one or more fiber- reinforced resin layers on a yet uncured fiber-reinforced resin layer on the mandrel. Thus, a strength having a quality level can be improved without largely altering a weight at a low material cost.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、管状成形体及びそ
の製造方法に関する。
The present invention relates to a tubular molded product and a method for producing the same.

【0002】[0002]

【従来の技術】管状成形体を強化繊維を一方向に引き揃
えたプリプレグシート(以下、UDプリプレグとい
う。)を用いて製造する場合、強化繊維の繊維方向と管
状成形体のの長手方向を一致させ製造されている。
2. Description of the Related Art When a tubular molded body is manufactured using a prepreg sheet (hereinafter referred to as a UD prepreg) in which reinforcing fibers are aligned in one direction, the fiber direction of the reinforcing fibers and the longitudinal direction of the tubular molded body coincide with each other. It is manufactured.

【0003】一方、UDプリプレグの繊維方向と直角方向の
強度は繊維方向の強度と比較し大幅に低いため、周方向
には例えば薄物のUDプリプレグを繊維方向を周方向と
して巻き付けたり、予め薄物UDプリプレグを繊維方向
に平行に細幅にスリットしたスリットテープを巻き付け
たりして周方向の補強が図られてきた。
On the other hand, since the strength of the UD prepreg in the direction perpendicular to the fiber direction is significantly lower than the strength in the fiber direction, for example, a thin UD prepreg is wound in the circumferential direction with the fiber direction as the circumferential direction, or the UD prepreg is previously thinned. Reinforcing in the circumferential direction has been attempted by winding a prepreg around a slit tape which is slit into a narrow width in parallel with the fiber direction.

【0004】そして、特開昭61−14939号公報には、
軽量化と高強度化を同時に満たすため、合成樹脂を含浸
していない繊維条を管状成型体の一端から他端に向け螺
旋状に巻回することで、周方向の補強が図ることが記載
されている。
[0004] JP-A-61-14939 discloses that
In order to satisfy both weight reduction and high strength at the same time, it is described that a fiber strip not impregnated with a synthetic resin is spirally wound from one end to the other end of the tubular molded body, thereby reinforcing in a circumferential direction. ing.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
周方向に薄物のUDプリプレグを使用する場合には以下
のような問題があった。
However, when a conventional thin UD prepreg is used in the circumferential direction, there are the following problems.

【0006】(1)薄物のUDプリプレグを製造する必要が
ある。 (2)薄物のUDプリプレグ中の強化繊維の開繊性の悪
い部分が管状成形体の表面に竹の節の様な状態となって
現れ、品位が低下し、折損することもある。 (3)薄物のUDプリプレグを周方向に巻くと、繊維の
切断個所が実質的に管状成形体の長手方向に沿う方向と
なるので、この部分が周方向の強度が不連続な部分とな
り、管状成形体の縦割れの原因となる。
(1) It is necessary to manufacture a thin UD prepreg. (2) A portion of the thin UD prepreg in which the openness of the reinforcing fiber is poor appears in the form of a bamboo node on the surface of the tubular molded body, and the quality deteriorates and may be broken. (3) When a thin UD prepreg is wound in the circumferential direction, the cut portion of the fiber is substantially in the direction along the longitudinal direction of the tubular molded body. This may cause a vertical crack in the molded product.

【0007】上記の(3)を防ぐために、薄物のUDプリプ
レグを周長に対し長めに巻き付け、オーバーラップする
部分を作ることが行われているが、例えば鮎竿のように
10m程度の長い竿の場合は、重量増が甚だしい。以上
の問題を防ぐためスリットテープを用いることが行われ
ているが、この場合には以下のような問題があった。
[0007] In order to prevent the above (3), a thin UD prepreg is wound longer than the circumference to create an overlapping portion. For example, a long rod of about 10 m such as an ayu rod is used. In the case of (1), the weight increase is remarkable. In order to prevent the above problem, a slit tape is used, but in this case, there are the following problems.

【0008】(4)この場合でも薄物のUDプリプレグを製
造する必要がある。 (5)UDプリプレグを繊維方向に平行にスリットする
必要がある。 (6)一旦薄物のUDプリプレグとする必要から周方向
補強層にも樹脂含有率で30重量%以上の樹脂があり、
そのため、管状成形体の周方向補強層の樹脂含有率も3
0重量%以上となり重量増となる。
(4) Even in this case, it is necessary to produce a thin UD prepreg. (5) The UD prepreg needs to be slit parallel to the fiber direction. (6) Since it is necessary to temporarily make a thin UD prepreg, the circumferential reinforcing layer also contains a resin having a resin content of 30% by weight or more,
Therefore, the resin content of the circumferential reinforcing layer of the tubular molded product is also 3%.
It becomes 0% by weight or more, and the weight increases.

【0009】(7)スリットテープの断面は略方形であるの
で、これを竿などテーパ状のものに螺旋に密に巻付ける
と、スリットテープは階段状に配されることになり、そ
の上からPPテープなどを螺旋に巻回して成形すると、
スリットテープと下部プリプレグの間に空間が発生し、
成型後の密着性を阻害し、強度低下の原因となる。 (8)スリットテープは細幅のため、ボビンへの巻き量
を多くすると巻き崩れが発生する。そのため、巻き量は
200m程度が限界で生産途中に頻繁にスリットテープ
の交換が必要である。
(7) Since the cross section of the slit tape is substantially rectangular, if it is spirally and densely wound around a tapered material such as a rod, the slit tape will be arranged stepwise, and When a PP tape or the like is spirally wound and molded,
A space is created between the slit tape and the lower prepreg,
It inhibits adhesion after molding and causes a decrease in strength. (8) Since the slit tape has a small width, a large amount of winding on the bobbin may cause winding collapse. For this reason, the winding amount is limited to about 200 m, and it is necessary to frequently replace the slit tape during the production.

【0010】これら問題を解決するために、繊維条を直接巻
付ける方法が提案されたが、この場合にも以下の様な問
題があった。 (9)先行するセロテープ(登録商標)に対して僅かに
先行させて強化繊維束を巻付けるため、強化繊維束を巻
回すピッチがセロテープのピッチと同じとなる。 (10)強化繊維束は巻き付けにより拡幅されるが拡幅
幅に対してセロテープ巻付けピッチが大きいため強化繊
維条で補強されていない部分での補強効果が低下し、管
状体を曲げた場合に折損し易くなる。
[0010] In order to solve these problems, a method of directly winding a fiber strip has been proposed. However, in this case, there are also the following problems. (9) Since the reinforcing fiber bundle is wound slightly ahead of the preceding cellotape (registered trademark), the pitch at which the reinforcing fiber bundle is wound is the same as the pitch of the cellotape. (10) The reinforcing fiber bundle is widened by winding, but since the cellophane tape winding pitch is large relative to the widening width, the reinforcing effect at a portion not reinforced by the reinforcing fiber strip is reduced, and the tubular body is broken when bent. Easier to do.

【0011】[0011]

【課題を解決するための手段】本発明は、以上の従来技
術の問題点を解決するためになされた。本発明の第1の
要旨とするところは、複数の繊維強化樹脂層を積層して
なる管状成形体であって、少なくとも1層の間隙なく周
方向を補強する繊維強化樹脂層の樹脂含有率が13〜2
5重量%である管状成形体にある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems of the prior art. A first gist of the present invention is a tubular molded product obtained by laminating a plurality of fiber reinforced resin layers, and the resin content of the fiber reinforced resin layer that reinforces the circumferential direction without at least one layer gap is reduced. 13-2
5% by weight of the tubular molding.

【0012】前記間隙なく周方向を補強する繊維強化樹脂層
の樹脂含有率が13〜20重量%であることがことが好
ましい。樹脂含有率が13〜25重量%である繊維強化
樹脂層を構成する強化繊維束が3〜8mmの幅を有して
いることが更に好ましい。
It is preferable that the resin content of the fiber reinforced resin layer that reinforces the circumferential direction without gaps is 13 to 20% by weight. It is further preferable that the reinforcing fiber bundle constituting the fiber reinforced resin layer having a resin content of 13 to 25% by weight has a width of 3 to 8 mm.

【0013】又、本発明の第2の要旨は、複数の繊維強化樹
脂層を積層してなる管状成形体の製造方法において、芯
金上に形成したまだ硬化していない繊維強化樹脂層の上
に、予め拡幅された実質的に樹脂を含まない強化繊維を
間隙なく巻き付けて、少なくとも1層の強化繊維層を形
成し、その後加圧加熱して、前記強化繊維層を形成する
強化繊維束に樹脂を含浸する管状成形体の製造方法にあ
り、第三の要旨は、複数の繊維強化樹脂層を積層してな
る管状成形体の製造方法において、芯金上に予め拡幅さ
れた実質的に樹脂を含まない強化繊維を間隙なく巻き付
け少なくとも1層の強化繊維層を形成し、その上にまだ
硬化していない繊維強化樹脂層を設け、その後加圧加熱
して、前記強化繊維層を形成する強化繊維束に樹脂を含
浸する管状成形体の製造方法にある。
[0013] Further, a second gist of the present invention is to provide a method for manufacturing a tubular molded body comprising a plurality of fiber reinforced resin layers laminated, wherein the uncured fiber reinforced resin layer formed on the cored bar is formed on the core metal. The reinforcing fiber bundle containing substantially no resin is widened in advance without gaps to form at least one reinforcing fiber layer, and then heated under pressure to form a reinforcing fiber bundle forming the reinforcing fiber layer. A third aspect of the present invention is a method of manufacturing a tubular molded body in which a plurality of fiber-reinforced resin layers are laminated. Is wound without gaps to form at least one reinforcing fiber layer, on which an uncured fiber-reinforced resin layer is provided, and then heated under pressure to form the reinforcing fiber layer. Of a tubular molded product that impregnates resin into the fiber bundle In the manufacturing method.

【0014】間隙なく巻き付ける強化繊維束は3〜8mmの
幅を有していることが好ましく、強化繊維束が4〜6m
mの幅を有していることがさらに好ましい。
[0014] The reinforcing fiber bundle to be wound without gaps preferably has a width of 3 to 8 mm, and the reinforcing fiber bundle has a width of 4 to 6 m.
More preferably, it has a width of m.

【0015】[0015]

【発明の実施の形態】(管状成形体)本発明の管状成形
体は、複数の繊維強化樹脂層を積層してなる管状成形体
であって、少なくとも1層の繊維強化樹脂層の樹脂含有
率が13〜25重量%であることが管状成形体の軽量化
と高強度化を両立する点で必要である。この低樹脂含有
率の繊維強化樹脂層が、強化繊維束が実質的周方向に配
向した層であることが管状成形体の曲げ強度を維持した
まま、つぶし強力を向上することができ特に好ましい。
低樹脂含有率の繊維強化樹脂層を形成する強化繊維束の
巾の下限値は3mmであることが補強効率の点から好ま
しく、4mmが更に好ましい。又、低樹脂含有率の繊維
強化樹脂層を形成する強化繊維束の巾の上限値は8mm
であることが補強効率の点から好ましく、6mmが更に
好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION (Tubular molded article) The tubular molded article of the present invention is a tubular molded article formed by laminating a plurality of fiber reinforced resin layers, and the resin content of at least one fiber reinforced resin layer. Is from 13 to 25% by weight from the viewpoint of achieving both a reduction in weight and an increase in strength of the tubular molded body. It is particularly preferable that the fiber-reinforced resin layer having a low resin content is a layer in which the reinforcing fiber bundle is substantially oriented in the circumferential direction, since the crushing strength can be improved while maintaining the bending strength of the tubular molded body.
The lower limit of the width of the reinforcing fiber bundle forming the fiber-reinforced resin layer having a low resin content is preferably 3 mm from the viewpoint of the reinforcing efficiency, and more preferably 4 mm. The upper limit of the width of the reinforcing fiber bundle forming the fiber-reinforced resin layer having a low resin content is 8 mm.
Is preferred from the viewpoint of reinforcement efficiency, and 6 mm is more preferred.

【0016】本発明の管状成形体を構成する強化繊維束は、
一般的に繊維強化樹脂に用いられる強化繊維束であれば
よく特に限定しないが、炭素繊維、ガラス繊維、アラミ
ド繊維等が例示できる。
[0016] The reinforcing fiber bundle constituting the tubular molded body of the present invention comprises:
There is no particular limitation as long as it is a reinforcing fiber bundle generally used for a fiber-reinforced resin, and examples thereof include carbon fiber, glass fiber, and aramid fiber.

【0017】本発明で管状成形体を構成する樹脂としては、
一般的に繊維強化樹脂に用いられる樹脂であればよく特
に限定しないが、エポキシ樹脂、不飽和ポリエステル樹
脂、ビニルエステル樹脂等が例示できる。又、成型温度
は高温度となるが、熱可塑性樹脂も使用することが可能
である。
[0017] In the present invention, as the resin constituting the tubular molded body,
There is no particular limitation so long as it is a resin generally used for a fiber reinforced resin, and examples thereof include an epoxy resin, an unsaturated polyester resin, and a vinyl ester resin. Although the molding temperature is high, a thermoplastic resin can also be used.

【0018】本発明の管状成形体は、強化繊維で補強した樹
脂層を積層されてなる成形体であって、ゴルフクラブ用
シャフト、釣竿等に好適に用いられるものである。管状
成形体は長さ方向にテーパーのない、所謂ストレートテ
ーパのもの、長手方向で径が変化するテーパーを有する
ものであってもよい。
The tubular molded article of the present invention is a molded article formed by laminating a resin layer reinforced with reinforcing fibers, and is suitably used for golf club shafts, fishing rods and the like. The tubular molded body may be a so-called straight taper having no taper in the longitudinal direction, or may have a taper whose diameter changes in the longitudinal direction.

【0019】(管状成形体の製造方法)本発明の管状成形体
の製造方法で用いる、実質的に樹脂を含まない強化繊維
とは、通常上記の管状成形体用途に用いられるマトリッ
クス樹脂を未だ含有していない強化繊維であればよく、
特に限定しないが、炭素繊維、ガラス繊維、アラミド繊
維、金属繊維等が挙げられる。管状成形体の製造時の強
化繊維束の毛羽立ちを抑えるため、サイジング剤を付与
した強化繊維束を用いることが好ましいが、その付与量
は強化繊維束の開繊の容易さ、強化繊維束への樹脂の含
浸の容易さの点から少ない方が好ましい。本発明では後
述する含浸の容易さから開繊された強化繊維を用いるこ
とが好ましい。
(Method of Manufacturing Tubular Molded Body) The reinforcing resin substantially free of a resin used in the method of manufacturing a tubular molded body of the present invention refers to a reinforcing resin which does not contain a matrix resin usually used for the above-mentioned tubular molded body. As long as it is not reinforced fiber,
Although not particularly limited, carbon fiber, glass fiber, aramid fiber, metal fiber and the like can be mentioned. In order to suppress the fluffing of the reinforcing fiber bundle during the production of the tubular molded body, it is preferable to use a reinforcing fiber bundle to which a sizing agent has been applied. From the viewpoint of ease of resin impregnation, a smaller amount is preferable. In the present invention, it is preferable to use a reinforcing fiber that has been opened because of the ease of impregnation described below.

【0020】本発明では、WO97/41285公報、特開
平11−172562号公報に示された吸引開繊法によ
り製造した予め開繊された強化繊維が特に好適に用いら
れる。本発明で用いる、予め開繊された強化繊維束の開
繊幅の下限値は補強効率の点から3mmが好ましく4m
mがより好ましい。また開繊幅の上限値は同じく補強効
率の点から8mmが好ましく6mmがより好ましい。
In the present invention, pre-spread reinforcing fibers produced by the suction opening method disclosed in WO97 / 41285 and JP-A-11-172562 are particularly preferably used. The lower limit of the spread width of the pre-spread reinforcing fiber bundle used in the present invention is preferably 3 mm from the viewpoint of the reinforcing efficiency, and is preferably 4 m.
m is more preferred. The upper limit value of the spread width is also preferably 8 mm, more preferably 6 mm, from the viewpoint of the reinforcing efficiency.

【0021】本発明において、強化繊維層を形成する方法
は、前記強化繊維束を芯金又は芯金の上に形成されたま
だ硬化していない繊維強化樹脂層上に巻き付けて行な
う。本発明では、この強化繊維層を少なくとも1層形成
することが必要である。
In the present invention, the method of forming a reinforcing fiber layer is performed by winding the reinforcing fiber bundle around a core metal or a fiber-reinforced resin layer formed on the core metal and not yet cured. In the present invention, it is necessary to form at least one reinforcing fiber layer.

【0022】本発明に用いる樹脂としては、通常上記の管状
成形体用途に用いられるものであればよく、特に限定し
ないが、エポキシ樹脂、ビニルエステル繊維、不飽和ポ
リエステル繊維等が挙げられる。そのなかでも各種の物
性に優れていることからエポキシ樹脂が好適なものとし
て挙げられる。
The resin used in the present invention is not particularly limited as long as it is generally used for the above-mentioned tubular molded article, and examples thereof include an epoxy resin, a vinyl ester fiber, and an unsaturated polyester fiber. Among them, epoxy resins are preferred as they are excellent in various physical properties.

【0023】本発明ではUDプリプレグが加熱加圧される成
型硬化時に樹脂が流出することを利用している。その
際、樹脂が流出すると同時に強化繊維層中にその樹脂が
含浸し同時に硬化し一体化することで管状成形体を成型
することができるとともに余剰樹脂が強化繊維層に含浸
され使用されるのでコストの低減が図られる。
The present invention utilizes the fact that the resin flows out during the molding and hardening of the UD prepreg by heating and pressing. At that time, the resin is impregnated into the reinforcing fiber layer at the same time as the resin flows out, and is simultaneously cured and integrated, so that the tubular molded body can be molded, and the excess resin is impregnated into the reinforcing fiber layer and used, so that cost is reduced. Is reduced.

【0024】本発明で管状成形体の成形時に圧力をかける手
段は特に限定しないが、ポリエステルフィルムをスリッ
トしたテープを巻き付け、成形時の加熱により、そのテ
ープが収縮することを利用する方法が好適に用いられ
る。
[0024] In the present invention, means for applying pressure at the time of molding the tubular molded article is not particularly limited, but a method utilizing a tape wound with a polyester film and shrinking by heating during molding is preferably used. Used.

【0025】また、強化繊維束は一般に1000から500
0mといった単位でボビン上に巻かれているため、製造
途中に頻繁にボビンを交換する必要がなく製造コストを
抑えることができる。同時にプリプレグを製造しないこ
とからその製造における加工費を抑えることができる。
[0025] The reinforcing fiber bundle is generally 1000 to 500.
Since the bobbin is wound on the bobbin in units of 0 m, it is not necessary to frequently replace the bobbin during the manufacturing, and the manufacturing cost can be reduced. At the same time, since no prepreg is manufactured, processing costs in the manufacturing can be suppressed.

【0026】[0026]

【実施例】以下、具体例を示す。なお、実施例中、「重
量%」は単に「%」と表示した。 (実施例1)三菱レイヨン株式会社製炭素繊維UDプリ
プレグMR370C125S(炭素繊維MR40、目付
125g/m、樹脂含有量25%)と三菱レイヨン株
式会社製炭素繊維UDプリプレグTR330K020
(炭素繊維TR30、目付23g/m、樹脂含有量4
0%)を繊維方向が直交するように重ね合わせて、重ね
合わせプリプレグを得た。これをTR330K020が
内層内側、かつMR370C125Sの繊維方向が長手
方向としてとなるように10mmφの芯金に巻き付け
た。その後、予め4mmに拡幅した三菱レイヨン株式会
社製高強度高弾性炭素繊維HR40−2M(2000フ
ィラメント)を4mmピッチでMR370C125S上
に巻き付けた。更にその上に12mm幅のポリエステル
テープを2.5mmピッチで巻き付け、130℃に調整
した硬化炉で硬化し、内径が10mmφ、外径が11m
mφの管状成型体を得た。樹脂は外周まで含浸硬化して
おり、1mあたり16.03gであった。HR40−2
Mを巻き付けて形成した層の樹脂含有率は20%であっ
た。
The following is a specific example. In the examples, “% by weight” is simply indicated as “%”. (Example 1) Carbon fiber UD prepreg MR370C125S manufactured by Mitsubishi Rayon Co., Ltd. (carbon fiber MR40, basis weight 125 g / m 2 , resin content 25%) and carbon fiber UD prepreg TR330K020 manufactured by Mitsubishi Rayon Co., Ltd.
(Carbon fiber TR30, basis weight 23 g / m 2 , resin content 4
0%) were overlapped so that the fiber directions were orthogonal to each other, to obtain a stacked prepreg. This was wound around a 10 mmφ core metal such that TR330K020 was on the inner layer side and the fiber direction of MR370C125S was the longitudinal direction. Thereafter, high-strength high-elasticity carbon fibers HR40-2M (2000 filaments) manufactured by Mitsubishi Rayon Co., Ltd., which had been widened to 4 mm in advance, were wound on MR370C125S at a pitch of 4 mm. Further, a 12 mm-width polyester tape is wound thereon at a pitch of 2.5 mm and cured in a curing oven adjusted to 130 ° C., and has an inner diameter of 10 mmφ and an outer diameter of 11 m.
An mφ tubular molded body was obtained. The resin was impregnated and cured to the outer periphery, and weighed 16.03 g per meter. HR40-2
The resin content of the layer formed by winding M was 20%.

【0027】(実施例2)予め4mmに拡幅した三菱レイヨ
ン株式会社製高強度高弾性炭素繊維HR40−2M(2
000フィラメント)を4mmピッチで芯金上に巻き付
け、その上に三菱レイヨン株式会社製炭素繊維UDプリ
プレグMR370C125Sの繊維方向を芯金の長手方
向と一致させ巻き付けた。更にその上に予め4mmに拡
幅した三菱レイヨン株式会社製高強度高弾性炭素繊維H
R40−2M(2000フィラメント)を4mmピッチ
で巻き付けた。その上に12mm幅のポリエステルテー
プを2.5mmピッチで巻き付けた後、130℃に調整
した硬化炉で硬化し、内径が10mmφ、外径が11m
mφの管状成型体を得た。樹脂は外周まで含浸硬化して
おり、1mあたり15.26gであった。この際得られ
た成型体の内層、中間層、外層(HR40−2Mを巻き
付けて形成した層)の樹脂含有率は各々16%、20
%、16%であった。
(Example 2) High-strength high-elasticity carbon fiber HR40-2M (2
000 filaments) was wound around the core at a pitch of 4 mm, and the carbon fiber UD prepreg MR370C125S manufactured by Mitsubishi Rayon Co., Ltd. was wound with the fiber direction aligned with the longitudinal direction of the core. Furthermore, a high-strength high-elasticity carbon fiber H manufactured by Mitsubishi Rayon Co., Ltd.
R40-2M (2000 filaments) was wound at a pitch of 4 mm. A 12 mm polyester tape was wound thereon at a pitch of 2.5 mm, and then cured in a curing oven adjusted to 130 ° C., with an inner diameter of 10 mm and an outer diameter of 11 m.
An mφ tubular molded body was obtained. The resin was impregnated and cured to the outer periphery, and weighed 15.26 g per meter. At this time, the resin content of the inner layer, the intermediate layer, and the outer layer (layer formed by winding HR40-2M) of the obtained molded product was 16% and 20%, respectively.
%, 16%.

【0028】(実施例3)三菱レイヨン株式会社製炭素繊維
UDプリプレグSRX350A110S(繊維引張弾性
率 50t/mm、繊維目付け 100g/ m、樹
脂含有率 15%)とHRX350E026S(繊維引
張弾性率 40t/mm、繊維目付け26g/m
樹脂含有率 30%)を使用し、HRX350E026
Sを10mmφストレートマンドレル上に繊維方向が周
方向と一致する方向で巻付け、その外層にSRX350
A110Sを2層分繊維軸が軸方向と一致する方向で巻
付けた。さらにその上に予め4mm幅に拡幅した三菱レ
イヨン株式会社製高強度高弾性炭素繊維HR40−2M
を4mmピッチで隙間なく巻付け、その後12mm幅の
PET製テープを2.3mm、張力5kgで巻付けた
後、130℃に調整した硬化炉で硬化し管状成型体を得
た。樹脂は外周まで含浸硬化していた。内層、中間層、
外層(HR40−2Mを巻き付けて形成した層)の樹脂
含有率は、28%、14%、14%であった。
(Example 3) Carbon fiber UD prepreg SRX350A110S manufactured by Mitsubishi Rayon Co., Ltd. (fiber tensile elasticity 50 t / mm 2 , fiber weight 100 g / m 2 , resin content 15%) and HRX350E026S (fiber tensile elasticity 40 t / mm 2 , fiber weight 26 g / m 2 ,
HRX350E026 using resin content 30%)
S is wound on a 10 mmφ straight mandrel in the direction in which the fiber direction coincides with the circumferential direction.
A110S was wound in a direction in which the fiber axis of two layers coincided with the axial direction. Furthermore, a high-strength and high-elasticity carbon fiber HR40-2M manufactured by Mitsubishi Rayon Co., Ltd., which was previously expanded to a width of 4 mm
Was wound at a pitch of 4 mm without any gap, and then a PET tape having a width of 12 mm was wound at 2.3 mm and a tension of 5 kg, and then cured in a curing furnace adjusted to 130 ° C. to obtain a tubular molded body. The resin had been impregnated and cured to the outer periphery. Inner layer, middle layer,
The resin content of the outer layer (layer formed by winding HR40-2M) was 28%, 14%, and 14%.

【0029】(実施例4)三菱レイヨン株式会社製炭素繊維
UDプリプレグHSX350B130S(繊維引張弾性
率 46t/mm、繊維目付け 125g/m、樹脂
含有率 20%)とHRX350E026S(繊維引張
弾性率 40t/mm、繊維目付け26g/ m、樹
脂含有率 30%)を使用し、HRX350E026S
を10mmφストレートマンドレル上に繊維方向が周方
向と一致する方向で巻付け、その外層にHSX350B
130Sを2層分繊維軸が軸方向と一致する方向で巻付
け、予め4mm幅に拡幅した三菱レイヨン株式会社製高
強度高弾性炭素繊維HR40−2M(2000フィラメ
ント)を4mmピッチで隙間なく巻付け、その後12m
m幅のPET製テープを2.3mm、張力5kgで巻付
けた後、130℃に調整した硬化炉で硬化し管状成型体
を得た。樹脂は外周まで含浸硬化していた。内層、中間
層、外層(HR40−2Mを巻き付けて形成した層)の
樹脂含有率は、28%、19%、19%であった。
(Example 4) Carbon fiber UD prepreg HSX350B130S manufactured by Mitsubishi Rayon Co., Ltd. (fiber tensile elasticity 46 t / mm 2 , fiber weight 125 g / m 2 , resin content 20%) and HRX350E026S (fiber tensile elasticity 40 t / mm 2 , fiber weight 26 g / m 2 , resin content 30%).
Is wound on a 10 mmφ straight mandrel in the direction in which the fiber direction coincides with the circumferential direction, and HSX350B
130S is wound in a direction in which the fiber axis of two layers coincides with the axial direction, and high-strength high-elasticity carbon fibers HR40-2M (2000 filaments) manufactured by Mitsubishi Rayon Co., Ltd., which has been widened in advance to a width of 4 mm, are wound without gaps at a pitch of 4 mm. , Then 12m
After a PET tape having a width of m was wound at 2.3 mm and a tension of 5 kg, it was cured in a curing furnace adjusted to 130 ° C. to obtain a tubular molded body. The resin had been impregnated and cured to the outer periphery. The resin content of the inner layer, intermediate layer, and outer layer (layer formed by winding HR40-2M) was 28%, 19%, and 19%.

【0030】(実施例5)三菱レイヨン株式会社製炭素繊維
UDプリプレグHSX350B130S(繊維引張弾性
率 46t/mm、繊維目付け 125g/m、樹脂
含有率 20%)とHRX350E032S(繊維引張
弾性率 40t/mm、繊維目付け26g/m、樹
脂含有率 30%)を使用し、HRX350E032S
を10mmφストレートマンドレル上に繊維方向が周方
向と一致する方向で巻付け、その外層にHSX350B
130Sを2層分繊維軸が軸方向と一致する方向で巻付
け、予め4mm幅に拡幅した三菱レイヨン株式会社製高
強度高弾性炭素繊維HR40−2Mを3mmピッチで隙
間なく巻付け、その後12mm幅のPET製テープを
2.3mm、張力5kgで巻付けた後、130℃に調整
した硬化炉で硬化し管状成型体を得た。樹脂は外周まで
含浸硬化していた。この際得られた管状成型体の内径は
10mmφ、外径は10.8mmφであり、また単位長
さ当たりの重量は21.8gであった。これを用いて
図.1に示す治具を用い、外スパン500mm、内スパ
ン150mm、荷重速度10mm/分にて強度比較を実
施したところ、46kgとなった。この際得られた成型
体の内層、中間層、外層(HR40−2Mを巻き付けて
形成した層)の樹脂含有率は各々28%、19%、19
%であった。
(Example 5) Carbon fiber UD prepreg HSX350B130S manufactured by Mitsubishi Rayon Co., Ltd. (fiber tensile elasticity 46 t / mm 2 , fiber weight 125 g / m 2 , resin content 20%) and HRX350E032S (fiber tensile elasticity 40 t / mm 2 , fiber weight 26 g / m 2 , resin content 30%), and HRX350E032S
Is wound on a 10 mmφ straight mandrel in the direction in which the fiber direction coincides with the circumferential direction, and HSX350B
130S is wound in a direction in which the fiber axis of the two layers coincides with the axial direction, and high-strength and high-elasticity carbon fibers HR40-2M manufactured by Mitsubishi Rayon Co., Ltd., which has been widened in advance to a width of 4 mm, are wound without gap at a pitch of 3 mm, and then 12 mm wide Was wound at 2.3 mm and a tension of 5 kg, and then cured in a curing furnace adjusted to 130 ° C. to obtain a tubular molded body. The resin had been impregnated and cured to the outer periphery. At this time, the inner diameter of the obtained tubular molded body was 10 mmφ, the outer diameter was 10.8 mmφ, and the weight per unit length was 21.8 g. Using the jig shown in Fig. 1 and comparing the strength with an outer span of 500 mm, an inner span of 150 mm, and a load speed of 10 mm / min, the strength was 46 kg. At this time, the resin content of the inner layer, the intermediate layer, and the outer layer (the layer formed by winding HR40-2M) of the obtained molded product is 28%, 19%, and 19%, respectively.
%Met.

【0031】(比較例1)三菱レイヨン株式会社製炭素繊維
UDプリプレグHSX350B130S(繊維引張弾性
率 46t/mm、繊維目付け 125g/m、樹脂
含有率 20%)とHRX350E032S(繊維引張
弾性率 40t/mm、繊維目付け26g/m、樹
脂含有率 30%)を使用し、HRX350E032S
を10mmφストレートマンドレル上に繊維方向が周方
向と一致する方向で巻付け、その外層にHSX350B
130Sを2層分繊維軸が軸方向と一致する方向で巻付
け、HRX350E032Sを繊維軸方向が周方向と一
致するように1層分巻付けその後12mm幅のPET製
テープを2.3mm、張力5kgで巻付けた後、130
℃に調整した硬化炉で硬化し管状成型体を得た。この得
られた管状成型体の内径は10mmφ、外径は10.8
mmφであり、また単位長さ当たりの重量は21.8g
であった。これを用いて図1に示す治具を用い、外スパ
ン350mm、内スパン150mm、荷重速度10mm
/分にて強度比較を実施したところ、39kgとなっ
た。この際得られた成型体の内層、中間層、外層の樹脂
含有率は各々30%、20%、30%であった。
(Comparative Example 1) Carbon fiber UD prepreg HSX350B130S manufactured by Mitsubishi Rayon Co., Ltd. (fiber tensile elasticity 46 t / mm 2 , fiber weight 125 g / m 2 , resin content 20%) and HRX350E032S (fiber tensile elasticity 40 t / mm 2 , fiber weight 26 g / m 2 , resin content 30%), and HRX350E032S
Is wound on a 10 mmφ straight mandrel in the direction in which the fiber direction coincides with the circumferential direction, and HSX350B
130S is wound in a direction in which the fiber axis coincides with the axial direction for two layers, and HRX350E032S is wound in one layer so that the fiber axis direction coincides with the circumferential direction. Thereafter, a 12 mm wide PET tape is 2.3 mm in tension and 5 kg in tension. After winding with 130
The mixture was cured in a curing furnace adjusted to ° C to obtain a tubular molded body. The inner diameter of the obtained tubular molded body is 10 mmφ, and the outer diameter is 10.8.
mmφ, and the weight per unit length is 21.8 g
Met. Using the jig shown in FIG. 1, the outer span is 350 mm, the inner span is 150 mm, and the load speed is 10 mm.
When the strength was compared at / kg, the weight was 39 kg. At this time, the resin content of the inner layer, the intermediate layer, and the outer layer of the obtained molded article was 30%, 20%, and 30%, respectively.

【0032】(実施例6)三菱レイヨン株式会社製炭素繊維
UDプリプレグHSX350B130S(繊維引張弾性
率 46t/smm、繊維目付け 125g/m、樹脂
含有率 20%)とHRX350E026S(繊維引張
弾性率 40t/mm、繊維目付け26g/m、樹
脂含有率 30%)を使用し、HRX350E026S
を20mmφストレートマンドレル上に繊維方向が周方
向と一致する方向で巻付け、その外層にHSX350B
130Sを3層分繊維軸が軸方向と一致する方向で巻付
け、予め4mm幅に拡幅した三菱レイヨン株式会社製高
強度高弾性炭素繊維HR40−2M(2000フィラメ
ント)を3mmピッチで隙間なく巻付け、その後12m
m幅のPET製テープを2.3mm、張力5kgで巻付
けた後、再度12mm幅のPET製テープを2.3m
m、張力5kgで巻付け、130℃に調整した硬化炉で
硬化し管状成型体を得た。樹脂は外周まで含浸硬化して
いた。得られた管状成型体は内径20mmφ、外径2
0.7mmφであった。これを長さ10mmでカットし
て図2の様にして負荷速度5mm/分にて測定した周方
向圧縮強度は単位cm当たり4.1kgであった。ま
た、この成型体の内層、中間層、外層(HR40−2M
を巻き付けて形成した層)の樹脂含有率は各々28%、
19%、19%であった。
(Example 6) Carbon fiber UD prepreg HSX350B130S manufactured by Mitsubishi Rayon Co., Ltd. (fiber tensile elasticity: 46 t / smm, fiber weight: 125 g / m 2 , resin content: 20%) and HRX350E026S (fiber tensile elasticity: 40 t / mm) 2 , HX350E026S using a fiber basis weight of 26 g / m 2 and a resin content of 30%).
Is wound on a 20 mmφ straight mandrel in the direction in which the fiber direction coincides with the circumferential direction, and HSX350B
130S is wound in a direction in which the fiber axis of three layers coincides with the axial direction, and high-strength high-elasticity carbon fibers HR40-2M (2000 filaments) manufactured by Mitsubishi Rayon Co., Ltd., which has been widened in advance to a width of 4 mm, are wound without gaps at a pitch of 3 mm. , Then 12m
After winding a PET tape having a width of 2.3 m at 2.3 mm and a tension of 5 kg, a PET tape having a width of 12 mm was wound again with a width of 2.3 m.
m, and wound with a tension of 5 kg and cured in a curing furnace adjusted to 130 ° C. to obtain a tubular molded body. The resin had been impregnated and cured to the outer periphery. The obtained tubular molded body has an inner diameter of 20 mmφ and an outer diameter of 2 mm.
It was 0.7 mmφ. This was cut at a length of 10 mm, and the circumferential compressive strength measured at a load speed of 5 mm / min as shown in FIG. 2 was 4.1 kg per unit cm. Also, the inner layer, intermediate layer, and outer layer (HR40-2M)
), The resin content of each layer is 28%,
19% and 19%.

【0033】(比較例2)三菱レイヨン株式会社製炭素繊維
UDプリプレグHSX350B130S(繊維引張弾性
率 46t/mm、繊維目付け 125g/m、樹脂
含有率 20%)とHRX350E026S(繊維引張
弾性率40t/mm、繊維目付け26g/m、樹脂
含有率30%)を使用し、HRX350E026Sを2
0mmφストレートマンドレル上に繊維方向が周方向と
一致する方向で巻付け、その外層にHSX350B13
0Sを3層分繊維軸が軸方向と一致する方向で巻付け、
その外周にHRX350E026Sを繊維方向が周方向
となるように1層分巻付け、その後12mm幅のPET
製テープを2.3mm、張力5kgで巻付けた後、再度
12mm幅のPET製テープを2.3mm、張力5kg
で巻付け、130℃に調整した硬化炉で硬化し管状成型
体を得た。樹脂は外周まで含浸硬化していた。得られた
管状成型体は内径20mmφ、外径20.7mmφであ
った。これを長さ10mmでカットして図2の様にして
負荷速度5mm/分にて測定した周方向圧縮強度は単位
cm当たり3.9kgとなった。また、この成型体の内
層、中間層、外層の樹脂含有率は各々30%、20%、
30%であった。
(Comparative Example 2) Carbon fiber UD prepreg HSX350B130S manufactured by Mitsubishi Rayon Co., Ltd. (fiber tensile elasticity 46 t / mm 2 , fiber weight 125 g / m 2 , resin content 20%) and HRX350E026S (fiber tensile elasticity 40 t / mm 2 , fiber basis weight 26 g / m 2 , resin content 30%).
Wrap a 0 mmφ straight mandrel in the direction in which the fiber direction coincides with the circumferential direction, and coat HSX350B13 on the outer layer.
0S is wound in a direction in which the fiber axis for three layers coincides with the axial direction,
One layer of HRX350E026S is wound around the outer circumference so that the fiber direction is the circumferential direction, and then 12 mm wide PET
After winding the tape made of 2.3 mm and the tension of 5 kg, the PET tape having a width of 12 mm was 2.3 mm again and the tension of 5 kg.
And cured in a curing furnace adjusted to 130 ° C. to obtain a tubular molded body. The resin had been impregnated and cured to the outer periphery. The obtained tubular molded body had an inner diameter of 20 mmφ and an outer diameter of 20.7 mmφ. This was cut at a length of 10 mm, and the circumferential compressive strength measured at a load speed of 5 mm / min as shown in FIG. 2 was 3.9 kg per cm. The resin content of the inner layer, the intermediate layer, and the outer layer of this molded product is 30%, 20%, respectively.
30%.

【0034】(実施例7)三菱レイヨン株式会社製CGテー
プ(MR370C125S03)を用い、ガラス薄物プ
リプレグを内層内側としてUDプリプレグの繊維方向を
10mmφの芯金の長手方向として一致させて4層分巻
き付けた後、その上に12mm幅のポリエステルテープ
を2.5mmピッチで巻き付けた後、130℃に調整し
た硬化炉で硬化し、内径が10mmφ、外径が10.9
mmφ 1m当たりの重量が26.8gの管状成型体を
得た。この外層に三菱レイヨン株式会社製仮止め剤(品
名 MRS−3)を塗布し、その後、予め4mmに拡幅
した三菱レイヨン株式会社製高強度高弾性炭素繊維HR
40−2M(2000フィラメント)を4mmピッチで
UDプリプレグ上に巻き付けた。その上に12mm幅の
ポリエステルテープを2.5mmピッチで巻き付けた
後、130℃に調整した硬化炉で硬化した。樹脂は外周
まで含浸硬化しており外径11.1mmφ、1m当たり
の重量は28.5gとなった。この際得られた外層に強
化繊維で補強した管状成型体と外層を補強していない管
状成型体とを用い、図1に示す治具を用い、外スパン3
50mm、内スパン150mm、荷重速度10mm/分
にて強度比較を実施したところ、この方法で補強してい
ないものが48kgに対してこの方法で補強した物が5
4kgとなった。又、この際得られた成型体の外層(H
R40−2Mを巻き付けて形成した層)の樹脂含有率は
19%であった。
(Example 7) Using CG tape (MR370C125S03) manufactured by Mitsubishi Rayon Co., Ltd., the UD prepreg was wound around four layers with the fiber direction of the UD prepreg matched to the longitudinal direction of the core metal of 10 mmφ with the glass thin prepreg inside the inner layer. Thereafter, a polyester tape having a width of 12 mm was wound thereon at a pitch of 2.5 mm, and then cured in a curing furnace adjusted to 130 ° C. to have an inner diameter of 10 mmφ and an outer diameter of 10.9 mm.
A tubular molded body weighing 26.8 g per 1 mm mm was obtained. A temporary fixing agent (product name: MRS-3) manufactured by Mitsubishi Rayon Co., Ltd. is applied to this outer layer, and then the high-strength high-elasticity carbon fiber HR manufactured by Mitsubishi Rayon Co., Ltd.
40-2M (2000 filaments) was wound on a UD prepreg at a pitch of 4 mm. After a polyester tape having a width of 12 mm was wound thereon at a pitch of 2.5 mm, it was cured in a curing furnace adjusted to 130 ° C. The resin was impregnated and cured to the outer periphery, and the outer diameter was 11.1 mmφ, and the weight per 1 m was 28.5 g. At this time, a tubular molded body reinforced with reinforcing fibers and a tubular molded body not reinforced with an outer layer were used for the outer layer obtained, and a jig shown in FIG.
When the strength was compared at 50 mm, inner span 150 mm, and load speed 10 mm / min, 48 kg was not reinforced by this method, and 5 kg was reinforced by this method.
It became 4 kg. In addition, the outer layer (H
The resin content of the layer formed by winding R40-2M) was 19%.

【0035】(実施例8)三菱レイヨン株式会社製CGテー
プ(MR370C125S03)を用い、ガラス薄物プ
リプレグを内層内側としてUDプリプレグの繊維方向を
10mmφの芯金の長手方向として一致させて4層分巻
き付けた後、その上に12mm幅のポリエステルテープ
を2.5mmピッチで巻き付けた後、130℃に調整し
た硬化炉で硬化し、内径が10mmφ、外径が10.9
mmφ 1m当たりの重量が26.8gの管状成型体を
得た。この外層に三菱レイヨン株式会社製樹脂フィルム
R340R−7R(エポキシ系樹脂、目付け7g/
)を塗布し、その後、予め4mmに拡幅した三菱レ
イヨン株式会社製高強度高弾性炭素繊維HR40−2M
(2000フィラメント)を4mmピッチでUDプリプ
レグ上に巻き付けた。その上に12mm幅のポリエステ
ルテープを2.5mmピッチで巻き付けた後、130℃
に調整した硬化炉で硬化した。樹脂は外周まで含浸硬化
しており外径11.1mmφ、1m当たりの重量は2
9.2gとなった。この際得られた外層に強化繊維で補
強した管状成型体と外層を補強していない管状成型体と
を用い、図.1に示す治具を用い、外スパン500m
m、内スパン150mm、荷重速度10mm/minにて
強度比較を実施したところ、補強していないものが48
kgに対して54kgとなった。又、この際得られた成
型体の外層(HR40−2Mを巻き付けて形成した層)
の樹脂含有率は20%であった。
(Example 8) Using a CG tape (MR370C125S03) manufactured by Mitsubishi Rayon Co., Ltd., four layers of UD prepreg were wound with the fiber direction of the UD prepreg matching the longitudinal direction of the core metal of 10 mmφ with the glass thin prepreg inside the inner layer. Thereafter, a polyester tape having a width of 12 mm was wound thereon at a pitch of 2.5 mm, and then cured in a curing furnace adjusted to 130 ° C. to have an inner diameter of 10 mmφ and an outer diameter of 10.9 mm.
A tubular molded body weighing 26.8 g per 1 mm mm was obtained. A resin film R340R-7R manufactured by Mitsubishi Rayon Co., Ltd. (epoxy resin, basis weight 7 g /
m 2 ), and then high-strength high-elasticity carbon fiber HR40-2M manufactured by Mitsubishi Rayon Co., Ltd.
(2000 filaments) was wound on a UD prepreg at a pitch of 4 mm. After wrapping a 12 mm wide polyester tape thereon at 2.5 mm pitch,
And cured in a curing oven adjusted to The resin is impregnated and hardened to the outer circumference, and the outer diameter is 11.1 mmφ, and the weight per meter is 2
It became 9.2 g. At this time, a tubular molded body reinforced with reinforcing fibers and a tubular molded body not reinforced with the outer layer were used for the outer layer obtained, and the outer span was 500 m using a jig shown in FIG.
m, inner span 150 mm, load speed 10 mm / min.
It became 54 kg to kg. In addition, the outer layer of the obtained molded body (a layer formed by winding HR40-2M)
Was 20%.

【0036】(比較例3)三菱レイヨン株式会社製CGテー
プ(MR370C125S03)を用い、ガラス薄物プ
リプレグを内層内側としてUDプリプレグの繊維方向を
10mmφの芯金の長手方向として一致させて4層分巻
き付けた後、その上に12mm幅のポリエステルテープ
を2.5mmピッチで巻き付けた後、130℃に調整し
た硬化炉で硬化し、内径が10mmφ、外径が10.9
mmφ 1m当たりの重量が26.8gの管状成型体を
得た。この外層に三菱レイヨン株式会社製樹脂フィルム
R340R−7R(エポキシ系樹脂、目付け7g/s
m)を塗布し、その後、予め3mmに拡幅した三菱レイ
ヨン株式会社製高強度高弾性炭素繊維HR40−2M
(2000フィラメント)を4mmピッチでUDプリプ
レグ上に巻き付けた。その上に12mm幅のポリエステ
ルテープを2.5mmピッチで巻き付けた後、130℃
に調整した硬化炉で硬化した。樹脂は外周まで含浸硬化
しており外径11.1mmφ、1m当たりの重量は2
9.2gとなった。この際得られた外層に強化繊維で補
強した管状成型体と外層を補強していない管状成型体と
を用い、図.1に示す治具を用い、外スパン500m
m、内スパン150mm、荷重速度10mm/分にて強
度比較を実施したところ、負荷45kgで破断した。
又、この成型体の外層の樹脂含有率は19%であった。
(Comparative Example 3) Using a CG tape (MR370C125S03) manufactured by Mitsubishi Rayon Co., Ltd., four layers of UD prepreg were wound with the fiber direction of the UD prepreg matching the longitudinal direction of the core metal of 10 mmφ with the glass thin prepreg inside the inner layer. Thereafter, a polyester tape having a width of 12 mm was wound thereon at a pitch of 2.5 mm, and then cured in a curing furnace adjusted to 130 ° C., with an inner diameter of 10 mmφ and an outer diameter of 10.9 mm.
A tubular molded body weighing 26.8 g per 1 mm mm was obtained. On this outer layer, a resin film R340R-7R manufactured by Mitsubishi Rayon Co., Ltd. (epoxy resin, basis weight 7 g / s)
m), and thereafter, the high-strength high-elasticity carbon fiber HR40-2M manufactured by Mitsubishi Rayon Co., Ltd.
(2000 filaments) was wound on a UD prepreg at a pitch of 4 mm. After wrapping a 12 mm wide polyester tape on it at 2.5 mm pitch,
And cured in a curing oven adjusted to The resin has been impregnated and cured to the outer periphery, and the outer diameter is 11.1 mmφ, and the weight per meter is 2
It became 9.2 g. At this time, a tubular molded body reinforced with reinforcing fibers and a tubular molded body without reinforcing the outer layer were used for the outer layer obtained, and the outer span was 500 m using a jig shown in FIG.
When the strength was compared at a load of 10 mm / min, the inner span was 150 mm, and the load was 10 mm / min.
The resin content of the outer layer of this molded product was 19%.

【0037】(実施例9)内径10mmφ、外径12mmφ
のアルミ製パイプを使用して、この外層に三菱レイヨン
株式会社製仮止め剤(品名 MRS−3)を塗布し、そ
の後、予め4mmに拡幅した三菱レイヨン株式会社製高
強度高弾性炭素繊維HR40−2M(2000フィラメ
ント)を4mmピッチでUDプリプレグ上に巻き付け
た。その上に12mm幅のポリエステルテープを2.5
mmピッチで巻き付けた後、130℃に調整した硬化炉
で硬化した。樹脂は外周まで含浸硬化していた。又、こ
の際えられた成型体の外層(HR40−2Mを巻き付け
て形成した層)の樹脂含有率は19%であった。
(Embodiment 9) Inner diameter 10 mmφ, outer diameter 12 mmφ
A temporary fixing agent (product name: MRS-3) manufactured by Mitsubishi Rayon Co., Ltd. is applied to this outer layer using an aluminum pipe manufactured by Mitsubishi Rayon Co., Ltd. 2M (2000 filaments) was wound on a UD prepreg at a pitch of 4 mm. A 2.5mm 12mm polyester tape
After winding at a pitch of mm, the composition was cured in a curing furnace adjusted to 130 ° C. The resin had been impregnated and cured to the outer periphery. The resin content of the outer layer (layer formed by winding HR40-2M) of the obtained molded body was 19%.

【0038】(実施例10)内径10mmφ、外径12mm
φのアルミ製パイプを使用して、この外層に三菱レイヨ
ン株式会社製樹脂フィルムR340R−7R(エポキシ
系樹脂、目付け7g/sm)を塗布し、その後、予め4
mmに拡幅した三菱レイヨン株式会社製高強度高弾性炭
素繊維HR40−2M(2000フィラメント)を4m
mピッチでUDプリプレグ上に巻き付けた。その上に1
2mm幅のポリエステルテープを2.5mmピッチで巻
き付けた後、130℃に調整した硬化炉で硬化した。樹
脂は外周まで含浸硬化していた。又、この際、得られた
成型体の外層(HR40−2Mを巻き付けて形成した
層)の樹脂含有率は19%であった。
(Example 10) Inner diameter 10 mm, outer diameter 12 mm
Using a φ aluminum pipe, apply a resin film R340R-7R (epoxy resin, weight per unit area: 7 g / sm) manufactured by Mitsubishi Rayon Co., Ltd. to this outer layer.
4m high-strength high-elasticity carbon fiber HR40-2M (2000 filaments) manufactured by Mitsubishi Rayon Co., Ltd.
It was wound on a UD prepreg at m pitch. 1 on it
After winding a 2 mm width polyester tape at a pitch of 2.5 mm, the tape was cured in a curing furnace adjusted to 130 ° C. The resin had been impregnated and cured to the outer periphery. At this time, the resin content of the outer layer (a layer formed by winding HR40-2M) of the obtained molded body was 19%.

【0039】[0039]

【発明の効果】本発明によれば、上記(1)〜(8)の
従来技術の問題点を克服することが可能である。即ち、
材料コストを低下させつつ、重量を大きく変えず、且つ
品位を備えながら管状成形体の強度を向上させるを実現
することができる。
According to the present invention, it is possible to overcome the problems of the prior arts (1) to (8). That is,
It is possible to realize the improvement of the strength of the tubular molded body while maintaining the quality while reducing the material cost without largely changing the weight.

【0040】[0040]

【図面の簡単な説明】[Brief description of the drawings]

【図1】曲げ強力を測定する治具の概念図である。FIG. 1 is a conceptual diagram of a jig for measuring bending strength.

【図2】つぶし強力を測定する治具の概念図である。 1 ロードセル 2 圧子 3 管状成形体 4 アルミブッシュ 5 プレートFIG. 2 is a conceptual diagram of a jig for measuring crushing strength. Reference Signs List 1 load cell 2 indenter 3 tubular molded body 4 aluminum bush 5 plate

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 複数の繊維強化樹脂層を積層してなる管
状成形体であって、少なくとも1層の間隙なく周方向を
補強する繊維強化樹脂層の樹脂含有率が13〜25重量
%である管状成形体。
1. A tubular molded product obtained by laminating a plurality of fiber-reinforced resin layers, wherein the resin content of the fiber-reinforced resin layer for reinforcing the circumferential direction without any gap between at least one layer is 13 to 25% by weight. Tubular molded body.
【請求項2】 間隙なく周方向を補強する繊維強化樹脂
層の樹脂含有率が13〜20重量%である請求項1記載
の管状成形体。
2. The tubular molded article according to claim 1, wherein the resin content of the fiber reinforced resin layer for reinforcing the circumferential direction without gaps is 13 to 20% by weight.
【請求項3】 樹脂含有率が13〜25重量%である繊
維強化樹脂層を構成する強化繊維束が3〜8mmの幅を
有している請求項1又は2記載の管状成形体。
3. The tubular molded article according to claim 1, wherein the reinforcing fiber bundle constituting the fiber-reinforced resin layer having a resin content of 13 to 25% by weight has a width of 3 to 8 mm.
【請求項4】 樹脂含有率が13〜25重量%である繊
維強化樹脂層を構成する強化繊維束が4〜6mmの幅を
有している請求項1又は2記載の管状成形体。
4. The tubular molded article according to claim 1, wherein the reinforcing fiber bundle constituting the fiber reinforced resin layer having a resin content of 13 to 25% by weight has a width of 4 to 6 mm.
【請求項5】 複数の繊維強化樹脂層を積層してなる管
状成形体の製造方法において、芯金上に形成したまだ硬
化していない繊維強化樹脂層の上に、予め拡幅された実
質的に樹脂を含まない強化繊維を間隙なく巻き付けて、
少なくとも1層の強化繊維層を形成し、その後加圧加熱
して、前記強化繊維層を形成する強化繊維束に樹脂を含
浸する管状成形体の製造方法。
5. A method for producing a tubular molded body comprising a plurality of fiber reinforced resin layers laminated, wherein a substantially widened fiber reinforced resin layer formed on a cored bar and not yet cured is preliminarily expanded. Wrapping reinforced fiber without resin without gap,
A method for producing a tubular molded body in which at least one reinforcing fiber layer is formed and then heated under pressure to impregnate a resin into a reinforcing fiber bundle forming the reinforcing fiber layer.
【請求項6】 複数の繊維強化樹脂層を積層してなる管
状成形体の製造方法において、芯金上に予め拡幅された
実質的に樹脂を含まない強化繊維束を間隙なく巻き付け
少なくとも1層の強化繊維層を形成し、その上にまだ硬
化していない繊維強化樹脂層を設け、その後加圧加熱し
て、前記強化繊維層を形成する強化繊維束に樹脂を含浸
する管状成形体の製造方法。
6. A method for producing a tubular molded body comprising a plurality of fiber-reinforced resin layers laminated, wherein at least one layer of a reinforcing fiber bundle substantially free of resin, which is preliminarily widened on a cored bar, is wound without gaps. Forming a reinforcing fiber layer, providing an uncured fiber reinforced resin layer thereon, and then applying pressure and heating to impregnate the reinforcing fiber bundle forming the reinforcing fiber layer with a resin. .
【請求項7】 間隙なく巻き付ける強化繊維束が3〜8
mmの幅を有している請求項5又は6記載の管状成形体
の製造方法。
7. The reinforcing fiber bundle to be wound without gaps is 3 to 8.
The method for producing a tubular molded article according to claim 5, wherein the molded article has a width of 7 mm.
【請求項8】 間隙なく巻き付ける強化繊維束が4〜6
mmの幅を有している請求項5又は6記載の管状成形体
の製造方法。
8. The reinforcing fiber bundle to be wound without gaps is 4 to 6.
The method for producing a tubular molded article according to claim 5, wherein the molded article has a width of 7 mm.
【請求項9】 予め拡幅された実質的に樹脂を含まない
強化繊維束が吸引開繊により開繊されたものである請求
項5〜8記載の管状成形体の製造方法。
9. The method for producing a tubular molded product according to claim 5, wherein the reinforcing fiber bundle which contains substantially no resin and which has been widened in advance is opened by suction opening.
JP2000103595A 1999-04-05 2000-04-05 Tubular molding and its manufacture Pending JP2000351163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000103595A JP2000351163A (en) 1999-04-05 2000-04-05 Tubular molding and its manufacture

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-97933 1999-04-05
JP9793399 1999-04-05
JP2000103595A JP2000351163A (en) 1999-04-05 2000-04-05 Tubular molding and its manufacture

Publications (1)

Publication Number Publication Date
JP2000351163A true JP2000351163A (en) 2000-12-19

Family

ID=26439075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000103595A Pending JP2000351163A (en) 1999-04-05 2000-04-05 Tubular molding and its manufacture

Country Status (1)

Country Link
JP (1) JP2000351163A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009524536A (en) * 2006-01-27 2009-07-02 ミシュラン ルシェルシュ エ テクニーク ソシエテ アノニム Method for manufacturing a composite ring
JP2010514592A (en) * 2006-12-27 2010-05-06 ソシエテ ド テクノロジー ミシュラン Manufacturing method and apparatus for composite ring

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009524536A (en) * 2006-01-27 2009-07-02 ミシュラン ルシェルシュ エ テクニーク ソシエテ アノニム Method for manufacturing a composite ring
JP2010514592A (en) * 2006-12-27 2010-05-06 ソシエテ ド テクノロジー ミシュラン Manufacturing method and apparatus for composite ring

Similar Documents

Publication Publication Date Title
US10272302B2 (en) Fiber-reinforced composite tubular shafts and manufacture thereof
US5512119A (en) Method of making a hybrid prepreg
US4605385A (en) Fibre reinforced plastics power transmission shaft
US2726185A (en) Method of forming tapered glass rods
US20060185218A1 (en) Two piece bonded fishing rod blank and fishing rod
US20190290978A1 (en) Fiber-reinforced composite tubular shafts and manufacture thereof
WO1997036653A1 (en) Frp racket and method for producing the same
US20040228995A1 (en) Composite poles with an integral mandrel and methods of making the same
US5245813A (en) Structural beam
US7547371B2 (en) Composite architectural column
US4685241A (en) Graphite fiber fishing rod
JPH05168375A (en) Material for fishing rod and its production
JP2000351163A (en) Tubular molding and its manufacture
US3820573A (en) Tubular laminate and a method of making a tubular laminate
JPH02169B2 (en)
JPH07329196A (en) Synthetic resin tube reinforced by fiber
JP3278097B2 (en) Tubular body
JPS5951903B2 (en) 2 layer prepreg sheet
JPH0323887B2 (en)
JPH09267401A (en) Frp pipe and its production
JPH0422996Y2 (en)
JP2002001725A (en) Fiber rolled material for fiber-reinforced plastic, fiber- reinforced plastic, and its manufacturing method
JPH039652Y2 (en)
JPH0242443Y2 (en)
JPH09262832A (en) Prepreg