JP2000348718A - Hydrogen storage alloy for alkaline storage battery and its manufacture - Google Patents

Hydrogen storage alloy for alkaline storage battery and its manufacture

Info

Publication number
JP2000348718A
JP2000348718A JP11152533A JP15253399A JP2000348718A JP 2000348718 A JP2000348718 A JP 2000348718A JP 11152533 A JP11152533 A JP 11152533A JP 15253399 A JP15253399 A JP 15253399A JP 2000348718 A JP2000348718 A JP 2000348718A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
alloy
storage battery
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11152533A
Other languages
Japanese (ja)
Inventor
Teruhiko Imoto
輝彦 井本
Yasuhiro Onouchi
倍太 尾内
Yoshihiro Masuda
喜裕 増田
Kikuko Katou
菊子 加藤
Nobuyuki Higashiyama
信幸 東山
Mamoru Kimoto
衛 木本
Yasuhiko Ito
靖彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP11152533A priority Critical patent/JP2000348718A/en
Publication of JP2000348718A publication Critical patent/JP2000348718A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a charge-discharge cycle characteristic and restrain the increase of the internal pressure of a battery by sticking a Zr compound to minute holes formed in the surfaces of hydrogen storage alloy particles. SOLUTION: This hydrogen storage alloy for a battery is formed by immersing hydrogen storage alloy particles 1 in an acidic solution with zirconium chloride added and thereafter extracting, washing and drying them. As a result, minute holes 2 are formed in the surfaces of the hydrogen storage alloy particles 1, and a Zr compound 3 is deposited on and stuck to the minute holes 2. Preferably, zirconium chloride is added by 0.3-5.0 wt.% with respect to the weight of the hydrogen storage alloy particles 1. The suitable initial pH of the acidic aqueous solution containing zirconium chloride is 0.7-2.0, and hydrochloric acid, nitric acid or phosphoric acid is used as the acid. In particular, the hydrogen storage alloy particles 1 produced by a gas atomization method is preferably used, and this increases the reaction area in the battery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の対象とする技術分野】本発明は、アルカリ蓄電
池用の負極材料として使用される水素吸蔵合金に係わ
り、詳しくはサイクル特性に優れ、しかも電池の内圧上
昇を抑制可能な水素吸蔵合金電極を得ることを目的とし
た電極材料たる水素吸蔵合金粉末の改良に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy used as a negative electrode material for an alkaline storage battery. More specifically, the present invention relates to a hydrogen storage alloy electrode having excellent cycle characteristics and capable of suppressing an increase in the internal pressure of the battery. The present invention relates to improvement of a hydrogen storage alloy powder as an electrode material for the purpose of obtaining.

【0002】[0002]

【従来の技術】近年、ニッケル・カドニウム蓄電池に比
べて2倍以上の高容量で、且つ、環境適合性にも優れた
ニッケル・水素蓄電池が、新しいアルカリ蓄電池として
注目されている。しかしながら、各種ポータブル機器の
普及を背景として、このニッケル・水素蓄電池は更なる
高性能化が期待されている。ここで、ニッケル・水素蓄
電池の負極に使用する水素吸蔵合金は、一般に自然酸化
等によってその表面に酸化物等の被膜が形成されてお
り、このような水素吸蔵合金を用いて水素吸蔵合金を作
製し、この水素吸蔵合金電極をニッケル・水素蓄電池の
負極に使用した場合には、その初期における水素吸蔵合
金の活性度が低く、初期における電池容量が低くなる等
の問題があった。
2. Description of the Related Art In recent years, nickel-metal hydride storage batteries that are twice as high as nickel-cadmium storage batteries and have excellent environmental compatibility have attracted attention as new alkaline storage batteries. However, with the spread of various portable devices, this nickel-hydrogen storage battery is expected to have higher performance. Here, the hydrogen storage alloy used for the negative electrode of the nickel-hydrogen storage battery generally has a coating such as an oxide formed on its surface by natural oxidation or the like, and the hydrogen storage alloy is manufactured using such a hydrogen storage alloy. However, when this hydrogen storage alloy electrode is used as a negative electrode of a nickel-metal hydride storage battery, there are problems such that the activity of the hydrogen storage alloy in the initial stage is low and the battery capacity in the initial stage is low.

【0003】このため、近年において、例えば特開平5-
225975号公報に示されるように、水素吸蔵合金を塩酸等
の酸性溶液中に浸漬させて、水素吸蔵合金の表面におけ
る酸化被膜を除去する方法が提案されている。ここで、
水素吸蔵合金を酸性溶液中に浸漬させて、この水素吸蔵
合金の表面における酸化被膜等を除去した場合、水素吸
蔵合金の表面に活性な金属ニッケル(Ni)、金属コバル
ト(Co)等の部位が出現する。
For this reason, in recent years, for example,
As disclosed in Japanese Patent No. 225975, a method has been proposed in which a hydrogen storage alloy is immersed in an acidic solution such as hydrochloric acid to remove an oxide film on the surface of the hydrogen storage alloy. here,
When the hydrogen storage alloy is immersed in an acidic solution to remove oxide films and the like on the surface of the hydrogen storage alloy, active metal nickel (Ni), metal cobalt (Co), etc. are formed on the surface of the hydrogen storage alloy. Appear.

【0004】ところが、この表面における活性な部位が
再度酸化されたりして、水素吸蔵合金における初期の活
性度が十分に向上されず、依然として初期放電容量が低
く、惹いてはサイクル特性が劣るという問題がある。
However, the active sites on the surface are oxidized again, so that the initial activity of the hydrogen storage alloy is not sufficiently improved, the initial discharge capacity is still low, and the cycle characteristics are inferior. There is.

【0005】また、上記の方法で酸化皮膜を除去するこ
とにより、表面に活性な金属Ni、Co等の部位が出現し、
初期放電容量は向上するが、充放電アルカリ電解液中で
耐酸化性の改善および電池内圧上昇の抑制には至ってい
ない。
[0005] Further, by removing the oxide film by the above method, sites such as active metals Ni and Co appear on the surface,
Although the initial discharge capacity is improved, the oxidation resistance in the charge / discharge alkaline electrolyte is not improved and the increase in the internal pressure of the battery is not suppressed.

【0006】[0006]

【発明が解決しようとする課題】本発明は、以上の事情
に鑑みなされたものであって、その目的とするところ
は、ニッケル・水素蓄電池に使用される、充放電サイク
ル特性の向上と電池内圧の上昇抑制を両立させた、水素
吸蔵合金電極に使用される水素吸蔵合金を得ることにあ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to improve the charge / discharge cycle characteristics and the internal pressure of a battery used in nickel-metal hydride storage batteries. An object of the present invention is to obtain a hydrogen storage alloy used for a hydrogen storage alloy electrode, which suppresses the rise of the hydrogen storage alloy.

【0007】[0007]

【課題を解決するための手段】本発明は、水素吸蔵合金
粒子の表面に形成された微細孔に、ジルコニウム化合物
を付着させたアルカリ蓄電池用水素吸蔵合金である。そ
して、この水素吸蔵合金粒子は、CaCu5型結晶構造を有
し、組成式MmNixCoyMnzM1-z[式中Mはアルミニウム(A
l)、銅(Cu)から選ばれた少なくとも一種の元素、x
はニッケル(Ni)の存在比率であって3.0≦x≦5.2、y
はコバルト(Co)の存在比率であって0<y≦1.2、zは
マンガン(Mn)の存在比率であって0.1≦z≦0.9であ
り、且つ前記x、y、zの合計値が4.4≦x+y+z≦5.
4]で表されるものが代表例として例示できる。この組
成範囲で水素吸蔵合金としてアルカリ蓄電池に使用する
と、アルカリ電解液中での腐食が抑えられ、水素吸蔵量
の増大が顕著に狙え、好適な組成範囲といえる。
The present invention relates to a hydrogen storage alloy for an alkaline storage battery in which a zirconium compound is adhered to micropores formed on the surfaces of hydrogen storage alloy particles. The hydrogen storage alloy particles have a CaCu 5 type crystal structure, and have a composition formula of MmNi x Co y Mn z M 1-z [where M is aluminum (A
l), at least one element selected from copper (Cu), x
Is the abundance ratio of nickel (Ni), and 3.0 ≦ x ≦ 5.2, y
Is the abundance ratio of cobalt (Co) and 0 <y ≦ 1.2, z is the abundance ratio of manganese (Mn) and is 0.1 ≦ z ≦ 0.9, and the sum of x, y and z is 4.4 ≦ x + y + z ≦ 5.
4] can be exemplified as a typical example. When the composition is used as a hydrogen storage alloy in an alkaline storage battery in this composition range, corrosion in an alkaline electrolyte is suppressed, and an increase in the amount of hydrogen storage can be remarkably aimed at.

【0008】この水素吸蔵合金を導電性芯体に充填する
ことにより、アルカリ蓄電池用水素吸蔵合金電極が構成
される。この電極を用いて、アルカリ蓄電池が構成され
る。
By filling the conductive core with the hydrogen storage alloy, a hydrogen storage alloy electrode for an alkaline storage battery is formed. Using these electrodes, an alkaline storage battery is formed.

【0009】また、本発明は、可逆的に水素の吸蔵・放
出が可能な水素吸蔵合金粒子を準備する第1ステップ
と、前記第1ステップで準備された前記合金粒子を、塩
化ジルコニウム(ZrCl4)を添加した酸性溶液中に浸漬
する第2ステップと、前記第2ステップ後の合金粒子
を、水洗、乾燥することにより水素吸蔵合金が形成され
るアルカリ蓄電池用水素吸蔵合金の製造方法であって、
前記合金粒子は、その表面の微細孔に、ジルコニウム化
合物が析出されたものであることを特徴とするものであ
る。
Further, the present invention provides a first step of preparing hydrogen storage alloy particles capable of reversibly storing and releasing hydrogen, and converting the alloy particles prepared in the first step to zirconium chloride (ZrCl 4). A) immersing it in an acidic solution to which the hydrogen storage alloy is added, and washing the alloy particles after the second step with water, and drying the alloy particles to form a hydrogen storage alloy. ,
The alloy particles are characterized in that zirconium compounds are precipitated in micropores on the surface.

【0010】ここで、前記水素吸蔵合金の粒子は、CaCu
5型結晶構造を有し、組成式MmNixCo yMnzM1-z[式中Mは
アルミニウム(Al)、銅(Cu)から選ばれた少なくとも
一種の元素、xはニッケル(Ni)の存在比率であって3.
0≦x≦5.2、yはコバルト(Co)の存在比率であって0
<y≦1.2、zはマンガン(Mn)の存在比率であって0.1
≦z≦0.9であり、且つ前記x、y、zの合計値が4.4≦
x+y+z≦5.4]であることを特徴とする。
Here, the particles of the hydrogen storage alloy are CaCu
FiveHaving a type crystal structure and a composition formula of MmNixCo yMnzM1-z[Where M is
At least selected from aluminum (Al) and copper (Cu)
A kind of element, x is the abundance ratio of nickel (Ni).
0 ≦ x ≦ 5.2, y is the abundance ratio of cobalt (Co)
<Y ≦ 1.2, z is the abundance ratio of manganese (Mn) and is 0.1
≦ z ≦ 0.9, and the total value of the x, y, and z is 4.4 ≦
x + y + z ≦ 5.4].

【0011】また、前記第2ステップにおいて、塩化ジ
ルコニウムを、前記合金粒子の重量に対して0.3〜5.0重
量%添加することを特徴とする。
In the second step, zirconium chloride is added in an amount of 0.3 to 5.0% by weight based on the weight of the alloy particles.

【0012】更に、前記第2ステップにおいて、酸性溶
液がpH=0.7〜2.0であることを特徴とする。
Furthermore, in the second step, the acidic solution has a pH of 0.7 to 2.0.

【0013】一方、前記第1ステップをガスアトマイズ
法として水素吸蔵合金の粒子を準備しても良い。
On the other hand, the first step may be performed by gas atomizing to prepare particles of a hydrogen storage alloy.

【0014】上記アルカリ蓄電池用水素吸蔵合金の製造
方法により得られた水素吸蔵合金を、導電芯体に充填す
ることにより、アルカリ蓄電池用水素吸蔵合金電極が提
供できる。
By filling a conductive core with the hydrogen storage alloy obtained by the method for producing a hydrogen storage alloy for an alkaline storage battery, a hydrogen storage alloy electrode for an alkaline storage battery can be provided.

【0015】ところで、上記第2ステップでは、水素吸
蔵合金の粒子が塩化ジルコニウムを添加した酸性溶液中
に浸漬、処理されるので、粒子表面の酸化物が溶解し除
去され、更に、溶解で生じた微細孔にジルコニウム化合
物が析出する。ジルコニウム化合物の析出は他の部位に
比べ、水素吸蔵合金表面上の微細孔で優先的に行われ
る。塩化ジルコニウムの添加量を合金粒子に対して0.3
〜5.0重量%とするのは、0.3重量%より少ないと析出す
るジルコニウム化合物が少なく、5.0重量%より多いと
析出するジルコニウム化合物が過剰になり、合金表面に
おける電気化学的反応を阻害するからである。
In the second step, the particles of the hydrogen storage alloy are immersed and treated in an acidic solution to which zirconium chloride is added. A zirconium compound precipitates in the micropores. Precipitation of the zirconium compound is preferentially performed in micropores on the surface of the hydrogen storage alloy as compared with other sites. Add zirconium chloride in an amount of 0.3
The reason for setting the content to ~ 5.0% by weight is that if the content is less than 0.3% by weight, the precipitated zirconium compound is small, and if the content is more than 5.0% by weight, the deposited zirconium compound becomes excessive and inhibits the electrochemical reaction on the alloy surface. .

【0016】更に、第2ステップにおいて、酸性水溶液
の好適な初期pHは、0.7〜2.0の範囲である。pHが0.7よ
り低くなると、合金粒子の酸化が急激に生じ、水素吸蔵
合金の内部まで溶解されてしまうからであり、pHが2.0
より高くなると酸化物の被膜が十分に除去されないから
である。また、第2ステップで使用する酸性水溶液とし
ては、塩酸、硝酸、リン酸が例示される。
Further, in the second step, a suitable initial pH of the acidic aqueous solution is in the range of 0.7 to 2.0. If the pH is lower than 0.7, the oxidation of the alloy particles occurs rapidly, and the inside of the hydrogen storage alloy is melted.
This is because if it is higher, the oxide film is not sufficiently removed. Examples of the acidic aqueous solution used in the second step include hydrochloric acid, nitric acid, and phosphoric acid.

【0017】このようにして、図1に示すような構造と
なった本発明に係る水素吸蔵合金を得る。図1は、本発
明水素吸蔵合金の状態を模式的に表わした説明図であ
る。図1に示すように、水素吸蔵合金粒子1の表面に
は、ステップ2により形成された微細孔2があり、この
微細孔2にジルコニウム化合物3が析出、付着する。
Thus, the hydrogen storage alloy according to the present invention having the structure shown in FIG. 1 is obtained. FIG. 1 is an explanatory view schematically showing the state of the hydrogen storage alloy of the present invention. As shown in FIG. 1, on the surface of the hydrogen storage alloy particles 1, there are micropores 2 formed in step 2, and the zirconium compound 3 precipitates and adheres to the micropores 2.

【0018】これらの効果は、アルゴン雰囲気のアーク
炉で作製、粉砕した合金粒子及びロール急冷法等により
作製した合金粒子は言うまでもなく、ガスアトマイズ法
により作製した合金粒子であっても同様に期待できる。
特に、ガスアトマイズ法で形成された水素吸蔵合金の粒
子は、表面が平滑で微細孔が少ないので、酸性水溶液に
よる浸漬処理を行うことにより、合金粒子の比表面積を
増大させ電池内での反応面積を増大させることができ好
適するといえる。
These effects can be expected not only for alloy particles produced and pulverized by an arc furnace in an argon atmosphere and alloy particles produced by a roll quenching method but also for alloy particles produced by a gas atomizing method.
In particular, the particles of the hydrogen storage alloy formed by the gas atomization method have a smooth surface and a small number of fine pores, so that by performing immersion treatment with an acidic aqueous solution, the specific surface area of the alloy particles is increased, and the reaction area in the battery is increased. It can be said that it can be increased and is suitable.

【0019】[0019]

【実施の形態】以下、本発明の実施例を比較例と共に詳
細に説明するが、本発明は下記実施例に何ら限定される
ものではなく、その要旨を変更しない範囲において適宜
変更して実施することが可能なものである。 (実験1)この実験1では、水素吸蔵合金粒子を酸性水
溶液中で処理する場合の、塩化ジルコニウムの含有有
無、その含有量について、電池特性に及ぼす影響を調べ
た。この結果を、以下に説明する。尚、合金粒子の作
製、各試料の準備、アルカリ蓄電池の組立、特性の評価
条件、詳細な結果という順序で、説明していく。 [MmNi3.1Co0.9Mn0.6Al0.4合金粒子の作製]Mm(ミッシ
ュメタルMmは希土類元素の混合物であって、La:25重量
%、Ce:50重量%、Pr:7重量%、Nd:18重量%)、N
i、Co、Mn、Al(各元素材料は純度99.9%の金属単体を
使用)を、モル比1.0:3.1:0.9:0.6:0.4の割合で混
合し、アルゴン雰囲気でロール急冷法にて、組成式MmNi
3.1Co0.9Mn0.6Al0.4で表される合金を作製した。この合
金を空気中で機械的に粉砕し、平均粒径80μmに調整し
た合金粒子を得た。。 [試料A1〜A10]上記合金粒子を用い、塩化ジルコニウ
ム(ZrCl3)をこの合金粒子に対して0重量%(無添
加)〜10.0重量%含有させ、pH=1.0に調製した塩酸水
溶液中に30分間浸漬、攪拌処理した。その後、吸引濾
過、水洗乾燥し、試料A1〜試料A10とした。この結果、
塩化ジルコニウムは、水酸化ジルコニウム、酸化ジルコ
ニウムが混在した、ジルコニウム化合物として析出、付
着することになる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail together with comparative examples. However, the present invention is not limited to the following embodiments, and the present invention is carried out by appropriately changing the scope of the present invention. It is possible. (Experiment 1) In Experiment 1, the effect of zirconium chloride on the battery characteristics was examined for the presence or absence of zirconium chloride when the hydrogen storage alloy particles were treated in an acidic aqueous solution. The result will be described below. The description will be made in the order of preparation of alloy particles, preparation of each sample, assembly of an alkaline storage battery, evaluation conditions of characteristics, and detailed results. [Preparation of MmNi 3.1 Co 0.9 Mn 0.6 Al 0.4 alloy particles] Mm (Misch metal Mm is a mixture of rare earth elements, La: 25% by weight, Ce: 50% by weight, Pr: 7% by weight, Nd: 18% by weight %), N
i, Co, Mn, Al (each elemental material is a simple metal with a purity of 99.9%) mixed in a molar ratio of 1.0: 3.1: 0.9: 0.6: 0.4, and roll quenched in an argon atmosphere to form a composition Formula MmNi
An alloy represented by 3.1 Co 0.9 Mn 0.6 Al 0.4 was produced. This alloy was mechanically pulverized in air to obtain alloy particles adjusted to an average particle size of 80 μm. . [Samples A1 to A10] Using the above alloy particles, zirconium chloride (ZrCl 3 ) was contained in an amount of 0% by weight (no addition) to 10.0% by weight based on the alloy particles, and 30% in a hydrochloric acid aqueous solution adjusted to pH = 1.0. It was immersed for a minute and stirred. Thereafter, suction filtration, washing with water and drying were performed to obtain Samples A1 to A10. As a result,
Zirconium chloride precipitates and adheres as a zirconium compound in which zirconium hydroxide and zirconium oxide are mixed.

【0020】一方、比較例として、上記で作製した合金
粒子を特開平5-225975号公報に示されるように、0.5規
定(pH=0.3)に調製した塩酸水溶液からなる25℃に保
った処理液中で、前記合金粒子を30分間浸漬、攪拌し
た。その後、吸引濾過、水洗乾燥して、比較試料Xとし
た。 [アルカリ蓄電池の組立]上記で作製した各水素吸蔵合
金100重量部と、結着剤としてのPEO(ポリエチレンオキ
サイド)5重量%の水溶液20重量部とを混合して、ペー
ストを調整した。このペーストを、ニッケル鍍金を施し
たパンチングメタルからなる導電性芯体の両面に塗着
(充填)し、室温で乾燥した。その後、所定の寸法に切
断して、アルカリ蓄電池用水素吸蔵合金電極を作製し
た。
On the other hand, as a comparative example, as shown in Japanese Patent Application Laid-Open No. 5-225975, a treatment solution containing a hydrochloric acid aqueous solution prepared at 0.5 N (pH = 0.3) and maintained at 25 ° C. Inside, the alloy particles were immersed and stirred for 30 minutes. Thereafter, suction filtration, washing with water and drying were performed to obtain Comparative Sample X. [Assembly of Alkaline Storage Battery] A paste was prepared by mixing 100 parts by weight of each of the hydrogen storage alloys prepared above and 20 parts by weight of an aqueous solution of 5% by weight of PEO (polyethylene oxide) as a binder. This paste was applied (filled) on both surfaces of a conductive core made of punched metal plated with nickel and dried at room temperature. Thereafter, the resultant was cut into a predetermined size to prepare a hydrogen storage alloy electrode for an alkaline storage battery.

【0021】この水素吸蔵合金電極を負極に使用して、
AAサイズの正極支配型のアルカリ蓄電池(電池容量1000
mAh)を作製した。正極として、従来公知の焼結式ニッ
ケル極を、セパレータとして耐アルカリ性の不織布を、
また、電解液として30重量%水酸化カリウム水溶液をそ
れぞれ使用した。
Using this hydrogen storage alloy electrode as a negative electrode,
AA-size positive electrode-dominated alkaline storage battery (battery capacity 1000
mAh). A conventionally known sintered nickel electrode as a positive electrode, an alkali-resistant nonwoven fabric as a separator,
In addition, a 30% by weight aqueous solution of potassium hydroxide was used as an electrolyte.

【0022】図2は、組み立てたアルカリ蓄電池の模式
断面図であり、正極11及び負極12、セパレータ13、正極
リード14、負極リード15、正極外部端子16、負極缶17、
封口蓋18などからなる。
FIG. 2 is a schematic sectional view of the assembled alkaline storage battery. The positive electrode 11 and the negative electrode 12, the separator 13, the positive electrode lead 14, the negative electrode lead 15, the positive external terminal 16, the negative electrode can 17,
It consists of a sealing lid 18 and the like.

【0023】正極11及び負極12は、セパレータ13を介し
て渦巻き状に巻取られた状態で負極缶17内に収容されて
おり、正極11は正極リード14を介して封口蓋18に、又負
極12は負極リード15を介して、負極缶17に接続されてい
る。負極缶17と封口蓋18との接合部には絶縁性のパッキ
ング20が装着されて電池の密閉されている。正極外部端
子16と封口蓋18との間には、コイルスプリング19が設け
られ、電池内圧が異常に上昇した時に圧縮されて電池内
部のガスを大気中に放出し得るようになっている。 [特性の評価条件]上述の各電池の充放電サイクル特性
を求めた。この時の条件は、電池活性化終了後、各電池
を常温にて、電流値1.5Cで0.8時間充電し、電流値1.5
Cで1.0Vまで放電するサイクルを繰り返し行い、放電
容量が設計容量(1000mAh)に対して75%になった時の
サイクル数を実測するというものである。
The positive electrode 11 and the negative electrode 12 are accommodated in a negative electrode can 17 while being spirally wound through a separator 13. The positive electrode 11 is connected to a sealing lid 18 via a positive electrode lead 14, and Numeral 12 is connected to a negative electrode can 17 via a negative electrode lead 15. An insulating packing 20 is attached to the joint between the negative electrode can 17 and the sealing lid 18 to hermetically seal the battery. A coil spring 19 is provided between the positive electrode external terminal 16 and the sealing lid 18 so that when the battery internal pressure rises abnormally, the battery is compressed and the gas inside the battery can be released to the atmosphere. [Characteristic Evaluation Conditions] The charge / discharge cycle characteristics of each battery described above were determined. The condition at this time is that after the battery activation is completed, each battery is charged at room temperature at a current value of 1.5 C for 0.8 hours, and the current value is 1.5
The cycle of discharging to 1.0 V at C is repeated, and the number of cycles when the discharge capacity reaches 75% of the designed capacity (1000 mAh) is actually measured.

【0024】また、各電池の内圧特性を求めた。この時
の条件は、電池活性化終了後、1.0Cの電流値で連続充
電し、電池内圧を測定するというものである。尚、内圧
特性は電池内圧が10kgf/cm2になるまでの充電時間(mi
n)で評価した。 [詳細な結果]上述の試料A1〜試料A10及び比較試料X
を使用した各電池における、塩化ジルコニウムの使用
量、各電池の初期放電容量、内圧特性(min)を、表1に
示す。
The internal pressure characteristics of each battery were determined. The condition at this time is that after the activation of the battery is completed, the battery is continuously charged at a current value of 1.0 C and the internal pressure of the battery is measured. Note that the internal pressure characteristic is a charging time (mi) until the internal pressure of the battery becomes 10 kgf / cm 2.
n). [Detailed results] The above-mentioned samples A1 to A10 and comparative sample X
Table 1 shows the amount of zirconium chloride used, the initial discharge capacity of each battery, and the internal pressure characteristics (min) in each battery using.

【0025】[0025]

【表1】 [Table 1]

【0026】塩化ジルコニウム(ZrCl4)が無添加、若
しくは10.0重量%以下で添加した塩酸水溶液中で処理を
行った試料A1〜試料A10では、充放電サイクル特性、内
圧特性が比較試料Xよりも大きい値となっている。
Samples A1 to A10 which had been treated in an aqueous hydrochloric acid solution to which no zirconium chloride (ZrCl 4 ) had been added or which had been added at 10.0 wt% or less had larger charge / discharge cycle characteristics and inner pressure characteristics than the comparative sample X. Value.

【0027】特に、塩化ジルコニウム(ZrCl4)が0.3重
量%〜5.0重量%である試料A2〜試料A8を用いた各電池
では、充放電サイクル特性が790サイクルから832サイク
ル、内圧特性も134minから142minと高い値を示した。従
って、塩化ジルコニウム(ZrCl4)の添加量として、特
に0.3重量%〜5.0重量%の範囲が好ましいことがわか
る。
[0027] In particular, 142Min in each cell zirconium chloride (ZrCl 4) were used samples A2~ sample A8 is 0.3 wt% to 5.0 wt%, 832 cycles charge-discharge cycle characteristics 790 cycles, the internal pressure characteristics of 134min It showed a high value. Therefore, it is understood that the addition amount of zirconium chloride (ZrCl 4 ) is particularly preferably in the range of 0.3% by weight to 5.0% by weight.

【0028】この実験1では、水素吸蔵合金の作製工程
であるステップ2において、酸性水溶液として塩酸水溶
液を使用したが、硝酸、リン酸であっても同様の傾向が
観察される。 (実験2)この実験2では、水素吸蔵合金を作製する第
2ステップで使用する酸性溶液のpHを変化させ、電池特
性との関係について検討した。
In Experiment 1, in step 2 which is a process for preparing a hydrogen storage alloy, an aqueous hydrochloric acid solution was used as the acidic aqueous solution. However, the same tendency is observed with nitric acid and phosphoric acid. (Experiment 2) In Experiment 2, the pH of the acidic solution used in the second step of producing the hydrogen storage alloy was changed to examine the relationship with the battery characteristics.

【0029】上記実験1で準備した合金粒子を用い、塩
化ジルコニウム(ZrCl4)を3.0重量%含有させpH=0.3
〜3.0に調製した塩酸水溶液中で30分間浸漬攪拌し、吸
引濾過後、水洗乾燥した。その後、水洗、乾燥して水素
吸蔵合金とし、試料B1〜B6を準備した。そして、上記実
験1と同様にして、試料B1〜B6を用いて電池を作製し
た。
Using the alloy particles prepared in Experiment 1 above, zirconium chloride (ZrCl 4 ) was contained at 3.0% by weight and pH = 0.3.
The mixture was immersed and stirred in a hydrochloric acid aqueous solution adjusted to ~ 3.0 for 30 minutes, filtered by suction, washed with water and dried. Thereafter, samples were washed with water and dried to obtain a hydrogen storage alloy, and samples B1 to B6 were prepared. Then, in the same manner as in Experiment 1, a battery was manufactured using Samples B1 to B6.

【0030】表2に、試料B1〜試料B6を使用した電池の
初期放電容量の測定結果、高率放電容量の測定結果を示
す。尚、電池の作製条件、容量の測定条件は、上述の実
験1と同じである。
Table 2 shows the measurement results of the initial discharge capacity and the measurement result of the high rate discharge capacity of the batteries using the samples B1 to B6. The conditions for producing the battery and the conditions for measuring the capacity were the same as those in Experiment 1 described above.

【0031】[0031]

【表2】 [Table 2]

【0032】塩化ジルコニウム(ZrCl4)を3.0重量%添
加し、pH=0.3〜3.0の塩酸水溶液で処理を行った後、水
洗、乾燥した本発明に係る試料B1〜試料B6を用いた電池
では、充放電サイクル特性は767サイクルから830サイク
ル、内圧特性も130minから142minの値を示した。
After adding 3.0% by weight of zirconium chloride (ZrCl 4 ), treating with a hydrochloric acid aqueous solution having a pH of 0.3 to 3.0, washing with water and drying, the batteries using the samples B1 to B6 according to the present invention include: The charge-discharge cycle characteristics showed values from 767 cycles to 830 cycles, and the internal pressure characteristics also showed values from 130 min to 142 min.

【0033】pH=0.7〜2.0で処理した試料B3〜B5を使用
した電池では、充放電サイクル特性は820サイクルから8
30サイクル、内圧特性も138minから142minの特に高い値
を示した。従って、酸性溶液のpHとして、特に0.7〜2.0
が好ましいことがわかる。
In the batteries using the samples B3 to B5 treated at pH = 0.7 to 2.0, the charge / discharge cycle characteristics were from 820 cycles to 8 cycles.
In 30 cycles, the internal pressure characteristics also showed particularly high values from 138 min to 142 min. Therefore, as the pH of the acidic solution, particularly 0.7 to 2.0
Is preferable.

【0034】この実験2では、水素吸蔵合金の作製工程
であるステップ2において、酸性水溶液として塩酸水溶
液を使用したが、硝酸、リン酸であっても同様の傾向が
観察される。
In Experiment 2, a hydrochloric acid aqueous solution was used as the acidic aqueous solution in Step 2 which is a manufacturing process of the hydrogen storage alloy. A similar tendency is observed with nitric acid and phosphoric acid.

【0035】尚、実施例では、ロール急冷法て準備した
合金粒子について示したが、ガスアトマイズ法により作
製した合金粒子でも同様の効果が得られた。
In the examples, the alloy particles prepared by the roll quenching method are shown, but the same effect can be obtained by the alloy particles produced by the gas atomizing method.

【0036】[0036]

【発明の効果】以上詳述したように、本発明に係るアル
カリ蓄電池用水素吸蔵合金及びその作製方法によれば、
充放電サイクル特性が向上するとともに、電池内圧の上
昇を抑制することができる。この合金を用いて電極を構
成し、ニッケル・水素蓄電池の負極に用いることによ
り、充放電サイクル特性と電池内圧特性が向上するもの
であり、その工業的価値は極めて大きい。
As described in detail above, according to the hydrogen storage alloy for an alkaline storage battery and the method of manufacturing the same according to the present invention,
The charge / discharge cycle characteristics are improved, and an increase in battery internal pressure can be suppressed. By forming an electrode using this alloy and using it for the negative electrode of a nickel-metal hydride storage battery, the charge / discharge cycle characteristics and battery internal pressure characteristics are improved, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の水素吸蔵合金の説明図である。FIG. 1 is an explanatory view of a hydrogen storage alloy of the present invention.

【図2】アルカリ蓄電池の模式的断面図である。FIG. 2 is a schematic sectional view of an alkaline storage battery.

【符号の説明】[Explanation of symbols]

1 水素吸蔵合金粒子 2 微細孔 3 ジルコニウム化合物 11 正極 12 負極 13 セパレータ 14 正極リード 15 負極リード 16 正極外部端子 17 負極缶 18封口蓋 19コイルスプリング 20パッキング DESCRIPTION OF SYMBOLS 1 Hydrogen storage alloy particle 2 Micropore 3 Zirconium compound 11 Positive electrode 12 Negative electrode 13 Separator 14 Positive electrode lead 15 Negative electrode lead 16 Positive external terminal 17 Negative can 18 Sealing lid 19 Coil spring 20 Packing

───────────────────────────────────────────────────── フロントページの続き (72)発明者 増田 喜裕 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 加藤 菊子 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 東山 信幸 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 木本 衛 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 伊藤 靖彦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 4K017 AA01 BA08 BB05 BB06 BB07 BB09 CA01 EB17 4K018 AA11 BC01 BD07 KA38 5H003 AA04 BA01 BA02 BB02 BC05 BC06 BD00 BD04 BD06 5H016 AA05 BB09 EE01 HH01 HH08 5H028 EE01 FF02 FF04  ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yoshihiro Masuda 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Kikuko Kato 2-chome Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. (72) Nobuyuki Higashiyama 2-5-5, Keihanhondori, Moriguchi-shi, Osaka Pref. Sanyo Electric Co., Ltd. (72) Mamoru Kimoto Keihan-hondori, Moriguchi-shi, Osaka 2-5-5 Sanyo Electric Co., Ltd. (72) Inventor Yasuhiko Ito 2-5-5 Keihanhondori, Moriguchi-shi, Osaka F-term in Sanyo Electric Co., Ltd. 4K017 AA01 BA08 BB05 BB06 BB07 BB09 CA01 EB17 4K018 AA11 BC01 BD07 KA38 5H003 AA04 BA01 BA02 BB02 BC05 BC06 BD00 BD04 BD06 5H016 AA05 BB09 EE01 HH01 HH08 5H028 EE01 FF02 FF04

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 可逆的に水素の吸蔵・放出が可能な水素
吸蔵合金粒子の表面に形成された微細孔に、ジルコニウ
ム化合物を付着させたアルカリ蓄電池用水素吸蔵合金。
1. A hydrogen storage alloy for an alkaline storage battery in which a zirconium compound is attached to fine pores formed on the surface of hydrogen storage alloy particles capable of reversibly storing and releasing hydrogen.
【請求項2】 前記水素吸蔵合金粒子が、CaCu5型結晶
構造を有し、組成式MmNixCoyMnzM1-z[式中Mはアルミ
ニウム(Al)、銅(Cu)から選ばれた少なくとも一種の
元素、xはニッケル(Ni)の存在比率であって3.0≦x
≦5.2、yはコバルト(Co)の存在比率であって0<y≦
1.2、zはマンガン(Mn)の存在比率であって0.1≦z≦
0.9であり、且つ前記x、y、zの合計値が4.4≦x+y+
z≦5.4]で表されることを特徴とする請求項1記載のア
ルカリ蓄電池用水素吸蔵合金。
Wherein said hydrogen absorbing alloy particles have a CaCu 5 type crystal structure, a composition formula MmNi x Co y Mn z M 1 -z [ wherein M is selected from aluminum (Al), copper (Cu) X is an abundance ratio of nickel (Ni), and 3.0 ≦ x
≦ 5.2, y is the abundance ratio of cobalt (Co), and 0 <y ≦
1.2, z is the abundance ratio of manganese (Mn), and 0.1 ≦ z ≦
0.9, and the total value of the x, y, and z is 4.4 ≦ x + y +
2. The hydrogen storage alloy according to claim 1, wherein z ≦ 5.4].
【請求項3】 請求項1または請求項2記載のアルカリ
蓄電池用水素吸蔵合金を、導電性芯体に充填したことを
特徴とするアルカリ蓄電池用水素吸蔵合金電極。
3. A hydrogen storage alloy electrode for an alkaline storage battery, wherein the conductive core is filled with the hydrogen storage alloy for an alkaline storage battery according to claim 1.
【請求項4】 請求項3記載のアルカリ蓄電池用水素吸
蔵合金電極を用いたアルカリ蓄電池。
4. An alkaline storage battery using the hydrogen storage alloy electrode for an alkaline storage battery according to claim 3.
【請求項5】 可逆的に水素の吸蔵・放出が可能な水素
吸蔵合金粒子を準備する第1ステップと、 前記第1ステップで準備された前記合金粒子を、塩化ジ
ルコニウム(ZrCl4)を添加した酸性溶液中に浸漬する
第2ステップと、 前記第2ステップ後の合金粒子を、水洗、乾燥すること
により水素吸蔵合金が形成されるアルカリ蓄電池用水素
吸蔵合金の製造方法であって、 前記合金粒子は、その表面の微細孔に、ジルコニウム化
合物が析出されたものであることを特徴とするアルカリ
蓄電池用水素吸蔵合金の製造方法。
5. A first step of preparing hydrogen storage alloy particles capable of reversibly storing and releasing hydrogen, and adding zirconium chloride (ZrCl 4 ) to the alloy particles prepared in the first step. A second step of immersing the alloy particles in an acidic solution; and a method of manufacturing a hydrogen storage alloy for an alkaline storage battery, wherein the alloy particles after the second step are washed with water and dried to form a hydrogen storage alloy, Is a method for producing a hydrogen storage alloy for an alkaline storage battery, wherein a zirconium compound is precipitated in micropores on the surface.
【請求項6】 前記水素吸蔵合金の粒子は、CaCu5型結
晶構造を有し、組成式MmNixCoyMnzM1-z[式中Mはアル
ミニウム(Al)、銅(Cu)から選ばれた少なくとも一種
の元素、xはニッケル(Ni)の存在比率であって3.0≦
x≦5.2、yはコバルト(Co)の存在比率であって0<y
≦1.2、zはマンガン(Mn)の存在比率であって0.1≦z
≦0.9であり、且つ前記x、y、zの合計値が4.4≦x+y
+z≦5.4]であることを特徴とする請求項5記載のアル
カリ蓄電池用水素吸蔵合金の製造方法。
Wherein particles of the hydrogen absorbing alloy has a CaCu 5 type crystal structure, a composition formula MmNi x Co y Mn z M 1 -z [ wherein M is selected from aluminum (Al), copper (Cu) X is the abundance ratio of nickel (Ni), and 3.0 ≦
x ≦ 5.2, y is the abundance ratio of cobalt (Co), and 0 <y
≦ 1.2, z is the abundance ratio of manganese (Mn) and 0.1 ≦ z
≦ 0.9, and the sum of the x, y, and z is 4.4 ≦ x + y
+ Z ≦ 5.4], wherein the method for producing a hydrogen storage alloy for an alkaline storage battery according to claim 5 is provided.
【請求項7】 前記第2ステップにおいて、塩化ジルコ
ニウム(ZrCl4)を、前記合金粒子の重量に対して0.3〜
5.0重量%添加することを特徴とする請求項5記載のア
ルカリ蓄電池用水素吸蔵合金の製造方法。
7. In the second step, zirconium chloride (ZrCl 4 ) is added in an amount of 0.3 to 0.3 wt.
6. The method for producing a hydrogen storage alloy for an alkaline storage battery according to claim 5, wherein 5.0% by weight is added.
【請求項8】 前記第2ステップにおいて、酸性溶液が
pH=0.7〜2.0であることを特徴とする請求項5記載のア
ルカリ蓄電池用水素吸蔵合金の製造方法。
8. In the second step, an acidic solution is used.
The method for producing a hydrogen storage alloy for an alkaline storage battery according to claim 5, wherein the pH is 0.7 to 2.0.
【請求項9】 前記第1ステップが、ガスアトマイズ法
であることを特徴とする請求項5記載のアルカリ蓄電池
用水素吸蔵合金の製造方法。
9. The method for producing a hydrogen storage alloy for an alkaline storage battery according to claim 5, wherein said first step is a gas atomization method.
【請求項10】 前記請求項5〜請求項9記載のアルカ
リ蓄電池用水素吸蔵合金の製造方法により得られた水素
吸蔵合金を、導電芯体に充填することを特徴とするアル
カリ蓄電池用水素吸蔵合金電極の製造方法。
10. A hydrogen storage alloy for an alkaline storage battery, characterized in that a conductive core is filled with the hydrogen storage alloy obtained by the method for producing a hydrogen storage alloy for an alkaline storage battery according to any one of claims 5 to 9. Manufacturing method of electrode.
JP11152533A 1999-05-31 1999-05-31 Hydrogen storage alloy for alkaline storage battery and its manufacture Pending JP2000348718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11152533A JP2000348718A (en) 1999-05-31 1999-05-31 Hydrogen storage alloy for alkaline storage battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11152533A JP2000348718A (en) 1999-05-31 1999-05-31 Hydrogen storage alloy for alkaline storage battery and its manufacture

Publications (1)

Publication Number Publication Date
JP2000348718A true JP2000348718A (en) 2000-12-15

Family

ID=15542531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11152533A Pending JP2000348718A (en) 1999-05-31 1999-05-31 Hydrogen storage alloy for alkaline storage battery and its manufacture

Country Status (1)

Country Link
JP (1) JP2000348718A (en)

Similar Documents

Publication Publication Date Title
JPWO2002071527A1 (en) Manufacturing method of nickel metal hydride battery
JPH07326353A (en) Manufacture of hydrogen storage alloy electrode
JP2007123228A (en) Hydrogen storage alloy electrode, alkaline storage battery and manufacturing method of the same
JP4663275B2 (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
JP3942310B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP2000340223A (en) Hydrogen storage alloy for alkaline storage battery and its manufacture
JPH0950805A (en) Nickel electrode for alkaline storage battery and active material for nickel electrode and its manufacturing method and alkaline storage battery
JP3545209B2 (en) Hydrogen storage alloy for alkaline storage battery and method for producing the same, hydrogen storage alloy electrode for alkaline storage battery and method for producing the same
JP2000348718A (en) Hydrogen storage alloy for alkaline storage battery and its manufacture
JP3548004B2 (en) Hydrogen storage alloy electrode for alkaline storage battery and method for producing the same
JP3895985B2 (en) Nickel / hydrogen storage battery
JP3548006B2 (en) Hydrogen storage alloy for alkaline storage battery and method for producing the same, hydrogen storage alloy electrode for alkaline storage battery and method for producing the same
JP4115367B2 (en) Hydrogen storage alloy for alkaline storage battery, method for producing the same, and alkaline storage battery
JP3825582B2 (en) Hydrogen storage alloy for alkaline storage battery and method for manufacturing the same, hydrogen storage alloy electrode for alkaline storage battery and method for manufacturing the same
JP3481095B2 (en) Hydrogen storage alloy electrode and method for producing the same
US6576367B1 (en) Hydrogen storage alloy for use in alkaline storage batteries and method for production thereof
JP2001006666A (en) Hydrogen storage alloy for alkaline storage battery and manufacture of such alloy
JP3939049B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP3485753B2 (en) Method for producing hydrogen storage alloy electrode
JP3945944B2 (en) Hydrogen storage alloy particles for sealed alkaline storage batteries
JP3573905B2 (en) Method for producing hydrogen storage alloy electrode
JP3490799B2 (en) Hydrogen storage alloy electrode, method for producing the same, and alkaline storage battery
JP2003187804A (en) Nickel/hydrogen storage battery
JP2002015733A (en) Hydrogen storing alloy powder, hydrogen storing alloy electrode and alkaline storage battery
JP2002260643A (en) Hydrogen storage alloy electrode and manufacturing method therefor, and alkaline storage battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050817

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070424