JP2000347613A - Driving circuit for light emitting diode - Google Patents

Driving circuit for light emitting diode

Info

Publication number
JP2000347613A
JP2000347613A JP11156197A JP15619799A JP2000347613A JP 2000347613 A JP2000347613 A JP 2000347613A JP 11156197 A JP11156197 A JP 11156197A JP 15619799 A JP15619799 A JP 15619799A JP 2000347613 A JP2000347613 A JP 2000347613A
Authority
JP
Japan
Prior art keywords
light emitting
emitting diode
power supply
supply voltage
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11156197A
Other languages
Japanese (ja)
Inventor
Tsutomu Eto
力 江藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11156197A priority Critical patent/JP2000347613A/en
Publication of JP2000347613A publication Critical patent/JP2000347613A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a driving circuit for a light emitting diode which can save an electric power and downsize. SOLUTION: A voltage detection circuit 4 outputs a voltage detection signal S4 which is H when a cathode voltage of a light emitting diode 1 is above 0.7 V (minimum level voltage which a constant electric current driving circuit 2 can supply a constant electric current), and whish is L when the cathode voltage is below 0.7 V. After a one-chip microcomputer 5 receives a start signal for a power supply S6 which indicates a control start, it increases a power supply voltage Vcc every 0.05 V from 0 V until the voltage detection signal S4 changes to H from L. When the voltage detection signal S4 changes to H, the one-chip microcomputer 5 stops a voltage increase of the power supply voltage Vcc and finishes a set-up of the power supply voltage Vcc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は発光ダイオード等
の表示装置の駆動回路に関する。
The present invention relates to a driving circuit for a display device such as a light emitting diode.

【0002】[0002]

【従来の技術】図13は特開昭61−201483に開
示された従来の発光ダイオードの駆動回路の構成図であ
る。図13に示すように、発光ダイオード1のアノード
は電源17の正端子及び抵抗18の一端に接続され、カ
ソードはNPNバイポーラトランジスタ16のコレクタ
(出力ノードN2)に接続される。
2. Description of the Related Art FIG. 13 is a block diagram of a conventional light emitting diode driving circuit disclosed in Japanese Patent Application Laid-Open No. 61-201483. As shown in FIG. 13, the anode of the light emitting diode 1 is connected to the positive terminal of the power supply 17 and one end of the resistor 18, and the cathode is connected to the collector (output node N2) of the NPN bipolar transistor 16.

【0003】トランジスタ16のベースはノードN1に
接続され、エミッタは電源の負端子に接続される。抵抗
18の他端は抵抗13の一端及び定電圧ダイオード15
のカソードに接続され、抵抗13の他端はノードN1に
接続される。
The base of the transistor 16 is connected to the node N1, and the emitter is connected to the negative terminal of the power supply. The other end of the resistor 18 is connected to one end of the resistor 13 and the constant voltage diode 15
The other end of the resistor 13 is connected to the node N1.

【0004】ダイオード14のアノードはノードN1に
接続され、カソードは電源17の負端子に接続される。
また、定電圧ダイオード15のアノードも電源17の負
端子接続される。
The anode of the diode 14 is connected to the node N 1, and the cathode is connected to the negative terminal of the power supply 17.
The anode of the constant voltage diode 15 is also connected to the negative terminal of the power supply 17.

【0005】図13の例では、抵抗18、抵抗13、ダ
イオード14、定電圧ダイオード15及びトランジスタ
16で定電流駆動回路を構成しており、電源17の電圧
変動は定電圧ダイオード15によってクランプされるた
め、トランジスタ16のベース電圧は常に一定に保た
れ、定電流駆動回路は定電流動作を行うことができる。
図13の構成を大まかな回路ブロックで示すと図14に
示す構成となる。図13の構成では定電流駆動回路も電
源17を動作電源としているが、別の電源を用いても動
作に支障は生じないため、別電源(図示せず)を用いた
場合としている。
[0005] In the example of FIG. 13, a constant current driving circuit is constituted by the resistor 18, the resistor 13, the diode 14, the constant voltage diode 15 and the transistor 16, and the voltage fluctuation of the power supply 17 is clamped by the constant voltage diode 15. Therefore, the base voltage of the transistor 16 is always kept constant, and the constant current drive circuit can perform a constant current operation.
If the configuration of FIG. 13 is roughly shown by a circuit block, the configuration shown in FIG. 14 is obtained. In the configuration of FIG. 13, the constant current drive circuit also uses the power supply 17 as the operation power supply. However, the operation is not affected even if another power supply is used. Therefore, the case where another power supply (not shown) is used.

【0006】図14において、電源17の電源電圧をV
cc、定電流駆動回路2の出力電圧、すなわち発光ダイオ
ードのカソードの電圧をVobとすれば発光ダイオード
の順電圧Vfは、以下の(I)式に示すようになる。
In FIG. 14, the power supply voltage of the power supply 17 is V
Assuming that cc and the output voltage of the constant current drive circuit 2, that is, the voltage of the cathode of the light emitting diode is Vob, the forward voltage Vf of the light emitting diode is expressed by the following equation (I).

【0007】Vf=Vcc−Vob…(I) 発光ダイオードが点灯する順電圧に対応する閾値をVf
tとすると、Vft≦Vfであれば点灯し、Vf<Vf
tであれば点灯しないことになる。
Vf = Vcc-Vob (I) The threshold value corresponding to the forward voltage at which the light emitting diode is turned on is Vf
Assuming that t, if Vft ≦ Vf, the light is turned on and Vf <Vf
If it is t, it will not be lit.

【0008】一般に定電流駆動回路2は出力電圧Vob
が0Vでは正常に動作せず、出力電圧Vobを定められ
た電圧以上にする必要がある。
Generally, the constant current drive circuit 2 outputs the output voltage Vob
Does not operate normally at 0 V, and the output voltage Vob needs to be higher than a predetermined voltage.

【0009】この構成では、この定電流駆動回路2の出
力電圧Vobが1.0V以上で正常に動作させることも
できる。また、発光ダイオードの順電圧Vfには通常、
数10%のばらつきがあり、この従来例では、発光ダイ
オード1の閾値電圧Vftを1.6V〜2Vの範囲にあ
るとしている。
With this configuration, it is possible to operate normally when the output voltage Vob of the constant current drive circuit 2 is 1.0 V or more. Also, the forward voltage Vf of the light emitting diode is usually
In this conventional example, the threshold voltage Vft of the light emitting diode 1 is assumed to be in the range of 1.6 V to 2 V.

【0010】この条件で必要な電源17の電源電圧Vcc
を求めると、定電流駆動回路2の出力電圧Vobが1.
0V以上、全ての発光ダイオードを正常に点灯させるた
めに閾値電圧Vftは最大の2.0Vを考慮する必要が
あり、以下の(II)式に示すように、電源電圧Vccは3.
0V以上が必要になる。
The power supply voltage Vcc of the power supply 17 required under these conditions
Is obtained, the output voltage Vob of the constant current drive circuit 2 becomes 1.
To normally light all the light emitting diodes at 0 V or more, it is necessary to consider the maximum threshold voltage Vft of 2.0 V. As shown in the following equation (II), the power supply voltage Vcc is 3.
0 V or more is required.

【0011】 Vcc≧Vob+Vft(max)=1.0+2.0=3.0V…(II) ここで発光ダイオード1を流れる電流を0.1Aとすれ
ば、この時の発光ダイオード1と駆動回路(2,17)
を合わせた消費電力Pは、P=3.0V×0.1A=
0.3Wとなる。
Vcc ≧ Vob + Vft (max) = 1.0 + 2.0 = 3.0 V (II) Here, assuming that the current flowing through the light emitting diode 1 is 0.1 A, the light emitting diode 1 and the driving circuit (2 , 17)
, The power consumption P is: P = 3.0 V × 0.1 A =
0.3 W.

【0012】発光ダイオード1の閾値電圧Vftが最低
のVft=1.6Vの発光ダイオードを駆動する場合に
は定電流駆動回路2の出力電圧Vobは1.4V{Vo
b=3.0V−1.6V=1.4V}となり、定電流駆
動回路2で消費される電力Pcは0.14W{Pc=
1.4V×0.1A=0.14W}となる。
When driving a light emitting diode whose light emitting diode 1 has the lowest threshold voltage Vft of Vft = 1.6 V, the output voltage Vob of the constant current driving circuit 2 is 1.4 V1Vo.
b = 3.0V−1.6V = 1.4V}, and the power Pc consumed by the constant current drive circuit 2 is 0.14W {Pc =
1.4V × 0.1A = 0.14W}.

【0013】この定電流駆動回路2は出力電圧Vobが
最低1.0Vで正常に動作するため、1.0Vを越える
電圧、この場合0.4Vは不要な電圧でこれは駆動回路
で無駄に消費されてしまう。この場合、定電流駆動回路
2で無駄に消費される電力は0.04W{0.4V×
0.1A=0.04W}になる。
Since the constant current drive circuit 2 operates normally when the output voltage Vob is at least 1.0 V, a voltage exceeding 1.0 V, in this case 0.4 V is an unnecessary voltage, which is wastefully consumed by the drive circuit. Will be done. In this case, the power wastefully consumed by the constant current drive circuit 2 is 0.04W {0.4V ×
0.1A = 0.04W}.

【0014】[0014]

【発明が解決しようとする課題】従来の発光ダイオード
の駆動回路は固定電圧の電源を使用しており、また、発
光ダイオードの順電圧の閾値電圧Vftには数10%の
ばらつきがある。そのため、全ての発光ダイオードを正
常に点灯させるには閾値電圧Vftの最大値を考慮して
電源電圧Vccを設定する必要があり、電源電圧Vccを高
めに設定する必要があった。
The conventional light emitting diode driving circuit uses a fixed voltage power supply, and the threshold voltage Vft of the forward voltage of the light emitting diode varies by several tens of percent. Therefore, in order to normally light all the light emitting diodes, it is necessary to set the power supply voltage Vcc in consideration of the maximum value of the threshold voltage Vft, and it is necessary to set the power supply voltage Vcc higher.

【0015】高めに設定した電源電圧Vccで平均的な閾
値電圧Vftの発光ダイオードを駆動する場合には定電
流駆動回路に余分な電圧が加わる分、定電流駆動回路の
消費電力が必要以上に増えてしまう課題があった。
When driving a light emitting diode having an average threshold voltage Vft with a power supply voltage Vcc set higher, the power consumption of the constant current drive circuit is increased more than necessary because an extra voltage is added to the constant current drive circuit. There was a problem that would be.

【0016】例えば、順電圧の閾値電圧Vftが1.6
Vの発光ダイオードの駆動する場合、上述したように電
源電圧Vccは最大の閾値電圧Vft(2.0V)を考慮
して3.0Vが必要であるから定電流駆動回路には1.
4V{Vob=Vcc−Vf=3.0V−1.6V=1.
4V}の電圧が加わり、定電流駆動回路の消費電力は
0.14Wになる。
For example, the threshold voltage Vft of the forward voltage is 1.6.
When driving the light emitting diode of V, as described above, the power supply voltage Vcc needs to be 3.0 V in consideration of the maximum threshold voltage Vft (2.0 V).
4V {Vob = Vcc−Vf = 3.0V−1.6V = 1.
When a voltage of 4 V is applied, the power consumption of the constant current drive circuit becomes 0.14 W.

【0017】定電流駆動回路は出力電圧Vobが1.0
Vで正常に動作し、その時の定電流駆動回路の消費電力
は0.1Wであるから0.14Wのうち0.04Wは無
駄に消費していることになる。
The constant current drive circuit has an output voltage Vob of 1.0
It operates normally at V and the power consumption of the constant current drive circuit at that time is 0.1 W, so 0.04 W of 0.14 W is wasted.

【0018】多数の発光ダイオードを直列に配線した集
合ランプを駆動する場合には、駆動回路の消費電力は発
光ダイオードの数量に比例して増加する。そのため、放
熱フィンなどの放熱手段が必要であり、定電流駆動回路
の小型化及び省電力化への大きな障害となっている。
When driving a collective lamp in which a large number of light emitting diodes are wired in series, the power consumption of the driving circuit increases in proportion to the number of light emitting diodes. Therefore, heat radiating means such as heat radiating fins are required, which is a major obstacle to downsizing and power saving of the constant current drive circuit.

【0019】この発明は上記問題点を解決するためにな
されたもので、小型化及び小電力化を図った発光ダイオ
ードの駆動回路を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to obtain a light emitting diode drive circuit that is reduced in size and power.

【0020】[0020]

【課題を解決するための手段】この発明に係る請求項1
記載の発光ダイオードの駆動回路は、発光ダイオード
と、前記発光ダイオードの発光用の電源電圧を前記発光
ダイオードのアノードに供給し、該電源電圧が可変設定
可能である可変電源と、前記発光ダイオードのカソード
に接続され、該カソードの電圧が出力電圧となり該出力
電圧が所定電圧以上のとき、前記発光ダイオードに定電
流を流す定電流駆動手段とを備えている。
Means for Solving the Problems Claim 1 according to the present invention.
The driving circuit of the light emitting diode described above, a light emitting diode, a power supply voltage for light emission of the light emitting diode is supplied to an anode of the light emitting diode, the power supply voltage is variably settable, and a cathode of the light emitting diode And a constant current driving means for supplying a constant current to the light emitting diode when the voltage at the cathode becomes an output voltage and the output voltage is equal to or higher than a predetermined voltage.

【0021】請求項2記載の発光ダイオードの駆動回路
は、前記発光ダイオードが正常に発光しているか否かを
示す指標となる発光ダイオード特性値が検出可能な発光
ダイオード特性値検出手段をさらに備えている。
According to a second aspect of the present invention, the light emitting diode driving circuit further includes a light emitting diode characteristic value detecting means capable of detecting a light emitting diode characteristic value serving as an index indicating whether or not the light emitting diode emits light normally. I have.

【0022】請求項3記載の発光ダイオードの駆動回路
は、電源電圧調整処理時に、前記電源電圧を変化させな
がら前記発光ダイオード特性値検出手段で測定されて得
られる前記発光ダイオード特性値に基づき、前記発光ダ
イオードが正常に発光する範囲で最低レベルの前記電源
電圧を最終的に設定する電源電圧調整手段をさらに備え
ている。
According to a third aspect of the present invention, in the light emitting diode drive circuit, during the power supply voltage adjusting process, the light emitting diode characteristic value obtained by the light emitting diode characteristic value detection means while changing the power supply voltage is based on the light emitting diode characteristic value. There is further provided a power supply voltage adjusting means for finally setting the power supply voltage at the lowest level within a range in which the light emitting diode normally emits light.

【0023】請求項4記載の発光ダイオードの駆動回路
において、前記発光ダイオードは複数の発光ダイオード
を含み、前記定電流駆動手段は前記複数の発光ダイオー
ドに1対1に対応した複数の定電流駆動手段を含んでい
る。
5. A light emitting diode driving circuit according to claim 4, wherein said light emitting diode includes a plurality of light emitting diodes, and said constant current driving means includes a plurality of constant current driving means corresponding to said plurality of light emitting diodes on a one-to-one basis. Contains.

【0024】請求項5記載の発光ダイオードの駆動回路
は、前記複数の発光ダイオードに1対1に対応して設け
られ、各々が前記複数の発光ダイオードのうち対応する
発光ダイオードが正常に発光しているか否かを示す指標
となる発光ダイオード特性値が検出可能な複数の発光ダ
イオード特性値検出手段をさらに備えている。
According to a fifth aspect of the present invention, the light emitting diode driving circuit is provided for each of the plurality of light emitting diodes on a one-to-one basis, and each of the plurality of light emitting diodes normally emits light. There is further provided a plurality of light emitting diode characteristic value detecting means capable of detecting a light emitting diode characteristic value serving as an index indicating whether or not there is a light emitting diode characteristic value.

【0025】請求項6記載の発光ダイオードの駆動回路
は、電源電圧調整処理時に、電源電圧を変化させながら
前記複数の発光ダイオード特性値検出手段で測定されて
得られる複数の前記発光ダイオード特性値に基づき、前
記複数の発光ダイオードのすべてが正常に発光する範囲
で最低レベルの前記電源電圧を最終的に設定する電源電
圧調整手段をさらに備えている。
According to a sixth aspect of the present invention, in the light emitting diode driving circuit, the plurality of light emitting diode characteristic values obtained by measuring the plurality of light emitting diode characteristic value detecting means while changing the power supply voltage during the power supply voltage adjusting process. And a power supply voltage adjusting means for finally setting the power supply voltage at the lowest level within a range in which all of the plurality of light emitting diodes normally emit light.

【0026】請求項7記載の発光ダイオードの駆動回路
において、前記発光ダイオード特性値検出手段は、前記
発光ダイオード特性値として前記発光ダイオードの前記
カソードの電圧が検出可能な電圧検出手段を含んでい
る。
[0026] In the light emitting diode driving circuit according to claim 7, the light emitting diode characteristic value detecting means includes voltage detecting means capable of detecting the voltage of the cathode of the light emitting diode as the light emitting diode characteristic value.

【0027】請求項8記載の発光ダイオードの駆動回路
において、前記発光ダイオードは前記定電流が流れると
正常に発光する発光ダイオードを含み、前記発光ダイオ
ード特性値検出手段は、前記発光ダイオードの前記カソ
ードの電圧と前記所定電圧との比較結果を電圧検出信号
として出力する電圧検出手段を含み、前記発光ダイオー
ド特性値は前記電圧検出信号を含み、前記電源電圧調整
手段は、前記電源電圧調整処理時に、前記電源電圧を変
化させながら得られる前記電圧検出信号に基づき、前記
カソードの電圧が前記所定電圧に等しくなる時の前記電
源電圧に設定する手段を含んでいる。
9. The light emitting diode driving circuit according to claim 8, wherein said light emitting diode includes a light emitting diode which normally emits light when said constant current flows, and wherein said light emitting diode characteristic value detecting means includes a light emitting diode of said cathode of said light emitting diode. A voltage detection unit that outputs a comparison result between a voltage and the predetermined voltage as a voltage detection signal, the light emitting diode characteristic value includes the voltage detection signal, and the power supply voltage adjustment unit performs the power supply voltage adjustment processing, Means for setting, based on the voltage detection signal obtained while changing the power supply voltage, the power supply voltage when the voltage at the cathode becomes equal to the predetermined voltage.

【0028】請求項9記載の発光ダイオードの駆動回路
において、前記発光ダイオード特性値検出手段は、前記
発光ダイオード特性値として前記発光ダイオードを流れ
る電流が検出可能な電流検出手段を含んでいる。
According to a ninth aspect of the present invention, in the light emitting diode drive circuit, the light emitting diode characteristic value detecting means includes a current detecting means capable of detecting a current flowing through the light emitting diode as the light emitting diode characteristic value.

【0029】請求項10記載の発光ダイオードの駆動回
路において、前記発光ダイオードは所定の電流が流れる
と正常に発光する発光ダイオードを含み、前記発光ダイ
オード特性値検出手段は、前記発光ダイオードを流れる
電流と前記所定の電流との比較結果を電流検出信号とし
て出力する電流検出手段を含み、前記発光ダイオード特
性値は前記電流検出信号を含み、前記電源電圧調整手段
は、前記電源電圧調整処理時に、前記電源電圧を変化さ
せながら前記電流検出信号に基づき、前記発光ダイオー
ドを流れる電流が前記所定の電流に等しくなる時の前記
電源電圧に設定する手段を含んでいる。
11. A light emitting diode driving circuit according to claim 10, wherein said light emitting diode includes a light emitting diode which normally emits light when a predetermined current flows, and wherein said light emitting diode characteristic value detecting means determines a current flowing through said light emitting diode. A current detection unit that outputs a result of comparison with the predetermined current as a current detection signal; the light emitting diode characteristic value includes the current detection signal; and the power supply voltage adjustment unit performs the power supply voltage adjustment processing during the power supply voltage adjustment processing. Means for setting the power supply voltage when the current flowing through the light emitting diode becomes equal to the predetermined current based on the current detection signal while changing the voltage.

【0030】請求項11記載の発光ダイオードの駆動回
路において、前記発光ダイオード特性値検出手段は、前
記発光ダイオード特性値として前記発光ダイオードの発
光輝度が検出可能な輝度検出手段を含んでいる。
The light emitting diode driving circuit according to claim 11, wherein the light emitting diode characteristic value detecting means includes a luminance detecting means capable of detecting the light emission luminance of the light emitting diode as the light emitting diode characteristic value.

【0031】請求項12記載の発光ダイオードの駆動回
路において、前記発光ダイオード特性値検出手段は、前
記発光ダイオードの発光輝度と前記発光ダイオードの正
常に発光するレベルの基準輝度との比較結果を輝度検出
信号として出力する輝度検出手段を含み、前記発光ダイ
オード特性値は前記輝度検出信号を含み、前記電源電圧
調整手段は、前記電源電圧調整処理時に、前記電源電圧
を変化させながら前記輝度検出信号に基づき、前記発光
輝度が前記基準輝度に等しくなる時の前記電源電圧に設
定する手段を含んでいる。
13. A light emitting diode driving circuit according to claim 12, wherein said light emitting diode characteristic value detecting means detects the luminance of the light emitting diode and a reference luminance of a level at which the light emitting diode emits light normally. The power supply voltage adjusting means includes a luminance detecting means for outputting as a signal, the light emitting diode characteristic value includes the luminance detecting signal, and the power supply voltage adjusting processing, based on the luminance detecting signal while changing the power supply voltage. Means for setting the power supply voltage when the light emission luminance is equal to the reference luminance.

【0032】請求項13記載の発光ダイオードの駆動回
路は、前記複数の発光ダイオードを流れる電流の総計値
と、前記複数の発光ダイオードが正常に発光すると判断
される総計基準値との比較結果を電流検出信号として出
力する電流検出手段と、電源電圧調整処理時に、前記電
源電圧を変化させながら前記電流検出信号に基づき、前
記発光ダイオードを流れる電流の総計値が所定の総計基
準値と等しくなる時の前記電源電圧に設定する電源電圧
調整手段とをさらに備えている。
The light emitting diode driving circuit according to claim 13, wherein a total value of the current flowing through the plurality of light emitting diodes is compared with a total reference value determined to be normal for the plurality of light emitting diodes to emit light. Current detection means for outputting as a detection signal, and when the total value of the current flowing through the light emitting diode becomes equal to a predetermined total reference value based on the current detection signal while changing the power supply voltage during the power supply voltage adjustment process. Power supply voltage adjusting means for setting the power supply voltage;

【0033】[0033]

【発明の実施の形態】<実施の形態1>図1はこの発明
の実施の形態1である発光ダイオードの駆動回路の構成
を示すブロック図である。同図に示すように、実施の形
態1の発光ダイオードの駆動回路は発光ダイオード1、
定電流駆動回路2、信号制御機能付可変直流電源3、電
圧検出回路4及びワンチップマイコン5から構成されて
おり、外部制御機器6は実施の形態1の発光ダイオード
の駆動回路のワンチップマイコン5に接続可能な外部装
置である。
<First Embodiment> FIG. 1 is a block diagram showing a configuration of a light emitting diode driving circuit according to a first embodiment of the present invention. As shown in the figure, the driving circuit of the light emitting diode according to the first embodiment has the light emitting diode 1,
The external control device 6 includes a constant current drive circuit 2, a variable DC power supply 3 with a signal control function, a voltage detection circuit 4, and a one-chip microcomputer 5. The one-chip microcomputer 5 of the light-emitting diode drive circuit of the first embodiment is used. An external device that can be connected to

【0034】発光ダイオード1のアノードは信号制御機
能付可変直流電源3の正端子(+)に接続されることに
より電源電圧Vccを受け、カソードは定電流駆動回路2
の出力ノードN2に接続される。定電流駆動回路2は発
光ダイオード1のカソード及び信号制御機能付可変直流
電源3の負端子(−)に接続され、発光ダイオード1の
カソード電圧である出力電圧Vobが所定電圧以上のと
き定電流供給動作を行う。
The anode of the light emitting diode 1 is connected to the positive terminal (+) of the variable DC power supply 3 having a signal control function to receive the power supply voltage Vcc, and the cathode is connected to the constant current drive circuit 2.
Is connected to the output node N2. The constant current drive circuit 2 is connected to the cathode of the light emitting diode 1 and the negative terminal (-) of the variable DC power supply 3 having a signal control function, and supplies a constant current when the output voltage Vob which is the cathode voltage of the light emitting diode 1 is higher than a predetermined voltage. Perform the operation.

【0035】発光ダイオード1は順方向に所定の電圧が
印加すると、電流が流れ、発光する。図2に一般的な発
光ダイオードの順電圧Vfと電流Ifの関係を示す。図
2に示すように、発光ダイオード1は電圧Vf=1.8
Vで電流が流れ始め、Vf=2.05V付近でIf=
0.1Aの電流が流れる。
When a predetermined voltage is applied to the light emitting diode 1 in a forward direction, a current flows and light is emitted. FIG. 2 shows the relationship between the forward voltage Vf and the current If of a general light emitting diode. As shown in FIG. 2, the light emitting diode 1 has a voltage Vf = 1.8.
The current starts to flow at V, and If = f near 2.05 V, If =
A current of 0.1 A flows.

【0036】発光ダイオードの順電圧Vfには数10%
程度のばらつきがあり、図2に示すIf=0.1A,V
f=2.05Vの発光ダイオードを平均的なダイオード
とすると、電流If=0.1Aに対して、順電圧Vfは
1.8V〜2.2V程度にばらつく。
The forward voltage Vf of the light emitting diode is several tens of percent.
If = 0.1 A, V shown in FIG.
Assuming that the light emitting diode of f = 2.05V is an average diode, the forward voltage Vf varies from about 1.8V to 2.2V with respect to the current If = 0.1A.

【0037】定電流駆動回路2は所定の出力電圧Vob
より高くなれば出力電圧にかかわらずあらかじめ設定さ
れた一定電流を発光ダイオードに流す定電流供給動作を
行う回路である。図3に出力電圧Vobと電流Ifの関
係の一例を示す。図3に示すようにVob=0.7Vで
設定された電流値に達し、Vob≧0.7Vでは電圧に
関係なく一定の電流を発光ダイオード1に供給する。
The constant current drive circuit 2 has a predetermined output voltage Vob
When the voltage becomes higher, the circuit performs a constant current supply operation of flowing a preset constant current to the light emitting diode regardless of the output voltage. FIG. 3 shows an example of the relationship between the output voltage Vob and the current If. As shown in FIG. 3, the current reaches the set current value when Vob = 0.7 V, and supplies a constant current to the light emitting diode 1 regardless of the voltage when Vob ≧ 0.7 V.

【0038】信号制御機能付可変直流電源3は電子ボリ
ュームなどを備え、外部からの制御信号で電源電圧Vcc
を変化させることができる。
The variable DC power supply 3 with a signal control function is provided with an electronic volume and the like.
Can be changed.

【0039】電圧検出回路4は発光ダイオード1のカソ
ード電圧が所定の電圧(定電流駆動回路2が一定の電流
を供給可能な最低レベルの電圧)以上であるか否かに基
づき“H”(high)あるいは“L”(Low)の電圧検出
信号S4を出力する。ここでは、発光ダイオード1のカ
ソード電圧が0.7V以上になれば“H”、0.7V以
下であれば“L”の電圧検出信号S4を出力する。電圧
検出回路4としては、0.7Vの基準電圧を発生する基
準電圧発生回路と、基準電圧と発光ダイオード1のカソ
ード電圧とを比較する電圧コンパレータとからなる構成
等が考えられる。
The voltage detection circuit 4 determines "H" (high) based on whether or not the cathode voltage of the light emitting diode 1 is equal to or higher than a predetermined voltage (the lowest voltage at which the constant current drive circuit 2 can supply a constant current). ) Or "L" (Low) voltage detection signal S4. Here, a voltage detection signal S4 of "H" is output when the cathode voltage of the light emitting diode 1 is 0.7 V or higher, and "L" when the cathode voltage is 0.7 V or lower. As the voltage detection circuit 4, a configuration including a reference voltage generation circuit for generating a reference voltage of 0.7 V and a voltage comparator for comparing the reference voltage with the cathode voltage of the light emitting diode 1 can be considered.

【0040】ワンチップマイコン5は一般的なワンチッ
プマイコンで、制御開始を指示する電源制御開始信号S
6を受けると、電圧検出回路4からの電圧検出信号S4
に応じて外部制御回路付可変直流電源3に電源電圧制御
用の電源電圧制御信号S5を送るようプログラムされて
いる。
The one-chip microcomputer 5 is a general one-chip microcomputer, and a power control start signal S for instructing the start of control.
6, the voltage detection signal S4 from the voltage detection circuit 4
The power supply voltage control signal S5 for controlling the power supply voltage is sent to the variable DC power supply 3 with an external control circuit in accordance with the above.

【0041】外部制御機器6はパーソナルコンピュータ
ーなどで構成され、電源電圧調整開始を指示する電源制
御開始信号S6をワンチップマイコン5に対して送るこ
とができる。
The external control device 6 is composed of a personal computer or the like, and can send a power control start signal S6 for instructing the start of power supply voltage adjustment to the one-chip microcomputer 5.

【0042】このような構成において、発光ダイオード
1として、電流Ifが0.1Aに対応する閾値電圧Vf
tが2.05Vの発光ダイオードが設けられた場合の信
号制御機能付可変直流電源3の電源電圧Vccの調整方法
を説明する。
In such a configuration, the light emitting diode 1 has a threshold voltage Vf corresponding to a current If of 0.1 A.
A method of adjusting the power supply voltage Vcc of the variable DC power supply 3 with a signal control function when a light emitting diode having t of 2.05 V is provided will be described.

【0043】ワンチップマイコン5に外部制御機器6か
ら制御開始を指示する電源制御開始信号S6を送ると、
ワンチップマイコン5は信号制御機能付可変直流電源3
に0Vを指示する電源電圧制御信号S5を出力し、信号
制御機能付可変直流電源3の正端子から出力される電源
電圧Vccを0Vに初期設定する。
When a power control start signal S6 for instructing the start of control from the external control device 6 is sent to the one-chip microcomputer 5,
The one-chip microcomputer 5 is a variable DC power supply 3 with a signal control function.
, A power supply voltage control signal S5 instructing 0 V is output, and the power supply voltage Vcc output from the positive terminal of the variable DC power supply with signal control function 3 is initialized to 0 V.

【0044】そして、ワンチップマイコン5は、電圧検
出信号S4に基づき、電圧検出信号S4が“L”であれ
ば、所定の刻み、例えば0.05Vの刻みの電源電圧上
昇を指示する電源電圧制御信号S5を信号制御機能付可
変直流電源3に送る。以降、同様にして、電圧検出信号
S4が“L”から“H”に変化するまで、電源電圧上昇
を指示する電源電圧制御信号S5を信号制御機能付可変
直流電源3に出力し続ける。
Then, based on the voltage detection signal S4, if the voltage detection signal S4 is "L", the one-chip microcomputer 5 controls the power supply voltage to instruct the power supply voltage to be increased in predetermined steps, for example, in steps of 0.05V. The signal S5 is sent to the variable DC power supply 3 with a signal control function. Thereafter, similarly, the power supply voltage control signal S5 for instructing the increase of the power supply voltage is continuously output to the variable DC power supply with signal control function 3 until the voltage detection signal S4 changes from "L" to "H".

【0045】電源電圧Vccが0.05V刻みで上昇して
いくが、電源電圧Vccが1.8V以下であれば発光ダイ
オード1に電流は流れず、出力電圧Vobが0Vを維持
するため、電源電圧Vccはすべて発光ダイオード1に印
加されることになる。このとき電圧検出信号S4は
“L”を維持するため、ワンチップマイコン5は信号制
御機能付可変直流電源3に電源電圧上昇を指示する電源
電圧制御信号S5を信号制御機能付可変直流電源3に送
り、電源電圧Vccをさらに上昇させる。
The power supply voltage Vcc increases in steps of 0.05 V. If the power supply voltage Vcc is 1.8 V or less, no current flows through the light emitting diode 1 and the output voltage Vob maintains 0 V. All Vcc will be applied to the light emitting diode 1. At this time, since the voltage detection signal S4 is maintained at "L", the one-chip microcomputer 5 sends the power supply voltage control signal S5 instructing the variable DC power supply 3 with signal control function to increase the power supply voltage to the variable DC power supply 3 with signal control function. Then, the power supply voltage Vcc is further increased.

【0046】電源電圧Vccが1.8Vを越えると、発光
ダイオード1に電流が流れはじめ、薄く点灯する。出力
電圧Vobが発光ダイオード1を流れる電流に応じた電
圧となる。例えば、電源電圧Vccが2.05Vの時はダ
イオードのVf=1.95V、Vob=0.1V、If
=0.01Aとなる。
When the power supply voltage Vcc exceeds 1.8 V, a current starts to flow through the light emitting diode 1 to light up the light emitting diode 1 lightly. The output voltage Vob becomes a voltage corresponding to the current flowing through the light emitting diode 1. For example, when the power supply voltage Vcc is 2.05 V, the diode Vf = 1.95 V, Vob = 0.1 V, If
= 0.01A.

【0047】このとき、電圧検出信号S4は依然として
“L”であるため、ワンチップマイコン5は信号制御機
能付可変直流電源3に電源電圧上昇を指示する電源電圧
制御信号S5を送り、さらに、信号制御機能付可変直流
電源3の電源電圧Vccを上昇させる。
At this time, since the voltage detection signal S4 is still "L", the one-chip microcomputer 5 sends the power supply voltage control signal S5 instructing the variable DC power supply 3 with a signal control function to increase the power supply voltage. The power supply voltage Vcc of the variable DC power supply with control function 3 is increased.

【0048】その後、電源電圧Vccが2.75Vに達し
た時点で、Vf=2.05V、Vob=0.7V、If
=0.1Aになり、発光ダイオード1は正常に明るく点
灯する。ここではじめて電圧検出信号S4が“L”から
“H”に変化する。ワンチップマイコン5は電圧検出信
号S4が“H”になると、信号制御機能付可変直流電源
3に電源電圧上昇を指示する電源電圧制御信号S5を送
ることを止め、電源電圧Vccの調整を完了する。この時
の定電流駆動回路2の消費電力Pcは0.07W{Pc
=0.7V×0.1A=0.07W}となり、この定電
流駆動回路2が正常に動作する範囲で最低の消費電力に
抑えることができる。
Thereafter, when the power supply voltage Vcc reaches 2.75 V, Vf = 2.05 V, Vob = 0.7 V, If
= 0.1 A, and the light emitting diode 1 normally lights up brightly. Here, for the first time, the voltage detection signal S4 changes from “L” to “H”. When the voltage detection signal S4 becomes "H", the one-chip microcomputer 5 stops sending the power supply voltage control signal S5 instructing the power supply voltage increase to the variable DC power supply with signal control function 3, and completes the adjustment of the power supply voltage Vcc. . At this time, the power consumption Pc of the constant current drive circuit 2 is 0.07 W {Pc
= 0.7V × 0.1A = 0.07W}, and the power consumption can be suppressed to the minimum within a range in which the constant current drive circuit 2 operates normally.

【0049】すなわち、電源電圧Vccを変化させながら
出力電圧Vob=0.7Vとなる時の電源電圧Vccに設
定することにより、定電流駆動回路2の低消費電力動作
を実現している。さらに、定電流駆動回路2の省電力化
によって放熱フィン等の放熱手段を省略できる分、定電
流駆動回路2の小型にもつながる。
That is, by setting the power supply voltage Vcc when the output voltage Vob becomes 0.7 V while changing the power supply voltage Vcc, low power consumption operation of the constant current drive circuit 2 is realized. Furthermore, the power saving of the constant current drive circuit 2 allows the heat dissipation means such as the radiation fins to be omitted, which leads to the downsizing of the constant current drive circuit 2.

【0050】仮に、2.75V以上に電源電圧Vccを上
昇させても、定電流駆動回路2の働きで電流Ifは殆ど
増加しない、例えば、最大の閾値電圧Vftを考慮して
電源電圧を2.95Vにした場合に、平均の発光ダイオ
ード1では、ダイオードのVf=2.05V、Vob=
0.90V、If=0.1Aとなる。すなわち、電源電
圧Vccの上昇分は殆ど全て定電流駆動回路2の出力電圧
Vobの上昇電圧になる。この時の駆動回路の消費電力
はPc=0.9V×0.1A=0.09Wとなる。
Even if the power supply voltage Vcc is increased to 2.75 V or more, the current If hardly increases due to the operation of the constant current drive circuit 2. For example, the power supply voltage is increased to 2.75 V in consideration of the maximum threshold voltage Vft. When the voltage is set to 95 V, in the average light-emitting diode 1, Vf of the diode = 2.05 V and Vob =
0.90V, If = 0.1A. That is, almost all the rise of the power supply voltage Vcc becomes the rise voltage of the output voltage Vob of the constant current drive circuit 2. The power consumption of the drive circuit at this time is Pc = 0.9 V × 0.1 A = 0.09 W.

【0051】また、図1の発光ダイオード1として、I
f=0.1Aに対応する閾値電圧Vftが2.2Vの発
光ダイオードを用いた場合、前述したワンチップマイコ
ン5の電源電圧制御信号S5による電圧調整を行うこと
により、電源電圧Vccを2.9Vまで上げた時点で発光
ダイオード1は正常に点灯し、電圧検出信号S4が
“L”から“H”に変化するため、信号制御機能付可変
直流電源3の電源電圧Vccは2.9Vに設定される。こ
の時、Vf=2.2V、Vob=0.7V、If=0.
1Aとなる。
The light emitting diode 1 shown in FIG.
When a light emitting diode whose threshold voltage Vft corresponding to f = 0.1 A is 2.2 V is used, the power supply voltage Vcc is adjusted to 2.9 V by performing the voltage adjustment by the power supply voltage control signal S5 of the one-chip microcomputer 5 described above. At this point, the light emitting diode 1 normally lights up, and the voltage detection signal S4 changes from "L" to "H". Therefore, the power supply voltage Vcc of the variable DC power supply 3 with a signal control function is set to 2.9V. You. At this time, Vf = 2.2 V, Vob = 0.7 V, If = 0.
1A.

【0052】この場合も定電流駆動回路2の消費電力P
cは最低の0.07W{Pc=0.7V×0.1A=
0.07W}となり、定電流駆動回路2が正常に動作す
る範囲で最低の消費電力に抑えることができる。
Also in this case, the power consumption P of the constant current drive circuit 2
c is the minimum 0.07W {Pc = 0.7V × 0.1A =
0.07 W}, and the power consumption can be suppressed to the minimum within a range in which the constant current drive circuit 2 operates normally.

【0053】なお、一つの信号制御機能付可変直流電源
に複数の発光ダイオードを並列に接続する場合は、複数
の発光ダイオードそれぞれのカソードに定電流駆動回路
に接続し、各定電流駆動回路の出力電圧の検出用に電圧
検出回路を設け、全ての電圧検出回路の電圧検出信号が
“H”になった時点で、信号制御機能付可変直流電源の
電源電圧の調整を完了させる。これにより、一つの信号
制御機能付可変直流電源3で駆動される複数の発光ダイ
オードすべてが点灯可能な範囲で最低の電源電圧Vccに
調整できる。
When a plurality of light emitting diodes are connected in parallel to one variable DC power supply with a signal control function, the cathode of each of the plurality of light emitting diodes is connected to a constant current driving circuit, and the output of each constant current driving circuit is connected. A voltage detection circuit is provided for detecting a voltage, and when the voltage detection signals of all the voltage detection circuits become “H”, the adjustment of the power supply voltage of the variable DC power supply with a signal control function is completed. Thereby, the power supply voltage Vcc can be adjusted to the lowest power supply voltage within a range in which all of the plurality of light emitting diodes driven by one variable DC power supply 3 having the signal control function can be turned on.

【0054】<実施の形態2>図4はこの発明の実施の
形態2の発光ダイオードの駆動回路の構成を示すブロッ
ク図である。同図に示すように、実施の形態2の発光ダ
イオードの駆動回路は発光ダイオード1、定電流駆動回
路2、可変直流電源7及び電圧計8から構成されてい
る。
<Embodiment 2> FIG. 4 is a block diagram showing a configuration of a light emitting diode driving circuit according to Embodiment 2 of the present invention. As shown in the figure, the light emitting diode drive circuit of the second embodiment includes a light emitting diode 1, a constant current drive circuit 2, a variable DC power supply 7, and a voltmeter 8.

【0055】発光ダイオード1のアノードは可変直流電
源7の正端子(+)に接続されることにより電源電圧V
ccを受け、カソードは定電流駆動回路2の出力ノードN
2に接続される。定電流駆動回路2は、発光ダイオード
1,可変直流電源7の負端子間に設けられ、実施の形態
1同様、発光ダイオード1のカソード電圧である出力電
圧Vobに基づき定電流供給動作を行う。
The anode of the light emitting diode 1 is connected to the positive terminal (+) of the variable DC power supply 7 so that the power supply voltage V
cc, and the cathode is the output node N of the constant current drive circuit 2.
2 is connected. The constant current drive circuit 2 is provided between the negative terminal of the light emitting diode 1 and the variable DC power supply 7, and performs a constant current supply operation based on the output voltage Vob, which is the cathode voltage of the light emitting diode 1, as in the first embodiment.

【0056】可変直流電源7には外部信号による電源電
圧Vccの変更機能は無く、電源電圧Vccを変えるために
は、備え付けられた可変抵抗器(図示せず)を人手によ
って調整する必要がある。
The variable DC power supply 7 has no function of changing the power supply voltage Vcc by an external signal. To change the power supply voltage Vcc, it is necessary to manually adjust a variable resistor (not shown) provided.

【0057】電圧計8は発光ダイオード1のカソードに
接続され、発光ダイオード1のカソード電圧、すなわ
ち、定電流駆動回路2のノードN2の出力電圧Vobを
測定可能である。
The voltmeter 8 is connected to the cathode of the light emitting diode 1, and can measure the cathode voltage of the light emitting diode 1, that is, the output voltage Vob of the node N2 of the constant current drive circuit 2.

【0058】このような構成において、発光ダイオード
1として、実施の形態1同様、電流Ifが0.1Aに対
応する閾値電圧Vftが2.05Vの発光ダイオードが
設けられた場合の可変直流電源7の電源電圧Vccの調整
方法を説明する。
In such a configuration, as in the first embodiment, the variable DC power supply 7 in the case where a light emitting diode having a threshold voltage Vft of 2.05 V corresponding to a current If of 0.1 A is provided as in the first embodiment. A method of adjusting the power supply voltage Vcc will be described.

【0059】電源電圧調整者が可変直流電源7の可変抵
抗器を調整して電源電圧Vccを0Vから徐々にあげてい
くと、電源電圧Vccが2.75Vに達したときに、Vf
=2.05V、Vob=0.7V、If=0.1Aにな
り、電圧計8は0.7Vを示し、発光ダイオードは正常
に明るく点灯する。この電圧計8が0.7Vを示した時
点で電源電圧調整者は可変直流電源7の調整をやめ、電
源電圧の調整を完了する。その結果、定電流駆動回路2
が正常に動作する範囲で最低の消費電力に抑えることが
できる。
When the power supply voltage adjuster adjusts the variable resistor of the variable DC power supply 7 to gradually increase the power supply voltage Vcc from 0 V, when the power supply voltage Vcc reaches 2.75 V, Vf
= 2.05V, Vob = 0.7V, If = 0.1A, the voltmeter 8 indicates 0.7V, and the light emitting diode normally lights up brightly. When the voltmeter 8 indicates 0.7 V, the power supply voltage adjuster stops adjusting the variable DC power supply 7 and completes the adjustment of the power supply voltage. As a result, the constant current drive circuit 2
Can be suppressed to the lowest power consumption within a range where the device operates normally.

【0060】これ以上、電源電圧Vccをあげた場合、実
施の形態1の場合と同様に定電流駆動回路2の働きで電
流Ifは殆ど増加せず、電源電圧Vccの上昇分は殆ど全
て定電流駆動回路2の出力電圧Vobの上昇分になる。
When the power supply voltage Vcc is further increased, the current If hardly increases due to the operation of the constant current drive circuit 2 as in the first embodiment, and almost all the rise of the power supply voltage Vcc is a constant current. The output voltage Vob of the drive circuit 2 corresponds to a rise.

【0061】また、図4の発光ダイオード1として、I
f=0.1Aに対応する閾値電圧Vftが2.2Vの発
光ダイオードを用いた場合、実施の形態1と同様に電源
電圧Vccを2.9Vまで上げた時点で発光ダイオードは
正常に点灯し、電圧計8は0.7Vを示す。この電圧計
8が0.7Vを示した時点で電源電圧調整者は可変直流
電源7の調整をやめ、電源電圧の調整を完了する。その
結果、定電流駆動回路2が正常に動作する範囲で最低の
消費電力に抑えることができる。
The light emitting diode 1 shown in FIG.
When a light emitting diode whose threshold voltage Vft corresponding to f = 0.1 A is 2.2 V is used, the light emitting diode normally lights up when the power supply voltage Vcc is increased to 2.9 V, as in Embodiment 1. The voltmeter 8 indicates 0.7V. When the voltmeter 8 indicates 0.7 V, the power supply voltage adjuster stops adjusting the variable DC power supply 7 and completes the adjustment of the power supply voltage. As a result, the power consumption can be suppressed to the minimum within a range where the constant current drive circuit 2 operates normally.

【0062】なお、一つの可変直流電源に複数の発光ダ
イオードを並列接続する場合は、複数の発光ダイオード
それぞれのカソードに定電流駆動回路に接続し、各定電
流駆動回路の出力電圧の検出用に電圧計を設け、全ての
電圧計が0.7V以上になった時点で、可変直流電源7
の電源電圧Vccの調整を完了させれば良い。これによ
り、一つの可変直流電源7で駆動される複数の発光ダイ
オードすべてが正常に点灯可能な範囲で最低の電源電圧
Vccに調整できる。
When a plurality of light emitting diodes are connected in parallel to one variable DC power supply, the cathode of each of the plurality of light emitting diodes is connected to a constant current drive circuit to detect the output voltage of each constant current drive circuit. A voltmeter is provided, and when all voltmeters become 0.7 V or more, the variable DC power supply 7
The adjustment of the power supply voltage Vcc may be completed. As a result, the power supply voltage Vcc can be adjusted to the lowest power supply voltage within a range in which all of the plurality of light emitting diodes driven by one variable DC power supply 7 can be normally lit.

【0063】<実施の形態3>図5はこの発明の実施の
形態3である発光ダイオードの駆動回路の構成を示すブ
ロック図である。同図に示すように、実施の形態3の発
光ダイオードの駆動回路は発光ダイオード1、定電流駆
動回路2、信号制御機能付可変直流電源3、電流検出回
路9及びワンチップマイコン5から構成されており、外
部制御機器6は実施の形態3の発光ダイオードの駆動回
路のワンチップマイコン5に接続可能な外部装置であ
る。
<Embodiment 3> FIG. 5 is a block diagram showing a configuration of a light emitting diode driving circuit according to Embodiment 3 of the present invention. As shown in the figure, the light emitting diode drive circuit of the third embodiment is composed of a light emitting diode 1, a constant current drive circuit 2, a variable DC power supply with a signal control function 3, a current detection circuit 9, and a one-chip microcomputer 5. The external control device 6 is an external device that can be connected to the one-chip microcomputer 5 of the light emitting diode drive circuit of the third embodiment.

【0064】電流検出回路9は発光ダイオード1のカソ
ードと定電流駆動回路2の出力ノードN2との間に設け
られ、電流Ifに基づき電流検出信号S9を出力する。
The current detection circuit 9 is provided between the cathode of the light emitting diode 1 and the output node N2 of the constant current drive circuit 2, and outputs a current detection signal S9 based on the current If.

【0065】図6は電流検出回路9の内部構成の一例を
示す説明図である。同図に示すように、電流−電圧変換
回路21は発光ダイオード1の電流Ifを抵抗器等によ
って電流−電圧変換して変換電圧V21をコンパレータ
23の正入力に出力する。コンパレータ23の負入力に
は基準電圧発生回路22より基準電圧VRが付与され
る。基準電圧VRは電流Ifが0.1Aの時の変換電圧
V21と等しくなる電圧に設定される。
FIG. 6 is an explanatory diagram showing an example of the internal configuration of the current detection circuit 9. As shown in the figure, the current-voltage conversion circuit 21 performs current-voltage conversion of the current If of the light emitting diode 1 with a resistor or the like and outputs a converted voltage V21 to the positive input of the comparator 23. The reference voltage VR is applied from the reference voltage generation circuit 22 to the negative input of the comparator 23. The reference voltage VR is set to a voltage equal to the converted voltage V21 when the current If is 0.1 A.

【0066】このような構成の電流検出回路9は、発光
ダイオード1の電流Ifが0.1A以上であれば“H”
(V21>VR)、0.1A以下あれば“L”(V21
<VR)の電流検出信号S9を出力する。
When the current If of the light emitting diode 1 is equal to or more than 0.1 A, the current detection circuit 9 having such a configuration outputs “H”.
(V21> VR), "L" (V21
<VR) The current detection signal S9 is output.

【0067】ワンチップマイコン5は、実施の形態1の
ワンチップマイコン5と同様な動作を行う。異なる点
は、電圧検出信号S4の代わりに電流検出信号S9を用
いた点のみである。他の構成は実施の形態1の発光ダイ
オードの駆動回路と同様であるため、説明を省略する。
The one-chip microcomputer 5 performs the same operation as the one-chip microcomputer 5 of the first embodiment. The only difference is that a current detection signal S9 is used instead of the voltage detection signal S4. The other configuration is the same as that of the light emitting diode driving circuit of the first embodiment, and the description is omitted.

【0068】このような構成において、発光ダイオード
1として、電流Ifが0.1Aに対応する閾値電圧Vf
tが2.05Vの発光ダイオードが設けられた場合の信
号制御機能付可変直流電源3の電源電圧Vccの調整方法
を説明する。
In such a configuration, the light emitting diode 1 has a threshold voltage Vf corresponding to a current If of 0.1 A.
A method of adjusting the power supply voltage Vcc of the variable DC power supply 3 with a signal control function when a light emitting diode having t of 2.05 V is provided will be described.

【0069】ワンチップマイコン5に外部制御機器6か
ら制御開始を指示する電源制御開始信号S6を送ると、
ワンチップマイコン5は信号制御機能付可変直流電源3
に0Vを指示する電源電圧制御信号S5を出力し、信号
制御機能付可変直流電源3の正端子から出力される電源
電圧Vccを0Vにする。
When a power control start signal S6 for instructing the start of control is sent from the external control device 6 to the one-chip microcomputer 5,
The one-chip microcomputer 5 is a variable DC power supply 3 with a signal control function.
, A power supply voltage control signal S5 instructing 0 V is output, and the power supply voltage Vcc output from the positive terminal of the variable DC power supply 3 with a signal control function is set to 0 V.

【0070】そして、ワンチップマイコン5は、電流検
出信号S9に基づき、電流検出信号S9が“L”であれ
ば、所定の刻み、例えば0.05Vの刻みの電源電圧上
昇を指示する電源電圧制御信号S5を信号制御機能付可
変直流電源3に送る。以降、同様にして、電流検出信号
S9が“L”から“H”に変化するまで、電源電圧上昇
を指示する電源電圧制御信号S5を信号制御機能付可変
直流電源3に出力し続ける。
Then, based on the current detection signal S9, if the current detection signal S9 is "L", the one-chip microcomputer 5 controls the power supply voltage to instruct the power supply voltage to increase in predetermined steps, for example, in steps of 0.05V. The signal S5 is sent to the variable DC power supply 3 with a signal control function. Thereafter, similarly, the power supply voltage control signal S5 for instructing an increase in the power supply voltage is continuously output to the variable DC power supply with signal control function 3 until the current detection signal S9 changes from "L" to "H".

【0071】電源電圧Vccが0.05V刻みで上昇して
いくが、電源電圧Vccが1.8V以下であれば発光ダイ
オード1に電流は流れず、電流Ifが0Aを維持するた
め、電源電圧Vccはすべて発光ダイオード1に印加され
ることになる。このとき電流検出信号S9は“L”を維
持するため、ワンチップマイコン5は信号制御機能付可
変直流電源3に電源電圧上昇を指示する電源電圧制御信
号S5を信号制御機能付可変直流電源3に送り、電源電
圧Vccをさらに上昇させる。
The power supply voltage Vcc rises in steps of 0.05 V. If the power supply voltage Vcc is 1.8 V or less, no current flows through the light emitting diode 1 and the current If maintains 0 A, so that the power supply voltage Vcc increases. Are all applied to the light emitting diode 1. At this time, since the current detection signal S9 is maintained at "L", the one-chip microcomputer 5 sends the power supply voltage control signal S5 instructing the variable DC power supply 3 with signal control function to increase the power supply voltage to the variable DC power supply 3 with signal control function. Then, the power supply voltage Vcc is further increased.

【0072】その後、電源電圧Vccが2.75Vに達し
た時点で、Vf=2.05V、Vob=0.7V、If
=0.1Aになり、発光ダイオード1は正常に明るく点
灯する。ここではじめて電流検出信号S9が“H”にな
る。ワンチップマイコン5は電流検出信号S9が“H”
になると、信号制御機能付可変直流電源3に電源電圧上
昇を指示する電源電圧制御信号S5を送ることを止め、
電源電圧Vccの調整を完了する。この時の定電流駆動回
路2の消費電力Pcは0.07W{Pc=0.7V×
0.1A=0.07W}となり、この定電流駆動回路2
が正常に動作する範囲で最低の消費電力に抑えることが
できる。
Thereafter, when the power supply voltage Vcc reaches 2.75 V, Vf = 2.05 V, Vob = 0.7 V, If
= 0.1 A, and the light emitting diode 1 normally lights up brightly. Here, the current detection signal S9 becomes "H" for the first time. In the one-chip microcomputer 5, the current detection signal S9 is "H".
Then, the transmission of the power supply voltage control signal S5 instructing the power supply voltage rise to the variable DC power supply with signal control function 3 is stopped,
The adjustment of the power supply voltage Vcc is completed. At this time, the power consumption Pc of the constant current drive circuit 2 is 0.07 W {Pc = 0.7 V ×
0.1 A = 0.07 W}, and this constant current driving circuit 2
Can be suppressed to the lowest power consumption within a range where the device operates normally.

【0073】すなわち、電源電圧Vccを変化させながら
電流If=0.1Aとなる時の電源電圧Vccを設定する
ことにより、定電流駆動回路2の低消費電力動作を実現
している。さらに、定電流駆動回路2の省電力化によっ
て放熱手段を省略できる分、定電流駆動回路2の小型に
もつながる。
That is, by setting the power supply voltage Vcc when the current If = 0.1 A while changing the power supply voltage Vcc, low power consumption operation of the constant current drive circuit 2 is realized. Further, since the heat dissipation means can be omitted by saving the power of the constant current drive circuit 2, the size of the constant current drive circuit 2 can be reduced.

【0074】仮に、2.75V以上に電源電圧Vccを上
昇させても、実施の形態1と同様、定電流駆動回路2の
働きで電流Ifは殆ど増加しない。
Even if the power supply voltage Vcc is increased to 2.75 V or more, the current If hardly increases due to the operation of the constant current drive circuit 2 as in the first embodiment.

【0075】また、図5の発光ダイオード1として、I
f=0.1Aに対応する閾値電圧Vftが2.2Vの発
光ダイオードを用いた場合、前述したワンチップマイコ
ン5の電源電圧制御信号S5による電圧調整を行うこと
により、電源電圧Vccを2.9Vまで上げた時点で発光
ダイオード1は正常に点灯し、電流検出信号S9が
“L”から“H”に変化するため、信号制御機能付可変
直流電源3の電源電圧Vccは2.9Vに設定される。
The light emitting diode 1 shown in FIG.
When a light emitting diode whose threshold voltage Vft corresponding to f = 0.1 A is 2.2 V is used, the power supply voltage Vcc is adjusted to 2.9 V by performing the voltage adjustment by the power supply voltage control signal S5 of the one-chip microcomputer 5 described above. At this point, the light emitting diode 1 normally lights up, and the current detection signal S9 changes from "L" to "H". Therefore, the power supply voltage Vcc of the variable DC power supply 3 with a signal control function is set to 2.9V. You.

【0076】この場合も定電流駆動回路2の消費電力P
cは最低の0.07W{Pc=0.7V×0.1A=
0.07W}となり、定電流駆動回路2が正常に動作す
る範囲で最低の消費電力に抑えることができる。
Also in this case, the power consumption P of the constant current drive circuit 2
c is the minimum 0.07W {Pc = 0.7V × 0.1A =
0.07 W}, and the power consumption can be suppressed to the minimum within a range in which the constant current drive circuit 2 operates normally.

【0077】なお、一つの信号制御機能付可変直流電源
に複数の発光ダイオードを並列に接続する場合は、複数
の発光ダイオードそれぞれのカソードに定電流駆動回路
に接続し、発光ダイオードを流れる電流の検出用に電流
検出回路を設け、全ての電流検出回路の電流検出信号が
“H”になった時点で、信号制御機能付可変直流電源の
電源電圧の調整を完了させる。これにより、一つの信号
制御機能付可変直流電源3で駆動される複数の発光ダイ
オードすべてが正常に点灯可能な範囲で最低の電源電圧
Vccに調整できる。
When a plurality of light emitting diodes are connected in parallel to one variable DC power supply having a signal control function, a constant current drive circuit is connected to each cathode of the plurality of light emitting diodes to detect the current flowing through the light emitting diodes. A current detection circuit is provided, and when the current detection signals of all the current detection circuits become “H”, the adjustment of the power supply voltage of the variable DC power supply with a signal control function is completed. Thus, the power supply voltage Vcc can be adjusted to the lowest power supply voltage within a range in which all of the plurality of light emitting diodes driven by the single variable DC power supply with signal control function 3 can be normally lit.

【0078】<実施の形態4>図7はこの発明の実施の
形態4の発光ダイオードの駆動回路の構成を示すブロッ
ク図である。同図に示すように、実施の形態4の発光ダ
イオードの駆動回路は発光ダイオード1、定電流駆動回
路2、可変直流電源7及び電流計10から構成されてい
る。
<Embodiment 4> FIG. 7 is a block diagram showing a configuration of a light emitting diode driving circuit according to Embodiment 4 of the present invention. As shown in the figure, the light emitting diode drive circuit of the fourth embodiment includes a light emitting diode 1, a constant current drive circuit 2, a variable DC power supply 7, and an ammeter 10.

【0079】電流計10は発光ダイオード1のカソード
と定電流駆動回路2との間に設けられ、発光ダイオード
1を流れる電流Ifを測定可能である。他の構成は図4
で示した実施の形態2と同様であるため、説明は省略す
る。
The ammeter 10 is provided between the cathode of the light emitting diode 1 and the constant current drive circuit 2, and can measure the current If flowing through the light emitting diode 1. FIG. 4 shows another configuration.
Since the second embodiment is the same as the second embodiment shown in FIG.

【0080】このような構成において、発光ダイオード
1として、実施の形態1同様、電流Ifが0.1Aに対
応する閾値電圧Vftが2.05Vの発光ダイオードが
設けられた場合の可変直流電源7の電源電圧Vccの調整
方法を説明する。
In such a configuration, as in the first embodiment, the variable DC power supply 7 in the case where a light emitting diode with a threshold voltage Vft of 2.05 V corresponding to a current If of 0.1 A is provided as the light emitting diode 1. A method of adjusting the power supply voltage Vcc will be described.

【0081】電源電圧調整者が可変直流電源7の可変抵
抗器を調整して電源電圧Vccを0Vから徐々にあげてい
くと、電源電圧Vccが2.75Vに達したときに、Vf
=2.05V、Vob=0.7V、If=0.1Aにな
り、電流計10は0.1Aを示し、発光ダイオードは正
常に明るく点灯する。この電流計10が0.1Aを示し
た時点で電源電圧調整者は可変直流電源7の調整をや
め、電源電圧の調整を完了する。その結果、定電流駆動
回路2が正常に動作する範囲で最低の消費電力に抑える
ことができる。
When the power supply voltage adjuster adjusts the variable resistor of the variable DC power supply 7 to gradually increase the power supply voltage Vcc from 0 V, when the power supply voltage Vcc reaches 2.75 V, Vf
= 2.05V, Vob = 0.7V, If = 0.1A, the ammeter 10 indicates 0.1A, and the light emitting diode normally lights up brightly. When the ammeter 10 indicates 0.1 A, the power supply voltage adjuster stops adjusting the variable DC power supply 7 and completes the adjustment of the power supply voltage. As a result, the power consumption can be suppressed to the minimum within a range where the constant current drive circuit 2 operates normally.

【0082】これ以上、電源電圧Vccをあげた場合、実
施の形態1の場合と同様に定電流駆動回路2の働きで電
流Ifは殆ど増加せず、電源電圧Vccの上昇分は殆ど全
て定電流駆動回路2の出力電圧Vobの上昇分になる。
When the power supply voltage Vcc is further increased, the current If hardly increases due to the operation of the constant current drive circuit 2 as in the first embodiment, and almost all the rise of the power supply voltage Vcc is a constant current. The output voltage Vob of the drive circuit 2 corresponds to a rise.

【0083】また、図7の発光ダイオード1として、I
f=0.1Aに対応する閾値電圧Vftが2.2Vの発
光ダイオードを用いた場合、実施の形態1と同様に電源
電圧Vccを2.9Vまで上げた時点で発光ダイオードは
正常に点灯し、電流計10は0.1Aを示す。この電流
計10が0.1Aを示した時点で電源電圧調整者は可変
直流電源7の調整をやめ、電源電圧の調整を完了する。
その結果、定電流駆動回路2が正常に動作する範囲で最
低の消費電力に抑えることができる。
The light emitting diode 1 shown in FIG.
When a light emitting diode whose threshold voltage Vft corresponding to f = 0.1 A is 2.2 V is used, the light emitting diode normally lights up when the power supply voltage Vcc is increased to 2.9 V, as in Embodiment 1. The ammeter 10 indicates 0.1 A. When the ammeter 10 indicates 0.1 A, the power supply voltage adjuster stops adjusting the variable DC power supply 7 and completes the adjustment of the power supply voltage.
As a result, the power consumption can be suppressed to the minimum within a range where the constant current drive circuit 2 operates normally.

【0084】なお、一つの可変直流電源に複数の発光ダ
イオードを並列接続する場合は、複数の発光ダイオード
それぞれのカソードに定電流駆動回路に接続し、各発光
ダイオードを流れる電流の検出用に電流計を設け、全て
の電流計が0.1A以上になった時点で、可変直流電源
7の電源電圧Vccの調整を完了させれば良い。これによ
り、一つの可変直流電源7で駆動される複数の発光ダイ
オードすべてが正常に点灯可能な範囲で最低の電源電圧
Vccに調整できる。
When a plurality of light emitting diodes are connected in parallel to one variable DC power supply, a constant current drive circuit is connected to the cathode of each of the plurality of light emitting diodes, and an ammeter is used to detect the current flowing through each light emitting diode. The adjustment of the power supply voltage Vcc of the variable DC power supply 7 may be completed when all the ammeters have reached 0.1 A or more. As a result, the power supply voltage Vcc can be adjusted to the lowest power supply voltage within a range in which all of the plurality of light emitting diodes driven by one variable DC power supply 7 can be normally lit.

【0085】<実施の形態5>図8はこの発明の実施の
形態5である発光ダイオードの駆動回路の構成を示すブ
ロック図である。同図に示すように、実施の形態5の発
光ダイオードの駆動回路は発光ダイオード1、定電流駆
動回路2、信号制御機能付可変直流電源3、電圧検出回
路4、光−電気変換回路11及びワンチップマイコン5
から構成されており、外部制御機器6は実施の形態5の
発光ダイオードの駆動回路のワンチップマイコン5に接
続可能な外部装置である。
<Fifth Embodiment> FIG. 8 is a block diagram showing a configuration of a light emitting diode driving circuit according to a fifth embodiment of the present invention. As shown in the figure, the driving circuit of the light emitting diode according to the fifth embodiment includes a light emitting diode 1, a constant current driving circuit 2, a variable DC power supply 3 having a signal control function, a voltage detecting circuit 4, an optical-electrical converting circuit 11, Chip microcomputer 5
The external control device 6 is an external device that can be connected to the one-chip microcomputer 5 of the light emitting diode drive circuit of the fifth embodiment.

【0086】光−電気変換回路11は、太陽電池などに
用いる光−電気変換素子及びオペアンプなどの増幅回路
で構成され、発光ダイオード1による発光輝度に比例し
た変換電圧V11を電圧検出回路4に出力する。例え
ば、発光輝度L=0.2cd/m2のとき変換電圧V1
1は0.09Vとなり、発光輝度L=2cd/m2のと
き変換電圧V11は0.7Vとなる。
The photoelectric conversion circuit 11 is composed of a photoelectric conversion element used for a solar cell or the like and an amplifier circuit such as an operational amplifier. The photoelectric conversion circuit 11 outputs a converted voltage V11 proportional to the light emission luminance of the light emitting diode 1 to the voltage detection circuit 4. I do. For example, when the light emission luminance L = 0.2 cd / m 2 , the conversion voltage V1
1 is 0.09 V, and when the light emission luminance L = 2 cd / m 2 , the conversion voltage V11 is 0.7 V.

【0087】図9は発光ダイオード1を流れる電流If
と発光輝度Lとの関係を示すグラフである。同図に示す
ように、電流Ifと発光輝度Lとは比例関係があり、例
えば、If=0.01AでL=0.2cd/m2、If
=0.10Aで2.0cd/m2となる。したがって、
発光輝度Lが2.0cd/m2以上であれば、発光ダイ
オード1は正常に点灯していることになる。
FIG. 9 shows a current If flowing through the light emitting diode 1.
6 is a graph showing the relationship between the luminance and the light emission luminance L. As shown in the figure, there is a proportional relationship between the current If and the light emission luminance L. For example, if If = 0.01 A, L = 0.2 cd / m 2 , If
At 0.10 A, it becomes 2.0 cd / m 2 . Therefore,
If the light emission luminance L is 2.0 cd / m 2 or more, the light emitting diode 1 is normally lit.

【0088】電圧検出回路4は光−電気変換回路11の
変換電圧V11が0.7V以上(発光輝度L=2cd/
2以上)になれば“H”、0.7V以下あれば“L”
の電圧検出信号S4を出力する。すなわち、実施の形態
5の電圧検出信号S4は、発光ダイオード1の発光輝度
Lが基準輝度(2.0cd/m2)以上であるか否かを
示す輝度検出信号として機能する。なお、他の構成は図
1で示した実施の形態1の構成と同様であるため、説明
を省略する。
The voltage detection circuit 4 has a conversion voltage V11 of the photoelectric conversion circuit 11 of 0.7 V or more (light emission luminance L = 2 cd /
if to m 2 or more) "H", if less than 0.7V "L"
Is output. That is, the voltage detection signal S4 of the fifth embodiment functions as a luminance detection signal indicating whether or not the light emission luminance L of the light emitting diode 1 is equal to or higher than the reference luminance (2.0 cd / m 2 ). Note that the other configuration is the same as the configuration of the first embodiment shown in FIG.

【0089】このような構成において、発光ダイオード
1として、電流Ifが0.1Aに対応する閾値電圧Vf
tが2.05Vの発光ダイオードが設けられた場合の信
号制御機能付可変直流電源3の電源電圧Vccの調整方法
を説明する。
In such a configuration, the light emitting diode 1 has a threshold voltage Vf corresponding to a current If of 0.1 A.
A method of adjusting the power supply voltage Vcc of the variable DC power supply 3 with a signal control function when a light emitting diode having t of 2.05 V is provided will be described.

【0090】ワンチップマイコン5に外部制御機器6か
ら制御開始を指示する電源制御開始信号S6を送ると、
ワンチップマイコン5は信号制御機能付可変直流電源3
に0Vを指示する電源電圧制御信号S5を出力し、信号
制御機能付可変直流電源3の正端子から出力される電源
電圧Vccを0Vにする。
When a power control start signal S6 for instructing the start of control is sent from the external control device 6 to the one-chip microcomputer 5,
The one-chip microcomputer 5 is a variable DC power supply 3 with a signal control function.
, A power supply voltage control signal S5 instructing 0 V is output, and the power supply voltage Vcc output from the positive terminal of the variable DC power supply 3 with a signal control function is set to 0 V.

【0091】そして、ワンチップマイコン5は、電圧検
出信号S4に基づき、電圧検出信号S4が“L”であれ
ば、所定の刻み、例えば0.05Vの刻みの電源電圧上
昇を指示する電源電圧制御信号S5を信号制御機能付可
変直流電源3に送る。以降、同様にして、電圧検出信号
S4が“L”から“H”に変化するまで、電源電圧上昇
を指示する電源電圧制御信号S5を信号制御機能付可変
直流電源3に出力し続ける。
Then, based on the voltage detection signal S4, if the voltage detection signal S4 is "L", the one-chip microcomputer 5 controls the power supply voltage instructing to increase the power supply voltage in predetermined steps, for example, in steps of 0.05V. The signal S5 is sent to the variable DC power supply 3 with a signal control function. Thereafter, similarly, the power supply voltage control signal S5 for instructing the increase of the power supply voltage is continuously output to the variable DC power supply with signal control function 3 until the voltage detection signal S4 changes from "L" to "H".

【0092】その後、電源電圧Vccが2.75Vに達し
た時点で、Vf=2.05V、Vob=0.7V、If
=0.1A、L=2.0cd/m2になり、発光ダイオ
ード1は正常に明るく点灯する。ここではじめて電圧検
出信号S4が“H”になる。ワンチップマイコン5は電
圧検出信号S4が“H”になると、信号制御機能付可変
直流電源3に電源電圧上昇を指示する電源電圧制御信号
S5を送ることを止め、電源電圧Vccの調整を完了す
る。この時の定電流駆動回路2の消費電力Pcは0.0
7W{Pc=0.7V×0.1A=0.07W}とな
り、この定電流駆動回路2が正常に動作する範囲で最低
の消費電力に抑えることができる。
Thereafter, when the power supply voltage Vcc reaches 2.75 V, Vf = 2.05 V, Vob = 0.7 V, If
= 0.1 A, L = 2.0 cd / m 2 , and the light emitting diode 1 normally lights up brightly. Here, the voltage detection signal S4 becomes "H" for the first time. When the voltage detection signal S4 becomes "H", the one-chip microcomputer 5 stops sending the power supply voltage control signal S5 instructing the power supply voltage increase to the variable DC power supply with signal control function 3, and completes the adjustment of the power supply voltage Vcc. . The power consumption Pc of the constant current drive circuit 2 at this time is 0.0
7 W {Pc = 0.7 V × 0.1 A = 0.07 W}, and the power consumption can be suppressed to the minimum within a range where the constant current drive circuit 2 operates normally.

【0093】すなわち、電源電圧Vccを変化させながら
発光輝度Lが2.0cd/m2となる時の電源電圧Vcc
を設定することにより、定電流駆動回路2の低消費電力
動作を実現している。さらに、定電流駆動回路2の省電
力化によって放熱手段を省略できる分、定電流駆動回路
2の小型にもつながる。
That is, the power supply voltage Vcc when the light emission luminance L becomes 2.0 cd / m 2 while changing the power supply voltage Vcc
, Low power consumption operation of the constant current drive circuit 2 is realized. Further, since the heat dissipation means can be omitted by saving the power of the constant current drive circuit 2, the size of the constant current drive circuit 2 can be reduced.

【0094】仮に、2.75V以上に電源電圧Vccを上
昇させても、定電流駆動回路2の働きで電流Ifは殆ど
増加せず、電源電圧Vccの上昇分は殆ど全て定電流駆動
回路2の出力電圧Vobの上昇電圧になる。
Even if the power supply voltage Vcc is increased to 2.75 V or more, the current If hardly increases due to the operation of the constant current drive circuit 2, and the rise of the power supply voltage Vcc is almost entirely reduced by the constant current drive circuit 2. It becomes the rising voltage of the output voltage Vob.

【0095】また、図8の発光ダイオード1として、I
f=0.1Aに対応する閾値電圧Vftが2.2Vの発
光ダイオードを用いた場合、前述したワンチップマイコ
ン5の電源電圧制御信号S5による電圧調整を行うこと
により、電源電圧Vccを2.9Vまで上げた時点で発光
ダイオード1は正常に点灯し、電圧検出信号S4が
“L”から“H”に変化するため、信号制御機能付可変
直流電源3の電源電圧Vccは2.9Vに設定される。こ
の時、Vf=2.2V、Vob=0.7V、If=0.
1A、L=2.0cd/m2となる。
The light emitting diode 1 shown in FIG.
When a light emitting diode whose threshold voltage Vft corresponding to f = 0.1 A is 2.2 V is used, the power supply voltage Vcc is adjusted to 2.9 V by performing the voltage adjustment by the power supply voltage control signal S5 of the one-chip microcomputer 5 described above. At this point, the light emitting diode 1 normally lights up, and the voltage detection signal S4 changes from "L" to "H". Therefore, the power supply voltage Vcc of the variable DC power supply 3 with a signal control function is set to 2.9V. You. At this time, Vf = 2.2 V, Vob = 0.7 V, If = 0.
1A, L = 2.0 cd / m 2 .

【0096】この場合も定電流駆動回路2の消費電力P
cは最低の0.07W{Pc=0.7V×0.1A=
0.07W}となり、定電流駆動回路2が正常に動作す
る範囲で最低の消費電力に抑えることができる。
Also in this case, the power consumption P of the constant current drive circuit 2
c is the minimum 0.07W {Pc = 0.7V × 0.1A =
0.07 W}, and the power consumption can be suppressed to the minimum within a range in which the constant current drive circuit 2 operates normally.

【0097】なお、一つの信号制御機能付可変直流電源
に複数の発光ダイオードを並列に接続する場合は、複数
の発光ダイオードそれぞれのカソードに定電流駆動回路
に接続し、各発光ダイオードの輝度検出用に光−電気変
換回路及び電圧検出回路を設け、全ての電圧検出回路の
電圧検出信号が“H”になった時点で、信号制御機能付
可変直流電源の電源電圧の調整を完了させる。これによ
り、一つの信号制御機能付可変直流電源3で駆動される
複数の発光ダイオードすべてが点灯可能な範囲で最低の
電源電圧Vccに調整できる。
When a plurality of light-emitting diodes are connected in parallel to one variable DC power supply with a signal control function, a constant current drive circuit is connected to each of the plurality of light-emitting diodes' cathodes to detect the luminance of each light-emitting diode. Is provided with an optical-electrical conversion circuit and a voltage detection circuit, and when the voltage detection signals of all the voltage detection circuits become “H”, the adjustment of the power supply voltage of the variable DC power supply with a signal control function is completed. Thereby, the power supply voltage Vcc can be adjusted to the lowest power supply voltage within a range in which all of the plurality of light emitting diodes driven by one variable DC power supply 3 having the signal control function can be turned on.

【0098】<実施の形態6>図10はこの発明の実施
の形態6の発光ダイオードの駆動回路の構成を示すブロ
ック図である。同図に示すように、実施の形態6の発光
ダイオードの駆動回路は発光ダイオード1、定電流駆動
回路2、可変直流電源7及び輝度計12から構成されて
いる。
<Sixth Embodiment> FIG. 10 is a block diagram showing a configuration of a light emitting diode driving circuit according to a sixth embodiment of the present invention. As shown in the figure, the light emitting diode drive circuit of the sixth embodiment includes a light emitting diode 1, a constant current drive circuit 2, a variable DC power supply 7, and a luminance meter 12.

【0099】輝度計12は、発光ダイオード1の発光輝
度が測定可能である。他の構成は図4で示した実施の形
態2の構成と同様であるため、説明を省略する。
The luminance meter 12 can measure the light emission luminance of the light emitting diode 1. The other configuration is the same as the configuration of the second embodiment shown in FIG.

【0100】このような構成において、発光ダイオード
1として、実施の形態1同様、電流Ifが0.1Aに対
応する閾値電圧Vftが2.05Vの発光ダイオードが
設けられた場合の可変直流電源7の電源電圧Vccの調整
方法を説明する。
In such a configuration, as in the first embodiment, a variable DC power supply 7 having a threshold voltage Vft of 2.05 V corresponding to a current If of 0.1 A is provided as light emitting diode 1. A method of adjusting the power supply voltage Vcc will be described.

【0101】電源電圧調整者が可変直流電源7の可変抵
抗器を調整して電源電圧Vccを0Vから徐々にあげてい
くと、電源電圧Vccが2.75Vに達したときに、Vf
=2.05V、Vob=0.7V、If=0.1Aにな
り、輝度計12は2.0cd/m2を示し、発光ダイオ
ードは正常に明るく点灯する。この輝度計12が2.0
cd/m2(基準輝度)を示した時点で電源電圧調整者
は可変直流電源7の調整をやめ、電源電圧の調整を完了
する。その結果、定電流駆動回路2が正常に動作する範
囲で最低の消費電力に抑えることができる。
When the power supply voltage adjuster adjusts the variable resistor of the variable DC power supply 7 to gradually increase the power supply voltage Vcc from 0 V, when the power supply voltage Vcc reaches 2.75 V, Vf
= 2.05 V, Vob = 0.7 V, If = 0.1 A, the luminance meter 12 indicates 2.0 cd / m 2 , and the light emitting diode normally lights up brightly. This luminance meter 12 is 2.0
When cd / m 2 (reference luminance) is indicated, the power supply voltage adjuster stops adjusting the variable DC power supply 7 and completes the adjustment of the power supply voltage. As a result, the power consumption can be suppressed to the minimum within a range where the constant current drive circuit 2 operates normally.

【0102】これ以上、電源電圧Vccをあげた場合、実
施の形態1の場合と同様に定電流駆動回路2の働きで電
流Ifは殆ど増加せず、電源電圧Vccの上昇分は殆ど全
て定電流駆動回路2の出力電圧Vobの上昇分になる。
When the power supply voltage Vcc is further increased, the current If hardly increases due to the operation of the constant current drive circuit 2 as in the first embodiment, and almost all the rise of the power supply voltage Vcc is a constant current. The output voltage Vob of the drive circuit 2 corresponds to a rise.

【0103】また、図10の発光ダイオード1として、
If=0.1Aに対応する閾値電圧Vftが2.2Vの
発光ダイオードを用いた場合、実施の形態2と同様に電
源電圧Vccを2.9Vまで上げた時点で発光ダイオード
は正常に点灯し、輝度計12は2.0cd/m2を示
す。この輝度計12が2.0cd/m2を示した時点で
電源電圧調整者は可変直流電源7の調整をやめ、電源電
圧の調整を完了する。その結果、定電流駆動回路2が正
常に動作する範囲で最低の消費電力に抑えることができ
る。
Further, as the light emitting diode 1 of FIG.
When a light emitting diode whose threshold voltage Vft corresponding to If = 0.1 A is 2.2 V is used, the light emitting diode normally lights up when the power supply voltage Vcc is increased to 2.9 V, as in the second embodiment. The luminance meter 12 indicates 2.0 cd / m 2 . When the luminance meter 12 indicates 2.0 cd / m 2 , the power supply voltage adjuster stops adjusting the variable DC power supply 7 and completes the adjustment of the power supply voltage. As a result, the power consumption can be suppressed to the minimum within a range where the constant current drive circuit 2 operates normally.

【0104】なお、一つの可変直流電源に複数の発光ダ
イオードを並列接続する場合は、複数の発光ダイオード
それぞれのカソードに定電流駆動回路に接続し、各発光
ダイオードの発光輝度の検出用に輝度計を設け、全ての
輝度計が2.0cd/m2以上になった時点で、可変直
流電源7の電源電圧Vccの調整を完了させれば良い。こ
れにより、一つの可変直流電源7で駆動される複数の発
光ダイオードすべてが正常に点灯可能な範囲で最低の電
源電圧Vccに調整できる。
When a plurality of light emitting diodes are connected in parallel to one variable DC power supply, a constant current drive circuit is connected to the cathode of each of the plurality of light emitting diodes, and a luminance meter for detecting the light emission luminance of each light emitting diode. The adjustment of the power supply voltage Vcc of the variable DC power supply 7 may be completed when all the luminance meters become 2.0 cd / m 2 or more. As a result, the power supply voltage Vcc can be adjusted to the lowest power supply voltage within a range in which all of the plurality of light emitting diodes driven by one variable DC power supply 7 can be normally lit.

【0105】<実施の形態7>図11はこの発明の実施
の形態7である発光ダイオードの駆動回路の構成を示す
ブロック図である。同図に示すように、実施の形態7の
発光ダイオードの駆動回路は5個の発光ダイオード1a
〜1e、5個の定電流駆動回路2a〜2e、信号制御機
能付可変直流電源3、電流検出回路9及びワンチップマ
イコン5から構成されており、外部制御機器6は実施の
形態7の発光ダイオードの駆動回路のワンチップマイコ
ン5に接続可能な外部装置である。
<Seventh Embodiment> FIG. 11 is a block diagram showing a configuration of a light emitting diode driving circuit according to a seventh embodiment of the present invention. As shown in the figure, the light emitting diode drive circuit of the seventh embodiment has five light emitting diodes 1a.
1e, five constant current drive circuits 2a to 2e, a variable DC power supply 3 with a signal control function, a current detection circuit 9, and a one-chip microcomputer 5. The external control device 6 is a light emitting diode according to the seventh embodiment. Is an external device that can be connected to the one-chip microcomputer 5 of the drive circuit.

【0106】5個の発光ダイオード1a〜1eの各アノ
ードは電流検出回路19を介して信号制御機能付可変直
流電源3の正端子(+)に接続されることにより電源電
圧Vccを受け、発光ダイオード1a〜1eそれぞれのカ
ソードは定電流駆動回路2a〜2eのうち対応の定電流
駆動回路に接続される。定電流駆動回路2a〜2eは発
光ダイオード1a〜1eのカソード電圧である出力電圧
Vobに基づき、発光ダイオード1a〜1eそれぞれへ
の定電流供給動作を行う。
The anodes of the five light emitting diodes 1a to 1e are connected to the positive terminal (+) of the variable DC power supply with signal control function 3 via the current detecting circuit 19 to receive the power supply voltage Vcc. Each of the cathodes 1a to 1e is connected to a corresponding one of the constant current driving circuits 2a to 2e. The constant current drive circuits 2a to 2e perform a constant current supply operation to each of the light emitting diodes 1a to 1e based on the output voltage Vob which is the cathode voltage of the light emitting diodes 1a to 1e.

【0107】電流検出回路19は発光ダイオード1a〜
1eのアノードと信号制御機能付可変直流電源3の正端
子側との間に設けられ、発光ダイオード1a〜1eを流
れる電流の総計であるトータル電流TIfに基づき電流
検出信号S19を出力する。
The current detection circuit 19 includes the light emitting diodes 1a to 1a.
The current detection signal S19 is provided between the anode of the variable DC power supply 1e and the positive terminal side of the variable DC power supply 3 with a signal control function, and outputs a current detection signal S19 based on a total current TIf that is a total current flowing through the light emitting diodes 1a to 1e.

【0108】電流検出回路19は、トータル電流TIf
が0.5A以上あれば“H”、0.5A以下であれば
“L”の電流検出信号S19を出力する。すなわち、ト
ータル電流TIfが0.5Aあれば、発光ダイオード1
a〜1eはすべて正常に発光すると判断される。他の構
成は図1で示した実施の形態1の発光ダイオードの駆動
回路と同様であるため、説明を省略する。
The current detection circuit 19 calculates the total current TIf
Is higher than 0.5A, the current detection signal S19 of "H" is output if it is 0.5A or lower, and "L" is output if it is 0.5A or lower. That is, if the total current TIf is 0.5 A, the light emitting diode 1
It is determined that all of a to 1e emit light normally. Other configurations are the same as those of the light emitting diode driving circuit of the first embodiment shown in FIG.

【0109】このような構成において、図11の発光ダ
イオード1a〜1eとして、電流Ifが0.1Aに対応
する閾値電圧Vftが1.9V〜2.1Vの範囲でばら
ついている発光ダイオードが設けられた場合の信号制御
機能付可変直流電源3の電源電圧Vccの調整方法を説明
する。
In such a configuration, as the light emitting diodes 1a to 1e of FIG. 11, light emitting diodes whose current If varies with a threshold voltage Vft corresponding to 0.1 A in a range of 1.9V to 2.1V are provided. The method of adjusting the power supply voltage Vcc of the variable DC power supply 3 with a signal control function in the case where the power supply voltage Vcc is adjusted will be described.

【0110】ワンチップマイコン5に外部制御機器6か
ら制御開始を指示する電源制御開始信号S6を送ると、
ワンチップマイコン5は信号制御機能付可変直流電源3
に0Vを指示する電源電圧制御信号S5を出力し、信号
制御機能付可変直流電源3の正端子から出力される電源
電圧Vccを0Vにする。
When a power control start signal S6 for instructing the start of control is sent from the external control device 6 to the one-chip microcomputer 5,
The one-chip microcomputer 5 is a variable DC power supply 3 with a signal control function.
, A power supply voltage control signal S5 instructing 0 V is output, and the power supply voltage Vcc output from the positive terminal of the variable DC power supply 3 with a signal control function is set to 0 V.

【0111】そして、ワンチップマイコン5は、電流検
出信号S19に基づき、電流検出信号S19が“L”で
あれば、所定の刻み、例えば0.05Vの刻みの電源電
圧上昇を指示する電源電圧制御信号S5を信号制御機能
付可変直流電源3に送る。以降、同様にして、電流検出
信号S19が“L”から“H”に変化するまで、電源電
圧上昇を指示する電源電圧制御信号S5を信号制御機能
付可変直流電源3に出力し続ける。
If the current detection signal S19 is "L" based on the current detection signal S19, the one-chip microcomputer 5 controls the power supply voltage to instruct the power supply voltage to be increased in predetermined steps, for example, in steps of 0.05V. The signal S5 is sent to the variable DC power supply 3 with a signal control function. Thereafter, similarly, the power supply voltage control signal S5 for instructing the increase in the power supply voltage is continuously output to the variable DC power supply with signal control function 3 until the current detection signal S19 changes from "L" to "H".

【0112】電源電圧Vccが0.05V刻みで上昇して
いくが、電源電圧Vccが1.8V以下であれば発光ダイ
オード1に電流は流れず、電流Ifが0Aを維持するた
め、電源電圧Vccはすべて発光ダイオード1に印加され
ることになる。このとき電流検出信号S19は“L”を
維持するため、ワンチップマイコン5は信号制御機能付
可変直流電源3に電源電圧上昇を指示する電源電圧制御
信号S5を信号制御機能付可変直流電源3に送り、電源
電圧Vccをさらに上昇させる。
The power supply voltage Vcc increases in steps of 0.05 V. If the power supply voltage Vcc is 1.8 V or less, no current flows through the light emitting diode 1 and the current If maintains 0 A, so that the power supply voltage Vcc increases. Are all applied to the light emitting diode 1. At this time, since the current detection signal S19 maintains “L”, the one-chip microcomputer 5 sends the power supply voltage control signal S5 instructing the variable DC power supply 3 with a signal control function to increase the power supply voltage to the variable DC power supply 3 with a signal control function. Then, the power supply voltage Vcc is further increased.

【0113】例えば、電源電圧Vccが2.05Vの時は
発光ダイオード1a〜1eのばらつきはVf=1.85
〜2.05V、Vob=0〜0.2V、If=0〜0.
05Aとなり、トータル電流TIfはせいぜい0.07
A程度ある。
For example, when the power supply voltage Vcc is 2.05 V, the variation of the light emitting diodes 1a to 1e is Vf = 1.85.
-2.05V, Vob = 0-0.2V, If = 0-0.
05A, and the total current TIf is at most 0.07
There is about A.

【0114】したがって、電圧検出信号S4は依然とし
て“L”であるため、ワンチップマイコン5は信号制御
機能付可変直流電源3に電源電圧上昇を指示するワンチ
ップマイコン5を送り、さらに、信号制御機能付可変直
流電源3の電源電圧Vccを上昇させる。
Therefore, since the voltage detection signal S4 is still "L", the one-chip microcomputer 5 sends the one-chip microcomputer 5 for instructing the variable DC power supply 3 with a signal control function to increase the power supply voltage. The power supply voltage Vcc of the variable DC power supply 3 is increased.

【0115】その後、電源電圧Vccが2.75Vに達し
た時点で、発光ダイオード1a〜1eのうち、電流If
=0.1Aに対応する閾値電圧Vftが2.05V以下
の発光ダイオードが正常に明るく点灯し、トータル電流
TIfは0.45A程度となる。
Thereafter, when the power supply voltage Vcc reaches 2.75 V, the current If of the light emitting diodes 1a to 1e is
The light emitting diode whose threshold voltage Vft corresponding to = 0.1 A is 2.05 V or less normally lights up brightly, and the total current TIf is about 0.45 A.

【0116】したがって、電圧検出信号S4は依然とし
て“L”であるため、ワンチップマイコン5は信号制御
機能付可変直流電源3に電源電圧上昇を指示するワンチ
ップマイコン5を送り、さらに、信号制御機能付可変直
流電源3の電源電圧Vccを上昇させる。
Therefore, since the voltage detection signal S4 is still "L", the one-chip microcomputer 5 sends the one-chip microcomputer 5 instructing the variable DC power supply 3 with a signal control function to increase the power supply voltage. The power supply voltage Vcc of the variable DC power supply 3 is increased.

【0117】その後、電源電圧Vccが2.80Vに達し
た時点で、電流If=0.1Aに対応する閾値電圧Vf
tが2.1V以下である発光ダイオード1a〜1eのす
べてが正常に明るく点灯し、トータル電流TIfは0.
5Aに達する。
Thereafter, when the power supply voltage Vcc reaches 2.80 V, the threshold voltage Vf corresponding to the current If = 0.1 A is applied.
All of the light emitting diodes 1a to 1e whose t is 2.1 V or less normally light up brightly, and the total current TIf is 0.1.
Reaches 5A.

【0118】ここではじめて電流検出信号S19が
“H”になる。ワンチップマイコン5は電流検出信号S
19が“H”になると、信号制御機能付可変直流電源3
に電源電圧上昇を指示する電源電圧制御信号S5を送る
ことを止め、電源電圧Vccの調整を完了する。この時の
定電流駆動回路2a〜2eそれぞれの消費電力Pcは
0.075W{Pc=0.75V×0.1A=0.07
5W}となり、全ての定電流駆動回路2a〜2eが正常
に動作する範囲で最低の消費電力に抑えることができ
る。
Here, the current detection signal S19 becomes "H" for the first time. The one-chip microcomputer 5 receives the current detection signal S
When “19” becomes “H”, the variable DC power supply with signal control function 3
To stop supplying the power supply voltage control signal S5 for instructing the power supply voltage rise to complete the adjustment of the power supply voltage Vcc. At this time, the power consumption Pc of each of the constant current drive circuits 2a to 2e is 0.075W {Pc = 0.75V × 0.1A = 0.07
5W}, and the power consumption can be suppressed to the minimum within a range where all the constant current drive circuits 2a to 2e operate normally.

【0119】仮に、2.80V以上に電源電圧Vccを上
昇させても、実施の形態1と同様、定電流駆動回路2a
〜2eの働きで電流Ifは殆ど増加しない。
Even if power supply voltage Vcc is increased to 2.80 V or more, constant current drive circuit 2a
The current If hardly increases due to the action of ~ 2e.

【0120】なお、図11において、電流検出回路19
を電流計に置き換え、信号制御機能付可変直流電源3を
可変直流電源7に置き換え、ワンチップマイコン5及び
外部制御機器6を省略した構成で、電流計で計測された
がトータル電流TIfが0.5A以上になった時点で、
可変直流電源7の電源電圧Vccの調整を完了させること
が可能な構成の発光ダイオードの駆動回路を得ることも
考えられる。
In FIG. 11, the current detecting circuit 19
Is replaced by an ammeter, the variable DC power supply with signal control function 3 is replaced by a variable DC power supply 7, and the one-chip microcomputer 5 and the external control device 6 are omitted. When it becomes 5A or more,
It is also conceivable to obtain a light emitting diode drive circuit having a configuration capable of completing the adjustment of the power supply voltage Vcc of the variable DC power supply 7.

【0121】<実施の形態8>図12はこの発明の実施
の形態8である発光ダイオードの駆動回路の構成を示す
ブロック図である。同図に示すように、実施の形態8の
発光ダイオードの駆動回路は5個の発光ダイオード1a
〜1e、5個の定電流駆動回路2a〜2e及び可変直流
電源7から構成されいる。
<Eighth Embodiment> FIG. 12 is a block diagram showing a configuration of a light emitting diode drive circuit according to an eighth embodiment of the present invention. As shown in the figure, the light emitting diode driving circuit of the eighth embodiment has five light emitting diodes 1a.
1e, five constant current drive circuits 2a to 2e, and a variable DC power supply 7.

【0122】5個の発光ダイオード1a〜1eの各アノ
ード可変直流電源7の正端子に接続されることにより電
源電圧Vccを受け、各カソードは定電流駆動回路2a〜
2eのうち対応の定電流駆動回路に接続される。定電流
駆動回路2a〜2eはそれぞれ発光ダイオード1a〜1
eのカソード電圧である出力電圧Vobに基づき、発光
ダイオード1a〜1eそれぞれへの定電流供給動作を行
う。可変直流電源7は実施の形態2と同様である。
The five light emitting diodes 1a to 1e are connected to the positive terminals of the respective variable anode DC power supplies 7 to receive the power supply voltage Vcc, and the respective cathodes are connected to the constant current driving circuits 2a to 2e.
2e is connected to the corresponding constant current drive circuit. The constant current driving circuits 2a to 2e are light emitting diodes 1a to 1 respectively.
The constant current supply operation to each of the light emitting diodes 1a to 1e is performed based on the output voltage Vob which is the cathode voltage of e. The variable DC power supply 7 is the same as in the second embodiment.

【0123】このような構成において、発光ダイオード
1a〜1eとして、電流Ifが0.1Aに対応する閾値
電圧Vftが1.9V〜2.1Vの範囲でばらついてい
る発光ダイオードが設けられた場合の可変直流電源7の
電源電圧Vccの調整方法を説明する。
In such a configuration, when the light emitting diodes 1a to 1e are provided, the threshold voltage Vft corresponding to the current If of 0.1 A varies in the range of 1.9V to 2.1V. A method of adjusting the power supply voltage Vcc of the variable DC power supply 7 will be described.

【0124】まず、発光ダイオード1a〜1eそれぞれ
の電流If=0.1Aに対応する閾値電圧Vftを外部
装置を用いて予め測定しておく。そして、発光ダイオー
ド1a〜1eのうち、最大の閾値電圧Vftを有する発
光ダイオードが正常に点灯する範囲で最低の電源電圧V
ccに可変直流電源7を調整する。
First, the threshold voltage Vft corresponding to the current If = 0.1 A of each of the light emitting diodes 1a to 1e is measured in advance using an external device. Then, among the light emitting diodes 1a to 1e, the lowest power supply voltage V in a range where the light emitting diode having the maximum threshold voltage Vft normally lights up.
Adjust the variable DC power supply 7 to cc.

【0125】この場合、閾値電圧Vft=2.1Vが最
大となるため、定電流駆動回路2が電流If=0.1A
を供給する際の出力電圧Vobである0.7Vを加え、
電源電圧Vccが2.8V(=2.1+0.7)となるよ
うに、可変直流電源7を調整する。
In this case, since the threshold voltage Vft = 2.1 V is the maximum, the constant current drive circuit 2 outputs the current If = 0.1 A
0.7V which is the output voltage Vob when supplying
The variable DC power supply 7 is adjusted so that the power supply voltage Vcc becomes 2.8 V (= 2.1 + 0.7).

【0126】電源電圧Vccを2.80Vに設定すると、
電流If=0.1Aの閾値電圧Vftが2.1V以下で
ある発光ダイオード1a〜1eのすべてが正常に明るく
点灯する。この時の定電流駆動回路2a〜2eそれぞれ
の消費電力Pcは0.075W{Pc=0.75V×
0.1A=0.075W}となり、全ての定電流駆動回
路2a〜2eが正常に動作する範囲で最低の消費電力に
抑えることができる。
When the power supply voltage Vcc is set to 2.80 V,
All of the light emitting diodes 1a to 1e whose threshold voltage Vft at the current If = 0.1 A is 2.1 V or less normally light up brightly. At this time, the power consumption Pc of each of the constant current drive circuits 2a to 2e is 0.075W {Pc = 0.75V ×
0.1A = 0.075 W}, and the power consumption can be suppressed to the minimum within a range where all the constant current drive circuits 2a to 2e operate normally.

【0127】なお、発光ダイオード1a〜1eそれぞれ
の電流If=0.1Aに対応する閾値電圧Vftを測定
する代わりに、発光ダイオード1a〜1eの出荷検査時
の測定値を利用することにより、発光ダイオード1a〜
1eの閾値電圧Vftを測定する手間を省略することが
できる。
It is to be noted that, instead of measuring the threshold voltage Vft corresponding to the current If = 0.1 A of each of the light emitting diodes 1a to 1e, the measured values of the light emitting diodes 1a to 1e at the time of shipment inspection are used. 1a ~
The work of measuring the threshold voltage Vft of 1e can be omitted.

【0128】実施の形態8では、発光ダイオードが複数
(5個)の場合を例に挙げたが、発光ダイオードが1個
の場合でも適用可能である。この場合、発光ダイオード
の電流If=0.1Aに対応する閾値電圧Vftを外部
装置を用いて予め測定したり、出荷検査時の測定値を利
用したりして求め、当該発光ダイオードが正常に点灯す
る範囲で最低の電源電圧Vccに可変直流電源7を調整す
ればよい。
In the eighth embodiment, the case where the number of light emitting diodes is plural (five) is described as an example. In this case, the threshold voltage Vft corresponding to the current If = 0.1 A of the light emitting diode is measured in advance by using an external device or by using the measured value at the time of shipping inspection, and the light emitting diode is normally turned on. The variable DC power supply 7 may be adjusted to the lowest power supply voltage Vcc within the range.

【0129】[0129]

【発明の効果】以上説明したように、この発明における
請求項1記載の発光ダイオードの駆動回路において、発
光ダイオードの発光用の電源電圧を発光ダイオードのア
ノードに供給する可変電源は電源電圧が可変設定可能で
あるため、発光ダイオードが正常に発光するレベルで最
低レベルの電源電圧に設定することにより、電源電圧で
規定される定電流駆動手段の出力電圧を必要最小限に抑
えた低消費電力動作を可能にしている。
As described above, in the light emitting diode driving circuit according to the first aspect of the present invention, the variable power supply for supplying the power supply voltage for light emission of the light emitting diode to the anode of the light emitting diode has a variable power supply voltage. Since it is possible, by setting the power supply voltage to the lowest level at which the light emitting diode normally emits light, the low power consumption operation in which the output voltage of the constant current driving means defined by the power supply voltage is minimized. Making it possible.

【0130】請求項2記載の発光ダイオードの駆動回路
は、発光ダイオードが正常に発光しているか否かを示す
指標となる発光ダイオード特性値が検出可能な発光ダイ
オード特性値検出手段を備えるため、上記発光ダイオー
ド特性値に基づき発光ダイオードが正常に発光するレベ
ルで最低レベルの電源電圧を比較的容易に検知すること
ができる。
According to a second aspect of the present invention, the light emitting diode driving circuit includes a light emitting diode characteristic value detecting means capable of detecting a light emitting diode characteristic value serving as an index indicating whether the light emitting diode emits light normally. Based on the light emitting diode characteristic value, the power supply voltage at the lowest level at which the light emitting diode normally emits light can be relatively easily detected.

【0131】請求項3記載の発光ダイオードの駆動回路
の電源電圧調整手段は、電源電圧調整処理時に、電源電
圧を変化させながら得られる発光ダイオード特性値に基
づき、発光ダイオードが正常に発光する範囲で最低レベ
ルの電源電圧を最終的に設定するため、電源電圧調整手
段に電源電圧調整処理を実行させることにより、低消費
電力で正常動作が可能な電源電圧に自動的に調整するこ
とができる。
According to a third aspect of the present invention, the power supply voltage adjusting means of the light emitting diode driving circuit includes a light emitting diode normally emitting light based on a light emitting diode characteristic value obtained while changing the power supply voltage during the power supply voltage adjusting process. In order to finally set the power supply voltage at the lowest level, the power supply voltage adjusting means executes the power supply voltage adjustment processing, so that the power supply voltage can be automatically adjusted to a power supply voltage that can operate normally with low power consumption.

【0132】請求項4記載の発光ダイオードの駆動回路
は、複数の発光ダイオードが正常に発光するレベルで最
低レベルの電源電圧に設定することにより、出力電圧を
必要最小限に抑えた低消費電力動作を可能にしている。
According to a fourth aspect of the present invention, in the light emitting diode driving circuit, by setting the power supply voltage at the lowest level at which the plurality of light emitting diodes can emit light normally, a low power consumption operation in which the output voltage is minimized. Is possible.

【0133】請求項5記載の発光ダイオードの駆動回路
は、複数の発光ダイオードが正常に発光しているか否か
を示す複数の発光ダイオード特性値が検出可能な複数の
発光ダイオード特性値検出手段を備えるため、上記複数
の発光ダイオード特性値に基づき複数の発光ダイオード
すべてが正常に発光するレベルで最低レベルの電源電圧
を比較的容易に検知することができる。
The light emitting diode driving circuit according to claim 5 includes a plurality of light emitting diode characteristic value detecting means capable of detecting a plurality of light emitting diode characteristic values indicating whether or not the plurality of light emitting diodes emit light normally. Therefore, based on the plurality of light emitting diode characteristic values, it is possible to relatively easily detect the lowest power supply voltage at a level at which all of the plurality of light emitting diodes normally emit light.

【0134】請求項6記載の発光ダイオードの駆動回路
は、電源電圧調整処理時に、電源電圧を変化させながら
得られる複数の発光ダイオード特性値に基づき、複数の
発光ダイオードのすべてが正常に発光する範囲で最低レ
ベルの電源電圧を最終的に設定する電源電圧調整手段を
備えるため、電源電圧調整手段に電源電圧調整処理を実
行させることにより、低消費電力で正常動作が可能な電
源電圧に自動的に調整することができる。
According to a sixth aspect of the present invention, in the light emitting diode driving circuit, a range in which all of the plurality of light emitting diodes emit light normally based on the plurality of light emitting diode characteristic values obtained while changing the power supply voltage during the power supply voltage adjusting process. Power supply voltage adjusting means for finally setting the lowest level of power supply voltage, the power supply voltage adjusting means executes the power supply voltage adjustment processing, thereby automatically reducing the power supply voltage to a power supply voltage capable of normal operation with low power consumption. Can be adjusted.

【0135】請求項7記載の発光ダイオードの駆動回路
の電圧検出手段は、発光ダイオードのカソードの電圧、
すなわち、定電流駆動手段の出力電圧が検出可能なた
め、電源電圧を変化させながら、出力電圧と所定電圧
(発光ダイオードに定電流を流す最低レベルの電圧)と
の比較結果を検証することによって、発光ダイオードが
正常に発光するレベルで最低レベルの電源電圧を比較的
容易に検知することができる。
According to a seventh aspect of the present invention, the voltage detecting means of the light emitting diode driving circuit comprises:
That is, since the output voltage of the constant current driving means can be detected, the comparison result between the output voltage and the predetermined voltage (the lowest level voltage at which a constant current flows through the light emitting diode) is verified while changing the power supply voltage. The power supply voltage at the lowest level at which the light emitting diode normally emits light can be relatively easily detected.

【0136】請求項8記載の発光ダイオードの駆動回路
の電源電圧調整手段は、電源電圧調整処理時に、電源電
圧を変化させながら電圧検出信号に基づき、カソードの
電圧が所定電圧に等しくなる時の電源電圧に設定するた
め、電源電圧調整手段に電源電圧調整処理を実行させる
ことにより、低消費電力で正常動作が可能な電源電圧に
自動的に調整することができる。
The power supply voltage adjusting means of the light emitting diode driving circuit according to claim 8, wherein the power supply when the cathode voltage becomes equal to a predetermined voltage based on the voltage detection signal while changing the power supply voltage during the power supply voltage adjustment processing. In order to set the power supply voltage, the power supply voltage adjustment unit can execute the power supply voltage adjustment processing, so that the power supply voltage can be automatically adjusted to a power supply voltage that can operate normally with low power consumption.

【0137】請求項9記載の電流検出手段は発光ダイオ
ードを流れる電流が検出可能なため、電源電圧を変化さ
せながら当該電流が発光ダイオードが正常に発光するレ
ベルの電流か否かを検証することによって、発光ダイオ
ードが正常に発光するレベルで最低レベルの電源電圧を
比較的容易に検知することができる。
Since the current detecting means according to the ninth aspect can detect the current flowing through the light emitting diode, it is possible to verify whether or not the current is at a level at which the light emitting diode normally emits light while changing the power supply voltage. In addition, the power supply voltage at the lowest level at which the light emitting diode normally emits light can be detected relatively easily.

【0138】請求項10記載の発光ダイオードの駆動回
路の電源電圧調整手段は、電源電圧調整処理時に、電源
電圧を変化させながら電流検出信号に基づき、発光ダイ
オードを流れる電流が所定の電流に等しくなる時の電源
電圧に設定するため、電源電圧調整手段に電源電圧調整
処理を実行させることにより、低消費電力で正常動作が
可能な電源電圧に自動的に調整することができる。
According to a tenth aspect of the present invention, in the power supply voltage adjusting means of the light emitting diode driving circuit, the current flowing through the light emitting diode becomes equal to a predetermined current based on the current detection signal while changing the power supply voltage during the power supply voltage adjusting process. In order to set the power supply voltage at the time, the power supply voltage adjusting means executes the power supply voltage adjustment processing, so that the power supply voltage can be automatically adjusted to a power supply voltage which can operate normally with low power consumption.

【0139】請求項11記載の発光ダイオードの駆動回
路の輝度検出手段は、発光ダイオードの発光輝度が検出
可能なため、電源電圧を変化させながら、発光輝度と正
常レベルの基準輝度との比較結果を検証することによっ
て、発光ダイオードが正常に発光するレベルで最低レベ
ルの電源電圧を比較的容易に検知することができる。
Since the luminance detecting means of the light emitting diode driving circuit according to the eleventh aspect can detect the light emitting luminance of the light emitting diode, the luminance detecting means compares the light emitting luminance with the normal level reference luminance while changing the power supply voltage. By performing the verification, it is possible to relatively easily detect the power supply voltage at the lowest level at which the light emitting diode normally emits light.

【0140】請求項12記載の発光ダイオードの駆動回
路の電源電圧調整手段は、電源電圧調整処理時に、電源
電圧を変化させながら輝度検出信号に基づき、発光輝度
が基準輝度に等しくなる時の電源電圧に設定するため、
電源電圧調整手段に電源電圧調整処理を実行させること
により、低消費電力で正常動作が可能な電源電圧に自動
的に調整することができる。
According to a twelfth aspect of the present invention, in the power supply voltage adjusting means of the light emitting diode driving circuit, the power supply voltage when the emission luminance becomes equal to the reference luminance based on the luminance detection signal while changing the power supply voltage during the power supply voltage adjustment processing. To set
By causing the power supply voltage adjusting means to execute the power supply voltage adjustment processing, the power supply voltage can be automatically adjusted to a power supply voltage capable of operating normally with low power consumption.

【0141】請求項13記載の発光ダイオードの駆動回
路の電源電圧調整手段は、電源電圧調整処理時に、電源
電圧を変化させながら電流検出信号に基づき、発光ダイ
オードを流れる電流の総計値が所定の総計基準値と等し
くなる時の電源電圧に設定するため、電源電圧調整手段
に電源電圧調整処理を実行させて複数の発光ダイオード
すべてが正常に発光する範囲で最低レベルに電源電圧を
設定するができ、その結果、低消費電力で正常動作が可
能な電源電圧に自動的に調整することができる。
According to a thirteenth aspect of the present invention, in the power supply voltage adjusting means of the light emitting diode driving circuit, the total value of the current flowing through the light emitting diode is a predetermined total value based on the current detection signal while changing the power supply voltage during the power supply voltage adjusting process. In order to set the power supply voltage when it becomes equal to the reference value, the power supply voltage adjusting means can execute the power supply voltage adjustment processing to set the power supply voltage to the lowest level in a range where all of the plurality of light emitting diodes can normally emit light, As a result, the power supply voltage can be automatically adjusted to a power supply voltage that allows normal operation with low power consumption.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1の発光ダイオードの
駆動回路の構成を示すブロック図である。
FIG. 1 is a block diagram illustrating a configuration of a light emitting diode drive circuit according to Embodiment 1 of the present invention.

【図2】 発光ダイオードの電流−電圧特性を示すグラ
フである。
FIG. 2 is a graph showing current-voltage characteristics of a light emitting diode.

【図3】 定電流駆動回路の定電流供給特性を示すグラ
フである。
FIG. 3 is a graph showing a constant current supply characteristic of a constant current drive circuit.

【図4】 実施の形態2の発光ダイオードの駆動回路の
構成を示すブロック図である。
FIG. 4 is a block diagram illustrating a configuration of a light emitting diode drive circuit according to Embodiment 2.

【図5】 実施の形態3の発光ダイオードの駆動回路の
構成を示すブロック図である。
FIG. 5 is a block diagram illustrating a configuration of a light emitting diode drive circuit according to Embodiment 3.

【図6】 図5の電流検出回路の内部構成を示す説明図
である。
6 is an explanatory diagram showing an internal configuration of the current detection circuit of FIG.

【図7】 実施の形態4の発光ダイオードの駆動回路の
構成を示すブロック図である。
FIG. 7 is a block diagram illustrating a configuration of a light emitting diode driving circuit according to a fourth embodiment.

【図8】 実施の形態5の発光ダイオードの駆動回路の
構成を示すブロック図である。
FIG. 8 is a block diagram illustrating a configuration of a light emitting diode drive circuit according to a fifth embodiment.

【図9】 発光ダイオードの電流−輝度特性を示すグラ
フである。
FIG. 9 is a graph showing current-luminance characteristics of a light emitting diode.

【図10】 実施の形態6の発光ダイオードの駆動回路
の構成を示すブロック図である。
FIG. 10 is a block diagram illustrating a configuration of a light emitting diode drive circuit according to Embodiment 6.

【図11】 実施の形態7の発光ダイオードの駆動回路
の構成を示すブロック図である。
FIG. 11 is a block diagram illustrating a configuration of a light emitting diode drive circuit according to Embodiment 7.

【図12】 実施の形態8の発光ダイオードの駆動回路
の構成を示すブロック図である。
FIG. 12 is a block diagram illustrating a configuration of a light emitting diode drive circuit according to an eighth embodiment.

【図13】 従来の発光ダイオードの駆動回路の構成を
示すブロック図である。
FIG. 13 is a block diagram showing a configuration of a conventional light emitting diode drive circuit.

【図14】 図13の回路を模式的に示すブロック図で
ある。
FIG. 14 is a block diagram schematically showing the circuit of FIG.

【符号の説明】[Explanation of symbols]

1,1a〜1e 発光ダイオード、2,2a〜2e 定
電流駆動回路、3 信号制御機能付可変直流電源、4
電圧検出回路、5 ワンチップマイコン、7可変直流電
源、8 電圧計、9,19 電流検出回路、10 電流
計、11 光−電気変換回路、12 輝度計。
1, 1a-1e light emitting diode, 2, 2a-2e constant current drive circuit, 3 variable DC power supply with signal control function, 4
Voltage detection circuit, 5 one-chip microcomputer, 7 variable DC power supply, 8 voltmeter, 9, 19 current detection circuit, 10 ammeter, 11 opto-electric conversion circuit, 12 luminance meter.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 発光ダイオードと、 前記発光ダイオードの発光用の電源電圧を前記発光ダイ
オードのアノードに供給し、該電源電圧が可変設定可能
である可変電源と、 前記発光ダイオードのカソードに接続され、該カソード
の電圧が出力電圧となり該出力電圧が所定電圧以上のと
き、前記発光ダイオードに定電流を流す定電流駆動手段
と、を備える発光ダイオードの駆動回路。
1. A light emitting diode, a power supply voltage for light emission of the light emitting diode is supplied to an anode of the light emitting diode, and a variable power supply capable of variably setting the power supply voltage; and a cathode connected to the light emitting diode, A constant current driving means for supplying a constant current to the light emitting diode when the voltage at the cathode becomes an output voltage and the output voltage is equal to or higher than a predetermined voltage.
【請求項2】 前記発光ダイオードが正常に発光してい
るか否かを示す指標となる発光ダイオード特性値が検出
可能な発光ダイオード特性値検出手段を、さらに備える
請求項1記載の発光ダイオードの駆動回路。
2. The light-emitting diode driving circuit according to claim 1, further comprising a light-emitting diode characteristic value detecting means capable of detecting a light-emitting diode characteristic value serving as an index indicating whether the light-emitting diode emits light normally. .
【請求項3】 電源電圧調整処理時に、前記電源電圧を
変化させながら前記発光ダイオード特性値検出手段で測
定されて得られる前記発光ダイオード特性値に基づき、
前記発光ダイオードが正常に発光する範囲で最低レベル
の前記電源電圧を最終的に設定する電源電圧調整手段
を、さらに備える請求項2記載の発光ダイオードの駆動
回路。
3. A power supply voltage adjusting process, wherein the power supply voltage is changed while the light emitting diode characteristic value obtained by measurement by the light emitting diode characteristic value detection means is based on:
3. The light emitting diode driving circuit according to claim 2, further comprising a power supply voltage adjusting unit that finally sets the power supply voltage at the lowest level in a range where the light emitting diode normally emits light.
【請求項4】 前記発光ダイオードは複数の発光ダイオ
ードを含み、 前記定電流駆動手段は前記複数の発光ダイオードに1対
1に対応した複数の定電流駆動手段を含む、請求項1記
載の発光ダイオードの駆動回路。
4. The light emitting diode according to claim 1, wherein the light emitting diode includes a plurality of light emitting diodes, and the constant current driving unit includes a plurality of constant current driving units corresponding to the plurality of light emitting diodes on a one-to-one basis. Drive circuit.
【請求項5】 前記複数の発光ダイオードに1対1に対
応して設けられ、各々が前記複数の発光ダイオードのう
ち対応する発光ダイオードが正常に発光しているか否か
を示す指標となる発光ダイオード特性値が検出可能な複
数の発光ダイオード特性値検出手段を、さらに備える請
求項4記載の発光ダイオードの駆動回路。
5. A light emitting diode which is provided in a one-to-one correspondence with each of the plurality of light emitting diodes and serves as an index indicating whether or not a corresponding light emitting diode among the plurality of light emitting diodes normally emits light. 5. The light emitting diode driving circuit according to claim 4, further comprising a plurality of light emitting diode characteristic value detecting means capable of detecting characteristic values.
【請求項6】 電源電圧調整処理時に、電源電圧を変化
させながら前記複数の発光ダイオード特性値検出手段で
測定されて得られる複数の前記発光ダイオード特性値に
基づき、前記複数の発光ダイオードのすべてが正常に発
光する範囲で最低レベルの前記電源電圧を最終的に設定
する電源電圧調整手段を、さらに備える請求項5記載の
発光ダイオードの駆動回路。
6. In the power supply voltage adjustment process, all of the plurality of light emitting diodes are changed based on the plurality of light emitting diode characteristic values obtained by measuring the plurality of light emitting diode characteristic value detecting means while changing the power supply voltage. 6. The light emitting diode driving circuit according to claim 5, further comprising a power supply voltage adjusting means for finally setting the power supply voltage at the lowest level within a range in which light emission is normal.
【請求項7】 前記発光ダイオード特性値検出手段は、
前記発光ダイオード特性値として前記発光ダイオードの
前記カソードの電圧が検出可能な電圧検出手段を含む、
請求項2記載の発光ダイオードの駆動回路。
7. The light emitting diode characteristic value detecting means,
Including voltage detection means capable of detecting the voltage of the cathode of the light emitting diode as the light emitting diode characteristic value,
A driving circuit for a light emitting diode according to claim 2.
【請求項8】 前記発光ダイオードは前記定電流が流れ
ると正常に発光する発光ダイオードを含み、 前記発光ダイオード特性値検出手段は、前記発光ダイオ
ードの前記カソードの電圧と前記所定電圧との比較結果
を電圧検出信号として出力する電圧検出手段を含み、前
記発光ダイオード特性値は前記電圧検出信号を含み、 前記電源電圧調整手段は、前記電源電圧調整処理時に、
前記電源電圧を変化させながら得られる前記電圧検出信
号に基づき、前記カソードの電圧が前記所定電圧に等し
くなる時の前記電源電圧に設定する手段を含む、請求項
3記載の発光ダイオードの駆動回路。
8. The light-emitting diode includes a light-emitting diode that emits light normally when the constant current flows, and the light-emitting diode characteristic value detecting means calculates a comparison result between the voltage of the cathode of the light-emitting diode and the predetermined voltage. The power supply voltage adjustment unit includes a voltage detection unit that outputs a voltage detection signal, the light emitting diode characteristic value includes the voltage detection signal,
4. The light emitting diode driving circuit according to claim 3, further comprising: means for setting the power supply voltage when the voltage of the cathode becomes equal to the predetermined voltage, based on the voltage detection signal obtained while changing the power supply voltage.
【請求項9】 前記発光ダイオード特性値検出手段は、
前記発光ダイオード特性値として前記発光ダイオードを
流れる電流が検出可能な電流検出手段を含む、請求項2
記載の発光ダイオードの駆動回路。
9. The light emitting diode characteristic value detecting means,
3. A light emitting device according to claim 2, further comprising a current detecting means for detecting a current flowing through the light emitting diode as the light emitting diode characteristic value.
The driving circuit of the light-emitting diode according to the above.
【請求項10】 前記発光ダイオードは所定の電流が流
れると正常に発光する発光ダイオードを含み、 前記発光ダイオード特性値検出手段は、前記発光ダイオ
ードを流れる電流と前記所定の電流との比較結果を電流
検出信号として出力する電流検出手段を含み、前記発光
ダイオード特性値は前記電流検出信号を含み、 前記電源電圧調整手段は、前記電源電圧調整処理時に、
前記電源電圧を変化させながら前記電流検出信号に基づ
き、前記発光ダイオードを流れる電流が前記所定の電流
に等しくなる時の前記電源電圧に設定する手段を含む、
請求項3記載の発光ダイオードの駆動回路。
10. The light-emitting diode includes a light-emitting diode that emits light normally when a predetermined current flows, and the light-emitting diode characteristic value detecting means determines a comparison result between the current flowing through the light-emitting diode and the predetermined current. The power supply voltage adjustment unit includes a current detection unit that outputs the detection signal, and the light emitting diode characteristic value includes the current detection signal.
Based on the current detection signal while changing the power supply voltage, including means for setting the power supply voltage when the current flowing through the light emitting diode becomes equal to the predetermined current,
A light emitting diode driving circuit according to claim 3.
【請求項11】 前記発光ダイオード特性値検出手段
は、前記発光ダイオード特性値として前記発光ダイオー
ドの発光輝度が検出可能な輝度検出手段を含む、請求項
2記載の発光ダイオードの駆動回路。
11. The light emitting diode driving circuit according to claim 2, wherein said light emitting diode characteristic value detecting means includes a luminance detecting means capable of detecting a light emitting luminance of said light emitting diode as said light emitting diode characteristic value.
【請求項12】 前記発光ダイオード特性値検出手段
は、前記発光ダイオードの発光輝度と前記発光ダイオー
ドの正常に発光するレベルの基準輝度との比較結果を輝
度検出信号として出力する輝度検出手段を含み、前記発
光ダイオード特性値は前記輝度検出信号を含み、 前記電源電圧調整手段は、前記電源電圧調整処理時に、
前記電源電圧を変化させながら前記輝度検出信号に基づ
き、前記発光輝度が前記基準輝度に等しくなる時の前記
電源電圧に設定する手段を含む、請求項3記載の発光ダ
イオードの駆動回路。
12. The light emitting diode characteristic value detecting means includes a luminance detecting means for outputting, as a luminance detecting signal, a comparison result between the light emitting luminance of the light emitting diode and a reference luminance of a level at which the light emitting diode emits light normally. The light emitting diode characteristic value includes the luminance detection signal, the power supply voltage adjustment means, during the power supply voltage adjustment processing,
4. The light emitting diode driving circuit according to claim 3, further comprising: a unit that sets the power supply voltage when the light emission luminance becomes equal to the reference luminance based on the luminance detection signal while changing the power supply voltage.
【請求項13】 前記複数の発光ダイオードを流れる電
流の総計値と、前記複数の発光ダイオードが正常に発光
すると判断される総計基準値との比較結果を電流検出信
号として出力する電流検出手段と、 電源電圧調整処理時に、前記電源電圧を変化させながら
前記電流検出信号に基づき、前記発光ダイオードを流れ
る電流の総計値が所定の総計基準値と等しくなる時の前
記電源電圧に設定する電源電圧調整手段と、をさらに備
える請求項4記載の発光ダイオードの駆動回路。
13. Current detection means for outputting, as a current detection signal, a comparison result between a total value of currents flowing through the plurality of light emitting diodes and a total reference value determined to be normal for the plurality of light emitting diodes to emit light; Power supply voltage adjusting means for setting the power supply voltage at the time when the total value of the current flowing through the light emitting diode becomes equal to a predetermined total reference value based on the current detection signal while changing the power supply voltage during the power supply voltage adjustment process The driving circuit for a light emitting diode according to claim 4, further comprising:
JP11156197A 1999-06-03 1999-06-03 Driving circuit for light emitting diode Pending JP2000347613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11156197A JP2000347613A (en) 1999-06-03 1999-06-03 Driving circuit for light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11156197A JP2000347613A (en) 1999-06-03 1999-06-03 Driving circuit for light emitting diode

Publications (1)

Publication Number Publication Date
JP2000347613A true JP2000347613A (en) 2000-12-15

Family

ID=15622500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11156197A Pending JP2000347613A (en) 1999-06-03 1999-06-03 Driving circuit for light emitting diode

Country Status (1)

Country Link
JP (1) JP2000347613A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002297098A (en) * 2001-03-30 2002-10-09 Pioneer Electronic Corp Drive device for light-emitting panel
JP2002366099A (en) * 2001-06-04 2002-12-20 Tohoku Pioneer Corp Driving device of capacitive light emitting display panel
EP1383103A1 (en) 2002-07-19 2004-01-21 St Microelectronics S.A. Automatic adaptation of the supply voltage of an electroluminescent panel depending on the desired luminance
WO2004030042A2 (en) * 2002-09-27 2004-04-08 Tdk Semiconductor Corporation Method and apparatus for current driving of light emitting polymer displays
JP2005043888A (en) * 2003-07-22 2005-02-17 Barco Nv Method for controlling organic light-emitting diode display and display applying the method
JP2005530203A (en) * 2002-06-18 2005-10-06 ケンブリッジ ディスプレイ テクノロジー リミテッド Display driver circuit for electroluminescent display using constant current source
JP2005536772A (en) * 2002-08-21 2005-12-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Display device
KR100628716B1 (en) 2005-02-02 2006-09-28 삼성전자주식회사 Led driver
JP2007086778A (en) * 2005-09-16 2007-04-05 Samsung Electronics Co Ltd Display device
JP2007242477A (en) * 2006-03-09 2007-09-20 Nichia Chem Ind Ltd Light emitting device, light emitting element driving circuit, and method of driving light emitting element
JP2008203892A (en) * 2002-03-18 2008-09-04 Nichia Chem Ind Ltd Led driving system and its control method
WO2008144961A1 (en) * 2007-05-31 2008-12-04 Texas Instruments Incorporated Regulation for led strings
US7463252B2 (en) 2002-07-19 2008-12-09 Stmicroelectronics S.A. Image display on an array screen
JP2008547368A (en) * 2005-06-20 2008-12-25 オーストリアマイクロシステムス アーゲー Current source arrangement and method of operating an electrical load
JP2009042788A (en) * 2008-11-10 2009-02-26 Sony Corp Display device and driving method thereof
WO2012104996A1 (en) * 2011-02-01 2012-08-09 パイオニア株式会社 Drive device for light emitting element
JP2012525612A (en) * 2009-05-01 2012-10-22 ビルボード ビデオ,インク. Electronic display panel
CN102789753A (en) * 2011-05-16 2012-11-21 福建富顺电子有限公司 Light-emitting diode (LED) sport competition countdown displayer capable of dimming
JP2013097169A (en) * 2011-11-01 2013-05-20 Mitsubishi Electric Corp Driving device of display unit
US8547030B2 (en) 2010-02-04 2013-10-01 Ams Ag Current source, current source arrangement and their use
US9041643B2 (en) 2002-05-31 2015-05-26 Sony Corporation Light emitting element drive apparatus and portable apparatus using same

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002297098A (en) * 2001-03-30 2002-10-09 Pioneer Electronic Corp Drive device for light-emitting panel
JP2002366099A (en) * 2001-06-04 2002-12-20 Tohoku Pioneer Corp Driving device of capacitive light emitting display panel
JP2008203892A (en) * 2002-03-18 2008-09-04 Nichia Chem Ind Ltd Led driving system and its control method
US9717124B2 (en) 2002-05-31 2017-07-25 Sony Corporation Light emitting element drive apparatus and portable apparatus using same
US9041643B2 (en) 2002-05-31 2015-05-26 Sony Corporation Light emitting element drive apparatus and portable apparatus using same
US9148927B2 (en) 2002-05-31 2015-09-29 Sony Corporation Light emitting element drive apparatus and portable apparatus using same
JP2005530203A (en) * 2002-06-18 2005-10-06 ケンブリッジ ディスプレイ テクノロジー リミテッド Display driver circuit for electroluminescent display using constant current source
US7755580B2 (en) 2002-07-19 2010-07-13 Stmicroelectronics S.A. Automated adaptation of the supply voltage of a light-emitting display according to the desired luminance
US7463252B2 (en) 2002-07-19 2008-12-09 Stmicroelectronics S.A. Image display on an array screen
EP1383103A1 (en) 2002-07-19 2004-01-21 St Microelectronics S.A. Automatic adaptation of the supply voltage of an electroluminescent panel depending on the desired luminance
JP2005536772A (en) * 2002-08-21 2005-12-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Display device
WO2004030042A3 (en) * 2002-09-27 2004-09-23 Tdk Semiconductor Corp Method and apparatus for current driving of light emitting polymer displays
WO2004030042A2 (en) * 2002-09-27 2004-04-08 Tdk Semiconductor Corporation Method and apparatus for current driving of light emitting polymer displays
JP2005043888A (en) * 2003-07-22 2005-02-17 Barco Nv Method for controlling organic light-emitting diode display and display applying the method
KR100628716B1 (en) 2005-02-02 2006-09-28 삼성전자주식회사 Led driver
JP2008547368A (en) * 2005-06-20 2008-12-25 オーストリアマイクロシステムス アーゲー Current source arrangement and method of operating an electrical load
US8063585B2 (en) 2005-06-20 2011-11-22 Austriamicrosystems Ag Power supply system and method for the operation of an electrical load
JP2007086778A (en) * 2005-09-16 2007-04-05 Samsung Electronics Co Ltd Display device
JP4663606B2 (en) * 2005-09-16 2011-04-06 三星電子株式会社 Display device
JP2007242477A (en) * 2006-03-09 2007-09-20 Nichia Chem Ind Ltd Light emitting device, light emitting element driving circuit, and method of driving light emitting element
WO2008144961A1 (en) * 2007-05-31 2008-12-04 Texas Instruments Incorporated Regulation for led strings
US7843150B2 (en) 2007-05-31 2010-11-30 Texas Instruments Incorporated Power regulation for LED strings
JP2009042788A (en) * 2008-11-10 2009-02-26 Sony Corp Display device and driving method thereof
JP2012525612A (en) * 2009-05-01 2012-10-22 ビルボード ビデオ,インク. Electronic display panel
US8547030B2 (en) 2010-02-04 2013-10-01 Ams Ag Current source, current source arrangement and their use
WO2012104996A1 (en) * 2011-02-01 2012-08-09 パイオニア株式会社 Drive device for light emitting element
US9215766B2 (en) 2011-02-01 2015-12-15 Pioneer Corporation Drive device for light-emitting element
CN102789753A (en) * 2011-05-16 2012-11-21 福建富顺电子有限公司 Light-emitting diode (LED) sport competition countdown displayer capable of dimming
JP2013097169A (en) * 2011-11-01 2013-05-20 Mitsubishi Electric Corp Driving device of display unit

Similar Documents

Publication Publication Date Title
JP2000347613A (en) Driving circuit for light emitting diode
US8633655B2 (en) LED (Light-Emitting Diode) output power adjusting device and method thereof
US8324825B2 (en) Method and circuit for driving a low voltage light emitting diode
US8581512B2 (en) Light source module, lighting apparatus, and illumination device using the same
KR101099991B1 (en) Adaptive switch mode led driver
CN102076138B (en) Electric supply input LED (Light Emitting Diode) constant current driver
US20070262763A1 (en) Power supply circuit device and electronic apparatus provided therewith
CN110262615B (en) Power supply feedback adjusting system and display screen
US20130169171A1 (en) Light emission driver device
US20070217094A1 (en) Switching regulator
KR100790650B1 (en) Power supply for positive and negative output voltages
US7368885B2 (en) Lighting controller for lighting device for vehicle
US8736179B2 (en) Lighting apparatus with hybrid power supply device, and method utilizing the same
CN202941027U (en) Device for driving multiple strings of light emitting diodes
CN117039610A (en) Laser driving circuit and driving method, lighting system and laser radar
JP7213875B2 (en) LED array driver
CN201116672Y (en) Equal-current controllable light-emitting diode array circuit
KR100528259B1 (en) Nonlinear load boosting circuit
JPH10111487A (en) Lcd back light driving circuit
CN110177406B (en) Current correction techniques for accurate high current short channel drivers
EP2434844B1 (en) Lighting device, illumination fixture, and illumination system
CN216531860U (en) PWM (pulse-width modulation) dimming receiving circuit
TWI760202B (en) LED driving system, driving device and brightness control circuit
CN114371645B (en) Control circuit and device
CN212137974U (en) Fault detection circuit for intelligent LED lamp circuit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050329