JP2000346980A - Reactor output measuring device - Google Patents

Reactor output measuring device

Info

Publication number
JP2000346980A
JP2000346980A JP11157486A JP15748699A JP2000346980A JP 2000346980 A JP2000346980 A JP 2000346980A JP 11157486 A JP11157486 A JP 11157486A JP 15748699 A JP15748699 A JP 15748699A JP 2000346980 A JP2000346980 A JP 2000346980A
Authority
JP
Japan
Prior art keywords
detector
ray
output
rays
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11157486A
Other languages
Japanese (ja)
Inventor
Atsushi Fushimi
篤 伏見
Hiromi Maruyama
博見 丸山
Kunitoshi Kurihara
国寿 栗原
Keiichiro Shibata
圭一郎 柴田
Koichi Maki
紘一 真木
Makoto Hasegawa
真 長谷川
Setsuo Arita
節男 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11157486A priority Critical patent/JP2000346980A/en
Publication of JP2000346980A publication Critical patent/JP2000346980A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To make convertible the output signal of a γ-ray detector into a fuel assembly output by setting the sum of γ rays being generated from a fuel rod and those other than it to the value of γ rays at the position of the detector and using the sum and the calculation value of adjacent fuel assembly output. SOLUTION: The output signal of a γ-ray detector is sent to an output conversion device 9 via a filter 8. An adjacent fuel assembly output calculation means 10 takes in a parameter for indicating the state of fuel being adjacent to each fixed γ-ray detector 4 from a process computer or the like, and calculates the output of the adjacent fuel assembly by an incorporated evaluation method based on it. A fuel road γ-ray calculation means 11 calculates γrays from the fuel rod of the adjacent fuel assembly by a specific evaluation method based on a parameter for indicating the state of the adjacent fuel similarly. A structure material γ-ray calculation means 12 calculates γ rays from a member other than the inner and outer fuel rods based on a parameter for indicating the state of the adjacent fuel. The output of the adjacent fuel assembly being calculated by them and the value of γ rays are sent to an output conversion device 9 is obtained the calculation values of all γ rays.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固定式中性子検出
器および固定式γ線検出器での計測値と、炉心物理モデ
ルから求めた出力分布計算値とに基づいて原子炉出力、
および原子炉内出力分布を求める原子炉出力測定装置に
関する。
BACKGROUND OF THE INVENTION The present invention relates to a reactor output based on measured values of a fixed neutron detector and a fixed gamma ray detector, and a calculated power distribution calculated from a core physics model.
And a reactor power measuring device for obtaining a power distribution in a reactor.

【0002】[0002]

【従来の技術】沸騰水型原子炉の原子炉出力分布測定、
および固定式出力検出器による原子炉出力測定の較正
を、固定式γ線検出器を用いて行うことについては公知
である。特に、γ線温度計を用いた公知例として特開平
10-104388号があり、この中でγ線温度計の出力信号を
γ線束の値に換算し、このγ線束の値を近接する燃料集
合体の局所平均出力に換算する原子炉出力測定装置が開
示されている。
2. Description of the Related Art Reactor power distribution measurement of a boiling water reactor,
It is known to calibrate reactor power measurements with fixed power detectors using fixed γ-ray detectors. In particular, as a known example using a γ-ray thermometer,
There is a reactor power measurement device that converts the output signal of a γ-ray thermometer into a value of γ-ray flux and converts the value of this γ-ray flux into the local average output of an adjacent fuel assembly. It has been disclosed.

【0003】さらに、炉内γ線は核分裂生成物の崩壊に
伴う遅発γ線の影響で、出力の変化に即応しない成分が
あり、この遅発γ線成分に対応する補正が必要であるこ
とが特開昭61-61095号、特公平5-48438号に示されてい
る。
In addition, the gamma ray in the reactor has a component that does not immediately respond to a change in output due to the effect of delayed gamma ray accompanying the decay of fission products, and a correction corresponding to the delayed gamma ray component is necessary. Are disclosed in JP-A-61-61095 and JP-B-5-48438.

【0004】[0004]

【発明が解決しようとする課題】上述したように、従来
のγ線検出器による原子炉出力測定装置では、計測され
たγ線束を近接燃料集合体の局所平均出力に換算する際
に、出力変化に即応しない遅発γ線成分に対する補正は
考慮されている。一方、計測されたγ線には、燃料集合
体内の燃料棒から生じる成分と、燃料集合体外の構造材
から生じる成分が含まれ、構造材から生じる成分も全体
の中で有意な割合を占めるという事実は、これまで指摘
されていない。燃料棒で生じるγ線の発生量は、燃料棒
以外の部材から生じる量に比べてはるかに大きいが、遮
蔽効果の高い燃料中を通過した後に検出器に到達するた
め、検出されるまでの減衰が大きい。一方、燃料棒以外
の領域、特に検出器集合体で生じたγ線は、ほとんど減
衰することなく検出される。このため、典型的な沸騰水
型原子炉炉心内に設置されたγ線温度計を用いた固定γ
線検出器の場合、計測されるγ線のうち燃料棒から生じ
たγ線は約70%であり、残り約30%の内の大部分は検出器
集合体自身で生じたものである。
As described above, in the conventional reactor power measuring device using a gamma ray detector, when the measured gamma ray flux is converted into the local average power of the adjacent fuel assembly, the output change The correction for the delayed γ-ray component which does not immediately respond to the above is considered. On the other hand, the measured γ-rays include components originating from fuel rods inside the fuel assembly and components originating from structural materials outside the fuel assembly, and components originating from structural materials also account for a significant proportion of the total. The fact has not been pointed out so far. The amount of γ-rays generated from fuel rods is much larger than the amount generated from members other than fuel rods.However, since they reach the detector after passing through fuel with a high shielding effect, attenuation until detection Is big. On the other hand, γ-rays generated in regions other than the fuel rods, particularly in the detector assembly, are detected with little attenuation. For this reason, a fixed γ using a γ-ray thermometer installed in a typical boiling water reactor core
In the case of a line detector, about 70% of the measured γ-rays are generated from the fuel rods, and most of the remaining about 30% are generated by the detector assembly itself.

【0005】そのため、まず第一に、燃料棒以外からの
γ線計測値への寄与、特に検出器集合体自身からの寄与
を考慮しないと、燃料棒から生じるγ線を見かけ上約30
%過大に評価してしまい、隣接燃料集合体の出力に大き
な誤差を生じる可能性がある。
[0005] Therefore, first of all, if the contribution to the measured γ-rays from other than the fuel rods, especially the contribution from the detector assembly itself, is not considered, the apparent γ-rays generated from the fuel rods are about 30
%, Which may cause a large error in the output of the adjacent fuel assembly.

【0006】第二に、燃料棒から生じるγ線と燃料棒以
外から生じるγ線では、γ線の発生機構が異なること、
発生したγ線が検出器に到達するまでの輸送過程が異な
ることから、両者を統一的に扱う方法では隣接燃料集合
体出力への換算精度を保持できない可能性がある。特
に、燃料棒以外から生じるγ線は中性子捕獲γ線のみで
あり、かつ、大部分が検出器集合体で生じることからそ
の輸送過程は検出器の構造でほぼ決まる。このため、燃
料棒以外からのγ線は検出器付近の中性子束レベルを用
いることにより直接的に評価でき、この成分を燃料棒か
ら生じるγ線と分離して評価することが、簡略な評価手
法で精度を保持するために極めて有効である。さらに、
燃料棒以外から生じるγ線には、燃料棒で生じる出力変
化に即応しない遅発γ線成分が含まれていない。そこ
で、燃料棒以外、特に検出器集合体で生じる中性子捕獲
γ線の割合を増大すれば、出力変化に即応しない成分を
低減でき、より応答の速い測定が可能となる。
Second, the γ-ray generation mechanism is different between γ-rays generated from fuel rods and γ-rays generated from sources other than fuel rods.
Since the transportation process until the generated γ-rays reach the detector is different, there is a possibility that the accuracy of conversion to the output of the adjacent fuel assembly cannot be maintained by a method that treats both of them in a unified manner. In particular, the γ-rays generated from parts other than the fuel rods are only neutron capture γ-rays, and since most of the γ-rays are generated in the detector assembly, the transport process is substantially determined by the structure of the detector. Therefore, γ-rays from sources other than the fuel rod can be directly evaluated by using the neutron flux level near the detector, and this component can be evaluated separately from γ-rays generated from the fuel rod. This is extremely effective for maintaining accuracy. further,
The γ-rays generated from parts other than the fuel rods do not include a delayed γ-ray component that does not immediately respond to the output change generated in the fuel rods. Therefore, if the ratio of neutron capture γ-rays generated in the detector assembly other than the fuel rods is increased, the component that does not immediately respond to the output change can be reduced, and a measurement with a faster response can be performed.

【0007】本発明の目的は、検出器位置でのγ線の値
を、燃料棒から生じるγ線と燃料棒以外から生じるγ線
の和として算出し、このγ線算出値と隣接燃料集合体出
力の算出値とを用いることにより、γ線検出器の出力信
号を高精度で隣接燃料集合体出力に換算する機能を持っ
た原子炉出力測定装置を提供することにある。
An object of the present invention is to calculate a value of γ-ray at a detector position as a sum of γ-ray generated from a fuel rod and γ-ray generated from a portion other than the fuel rod. An object of the present invention is to provide a reactor power measuring apparatus having a function of converting an output signal of a γ-ray detector into an output of an adjacent fuel assembly with high accuracy by using a calculated value of the output.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
の第一の手段は、原子炉内の中性子束から出力分布を測
定する局所出力検出器と、γ線温度計をもちいた固定式
γ線検出器とを含む検出器集合体を原子炉内に複数設置
し、局所出力検出器および固定式γ線検出器での計測値
から原子炉出力および出力分布を求める原子炉出力測定
装置において、検出器集合体に隣接する燃料集合体の状
態を表すパラメータに基づき、隣接燃料集合体の燃料棒
から生じるγ線の検出器位置での値を算出する手段と、
燃料集合体内外の燃料棒以外の部材から生じるγ線の検
出器位置での値を算出する手段と、隣接燃料集合体の出
力を算出する手段とを備え、前記2つのγ線算出値の和
として全γ線を求めることにより、簡略な手法で高精度
に検出器位置での値を算出し、この値と隣接燃料集合体
出力の算出値とを用いて、固定式γ線検出器の計測値を
隣接燃料集合体の出力に換算することである。
A first means for achieving the above object is a local power detector for measuring a power distribution from a neutron flux in a nuclear reactor, and a fixed type γ using a γ-ray thermometer. A plurality of detector assemblies including a X-ray detector are installed in a reactor, and a reactor power measuring device for obtaining a reactor power and a power distribution from measured values with a local power detector and a fixed γ-ray detector, Means for calculating a value at the detector position of γ-rays generated from the fuel rods of the adjacent fuel assembly, based on a parameter representing the state of the fuel assembly adjacent to the detector assembly,
Means for calculating a value at the detector position of γ-rays generated from members other than the fuel rods inside and outside the fuel assembly; and means for calculating the output of the adjacent fuel assembly, and the sum of the two calculated γ-ray values Calculate the value at the detector position with high accuracy by a simple method by calculating all the γ-rays, and measure the fixed γ-ray detector using this value and the calculated value of the output of the adjacent fuel assembly. It is to convert the value to the output of an adjacent fuel assembly.

【0009】第二の手段は、第一の手段において、燃料
棒以外から生じるγ線の検出器位置での値を、直接的な
相関関係の強い固定式γ線検出器付近の中性子束レベル
の関数として算出することである。
The second means is that, in the first means, a value at a detector position of γ-rays generated from a portion other than the fuel rod is converted into a neutron flux level near a fixed γ-ray detector having a strong direct correlation. It is calculated as a function.

【0010】第三の手段は、検出器集合体で生じる中性
子捕獲γ線の割合を増大することにより、γ線の輸送過
程がより容易に評価でき、かつ、出力変化に即応しない
成分を低減できるよう、固定式γ線検出器の検出部付近
に該検出部部材よりも強い中性子捕獲γ線を発生する物
質を付加することである。
The third means is that by increasing the proportion of neutron capture γ-rays generated in the detector assembly, it is possible to more easily evaluate the γ-ray transport process and to reduce components that do not respond immediately to output changes. As described above, a substance that generates neutron-capturing γ-rays that is stronger than that of the detection section member is added near the detection section of the fixed γ-ray detector.

【0011】第四の手段は、第三の手段と同様に検出器
付近で生じる中性子捕獲γ線の割合を増大するため、筒
状のγ線遮蔽部材の内部に固定式γ線検出器を設置し、
燃料棒からのγ線による検出量を低減することである。
A fourth means is to install a fixed γ-ray detector inside a cylindrical γ-ray shielding member in order to increase the ratio of neutron capture γ-rays generated near the detector similarly to the third means. And
The purpose is to reduce the amount of detection by γ-rays from fuel rods.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施形態につい
て、図面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1は、本発明の原子炉出力測定装置の第
一の実施例を示す。図のように、原子炉の圧力容器1内
の炉心2内部に複数の検出器集合体3が設けられてい
る。各検出器集合体3は、炉心を貫通して設けられた保
護管の内部に、出力領域の中性子を検出する複数の局所
出力検出器(以下、LPRMセンサという)5と、この
LPRMセンサの較正手段と第2の出力検出手段とを兼
用する複数の固定式γ線検出器4を挿入して構成されて
いる。
FIG. 1 shows a first embodiment of a reactor power measuring apparatus according to the present invention. As shown, a plurality of detector assemblies 3 are provided inside a reactor core 2 in a pressure vessel 1 of a nuclear reactor. Each of the detector assemblies 3 includes a plurality of local power detectors (hereinafter, referred to as LPRM sensors) 5 for detecting neutrons in a power region inside a protection tube provided through the core, and calibration of the LPRM sensors. A plurality of fixed γ-ray detectors 4, which serve both as a means and a second output detecting means, are inserted.

【0014】LPRMセンサ5は、A、B、C、Dで示
すように、炉心の高さ方向に沿って4個設けられてい
る。そして、LPRMセンサの出力信号は、信号ケーブ
ルを介してLPRM処理手段6に入力される。LPRM
処理手段6は、高周波信号を抑制して中性子束信号を出
力するためのフィルタリング手段およびLPRMセンサ
の感度劣化を補正するための較正手段を備えている。L
PRM処理手段6の出力信号は、局所出力信号として出
力される他、APRM(平均出力領域モニタ)7と比較
手段13に出力されている。APRM7は、LPRM処
理手段の出力信号を用いて原子炉の平均出力を算出し、
平均炉出力として出力する。また、APRMは、この平
均炉出力があらかじめ設定された基準値を越えた場合、
原子炉に制御棒を緊急挿入して原子炉を停止させるため
のスクラム信号を出力する。
As shown by A, B, C and D, four LPRM sensors 5 are provided along the height direction of the core. Then, the output signal of the LPRM sensor is input to the LPRM processing unit 6 via a signal cable. LPRM
The processing unit 6 includes a filtering unit for suppressing a high-frequency signal and outputting a neutron flux signal, and a calibration unit for correcting the sensitivity deterioration of the LPRM sensor. L
The output signal of the PRM processing means 6 is output as a local output signal and is also output to an APRM (average output area monitor) 7 and a comparing means 13. APRM7 calculates the average power of the reactor using the output signal of the LPRM processing means,
Output as average furnace output. Further, APRM will calculate the average furnace power if it exceeds a preset reference value.
The scram signal for stopping the reactor by urgently inserting the control rod into the reactor is output.

【0015】一方、固定式γ線検出器は、図中にa、
b、c、…、jで示すように、LPRMセンサの数より
多く設けられている。このように固定式γ線検出器の設
置数を多くしているのは、LPRMセンサの較正精度お
よび炉心高さ方向出力分布測定精度を高めるためであ
る。図示例では、11個の固定式γ線検出器を設けたも
のを示している。
On the other hand, the fixed type γ-ray detector has a
As shown by b, c,..., j, a larger number of LPRM sensors are provided. The reason why the number of fixed gamma ray detectors is increased in this way is to enhance the calibration accuracy of the LPRM sensor and the accuracy of measuring the power distribution in the height direction of the core. In the illustrated example, 11 fixed γ-ray detectors are provided.

【0016】固定式γ線検出器としては、γ線温度計を
用いることができる。γ線温度計は、主に隣接する燃料
集合体からのγ線照射によって発熱する金属の温度を熱
電対等で測定することにより原子炉内の出力を測定する
ものであり、照射による感度劣化が少ないこと、構造が
単純なことなどから固定式γ線検出器に適した特徴を有
している。γ線温度計自体の較正には、γ線温度計に並
設した電気ヒータ(図示せず)を用いる。すなわち、こ
の電気ヒータに印加する電圧と電流および電気ヒータの
抵抗値を基に加熱量を評価し、この加熱量と上記熱電対
の出力電圧および別途用意される較正曲線(発熱量と熱
電対出力電圧の関係)を基にセンサ感度を求め、例えば
特開平9-236686号に具体的に述べられているような方法
で熱電対出力信号を補正することで較正する。
As the fixed gamma ray detector, a gamma ray thermometer can be used. The γ-ray thermometer measures the power inside the reactor mainly by measuring the temperature of the metal that generates heat by γ-ray irradiation from the adjacent fuel assembly with a thermocouple, etc., and there is little sensitivity deterioration due to irradiation. In addition, it has features suitable for a fixed-type γ-ray detector because of its simple structure. For calibration of the γ-ray thermometer itself, an electric heater (not shown) arranged in parallel with the γ-ray thermometer is used. That is, the heating amount is evaluated based on the voltage and current applied to the electric heater and the resistance value of the electric heater, and the heating amount, the output voltage of the thermocouple, and a separately prepared calibration curve (heating value and thermocouple output) are used. The sensor sensitivity is determined based on the voltage relationship), and calibration is performed by correcting the thermocouple output signal by a method specifically described in, for example, JP-A-9-236686.

【0017】図1では、LPRMセンサが固定式γ線検
出器と同一高さにある場合を示しており、LPRMセン
サ5A、5B、5C、5Dがγ線温度計4c4e、4
g、4iとそれぞれ同じ高さに設置されている。したが
って、これらのLPRMセンサ5A、5B、5C、5D
はそれぞれγ線温度計4c4e、4g、4iの出力に基
いて較正することが可能である。
FIG. 1 shows a case where the LPRM sensor is at the same height as the fixed type γ-ray detector, and the LPRM sensors 5A, 5B, 5C and 5D are γ-ray thermometers 4c4e, 4c4e,
g, 4i. Therefore, these LPRM sensors 5A, 5B, 5C, 5D
Can be calibrated based on the outputs of the γ-ray thermometers 4c4e, 4g, and 4i, respectively.

【0018】複数の検出器集合体3に11個づつ設置さ
れた固定式γ線検出器4の出力信号は、以下の手順で隣
接燃料集合体の出力に換算される。まず、γ線検出器の
出力信号はフィルタ8に入力され雑音が除去された後に
出力換算装置9へ送られる。他方、隣接集合体出力算出
手段10では、プロセスコンピュータ等から各固定式γ
線検出器4に隣接した燃料の状態を表すパラメータ、た
とえば燃料集合体の平均燃焼度や燃料集合体チャンネル
ボックス内のボイド率などのパラメータを取り込み、こ
れらパラメータに基づいて予め内蔵した評価手法により
隣接燃料集合体の出力を算出する。また、燃料棒γ線算
出手段11では、隣接集合体出力算出手段10と同様
に、隣接燃料の状態を表すパラメータを取り込み、予め
内蔵した評価手法により隣接集合体の燃料棒から生じて
検出器で計測されるγ線を算出する。さらに、構造材γ
線算出手段12では、隣接燃料の状態を表すパラメータ
に基づき、予め内蔵した評価手法により検出器集合体を
含む隣接集合体内外の燃料棒以外の部材から生じて検出
器で計測されるγ線を算出する。隣接集合体出力算出手
段10、燃料棒γ線算出手段11、および構造材γ線算
出手段12で算出された隣接燃料集合体出力、およびγ
線の値は、出力換算装置9に送られる。出力換算装置9
では、まず、燃料棒γ線算出手段11、および構造材γ
線算出手段12から出力された、燃料棒からのγ線の算
出値と燃料棒以外の部材からのγ線の算出値の和として
各検出器位置での全γ線の算出値が求められる。次に、
隣接燃料集合体出力の算出値と、全γ線の算出値との比
をとることにより、γ線の計測値を隣接燃料集合体の出
力に換算するための係数を、各固定式γ線検出器4ごと
に求める。この係数を対応するγ線検出器の計測値に乗
じることで、隣接燃料集合体の出力が求まる。また、γ
線の計測値は、フィルタ8を通過したγ線検出器の出力
信号を、予め内蔵した関係式に基づいてγ線の計測値に
換算したものを用いる。
The output signals of the fixed γ-ray detectors 4 installed in the detector assemblies 3 in units of 11 are converted into the outputs of the adjacent fuel assemblies in the following procedure. First, the output signal of the γ-ray detector is input to the filter 8 and sent to the output conversion device 9 after noise is removed. On the other hand, in the adjacent aggregate output calculating means 10, each fixed γ
Parameters indicating the state of the fuel adjacent to the line detector 4, such as parameters such as the average burnup of the fuel assembly and the void fraction in the fuel assembly channel box, are taken in. Calculate the output of the fuel assembly. Further, the fuel rod γ-ray calculation means 11 fetches a parameter representing the state of the adjacent fuel, similarly to the adjacent assembly output calculation means 10, and is generated from the fuel rods of the adjacent assembly by a built-in evaluation method and detected by a detector. The measured γ-ray is calculated. Furthermore, the structural material γ
The line calculating means 12 calculates a γ-ray generated from a member other than the fuel rods inside and outside the adjacent assembly including the detector assembly and measured by the detector based on a parameter representing the state of the adjacent fuel by an evaluation method incorporated in advance. calculate. The adjacent fuel assembly output calculated by the adjacent assembly output calculating means 10, the fuel rod γ-ray calculating means 11, and the structural material γ-ray calculating means 12, and γ
The value of the line is sent to the output conversion device 9. Output conversion device 9
First, the fuel rod γ-ray calculating means 11 and the structural material γ
As the sum of the calculated value of the γ-ray from the fuel rod and the calculated value of the γ-ray from the members other than the fuel rod output from the line calculating means 12, the calculated value of all the γ-rays at each detector position is obtained. next,
By calculating the ratio between the calculated value of the output of the adjacent fuel assembly and the calculated value of all the γ-rays, a coefficient for converting the measured value of the γ-ray to the output of the adjacent fuel assembly is used for each fixed γ-ray detection. Determined for each vessel 4. By multiplying this coefficient by the measurement value of the corresponding γ-ray detector, the output of the adjacent fuel assembly is obtained. Also, γ
The measurement value of the line is obtained by converting the output signal of the γ-ray detector that has passed through the filter 8 into the measurement value of the γ-ray based on a built-in relational expression.

【0019】このようにして求められた隣接燃料集合体
の出力(局所出力)は、原子炉内の局所出力の測定結果
としてそのまま使用できるが、原子炉出力、および出力
分布を測定するために別途設置されたLPRM5の較正
に利用することもできる。すなわち、図1に示すよう
に、出力換算装置9から出力された局所出力とLPRM
処理手段6からの出力信号とに基づき、比較手段13に
おいて、あらかじめ定められた計算方法にしたがって、
炉内の同一ストリングに入っているLPRMセンサ5
と、同一高さの固定式γ線検出器4に対する信号の比較
演算を実施して、LPRMセンサの較正定数を算出す
る。算出された較正定数は、LPRM処理手段6に自動
あるいは手動で入力されて、LPRMセンサ信号に対す
るゲインを較正する。
The power (local power) of the adjacent fuel assembly obtained in this manner can be used as it is as a measurement result of the local power in the reactor, but it is separately required to measure the reactor power and the power distribution. It can also be used for calibration of the installed LPRM5. That is, as shown in FIG. 1, the local output outputted from the output conversion device 9 and the LPRM
On the basis of the output signal from the processing means 6 and in the comparing means 13 according to a predetermined calculation method,
LPRM sensor 5 in the same string in the furnace
And the signal for the fixed γ-ray detector 4 having the same height is compared to calculate a calibration constant of the LPRM sensor. The calculated calibration constant is automatically or manually input to the LPRM processing means 6 to calibrate the gain for the LPRM sensor signal.

【0020】図2は、課題を解決するための第二の手段
に対応する実施例を示したものである。第二の手段で
は、構造材γ線算出手段12において、燃料棒以外から
生じるγ線の検出器位置での値と直接的な相関関係の強
い、固定式γ線検出器付近の中性子束レベルの関数とし
て算出する。ここで用いる中性子束レベルを、第一の実
施例で利用した隣接燃料集合体の状態を表すパラメータ
から算出する方法を用いることも可能であるが、図2の
例では、LPRM処理手段6から出力された局所出力信
号用を検出器付近中性子束算出装置14において個/cm
3/秒の単位をもった絶対中性子束レベルに換算する。
構造材γ線算出手段12には、この絶対中性子束レベル
から燃料棒以外で生じたγ線の検出器位置での値を算出
するための関係式を内蔵してある。最も簡単な関係式と
しては、燃料棒以外で生じたγ線の検出器位置での値が
絶対中性子束レベルΦに比例するとした関係式が考えら
れる。
FIG. 2 shows an embodiment corresponding to the second means for solving the problem. In the second means, in the structural material γ-ray calculating means 12, the neutron flux level near the fixed γ-ray detector, which has a strong direct correlation with the value of the γ-ray generated from other than the fuel rod at the detector position, Calculate as a function. It is also possible to use a method of calculating the neutron flux level used here from the parameter indicating the state of the adjacent fuel assembly used in the first embodiment, but in the example of FIG. In the neutron flux calculating device 14 near the detector, the obtained local output signal is
It is converted to an absolute neutron flux level with a unit of 3 / sec.
The structural material γ-ray calculating means 12 has a built-in relational expression for calculating a value at the detector position of γ-rays generated from parts other than the fuel rod from the absolute neutron flux level. As the simplest relational expression, a relational expression in which the value of a γ-ray generated at a position other than the fuel rod at the detector position is considered to be proportional to the absolute neutron flux level Φ can be considered.

【0021】図3は、課題を解決するための第三の手段
に対応する、γ線温度計を用いた固定式γ線検出器の実
施例を水平方向断面図で示したものである。第三の手段
は、γ線の輸送過程がより容易に評価でき、かつ、出力
変化に即応しない成分のない検出器集合体3で生じる中
性子捕獲γ線を、固定式γ線検出器の検出部付近に強い
中性子捕獲γ線を発生する物質を付加することにより増
大させたものである。図3に示す実施例では、検出器集
合体3の内部にγ線温度計を用いた固定式γ線検出器4
と局所出力検出器5を設置し、固定式γ線検出器4をγ
線発熱用のステンレス鋼チューブ15、熱電対16、断
熱用希ガス領域17、および中性子捕獲γ線発生部18
で構成する。γ線発熱用のステンレス鋼チューブ15が
希ガス領域17で断熱され高温となる領域に熱電対の高
温接点16aを設置し、希ガス領域がなく比較的温度の
低い領域に低温接点16bを設置することによって両接
点の温度差からγ線の発熱量を測定する。本実施例で
は、これらγ線を検出するための部材を、中性子捕獲γ
線発生部18で完全に覆うことにより、検出器集合体で
生じる中性子捕獲ガンマ線を増大している。中性子捕獲
γ線発生部18に用いる物質としては、中性子捕獲γ線
の強度が大きく、かつ長期間の使用に対しても中性子捕
獲能力の低下が小さいハフニウムのような物質が考えら
れる。
FIG. 3 is a horizontal sectional view showing an embodiment of a fixed γ-ray detector using a γ-ray thermometer, which corresponds to the third means for solving the problem. The third means is that a γ-ray transport process can be more easily evaluated, and neutron capture γ-rays generated in the detector assembly 3 having no component not responding to an output change can be detected by a detector of a fixed γ-ray detector. It was increased by adding a substance that generates strong neutron capture γ-rays in the vicinity. In the embodiment shown in FIG. 3, a fixed γ-ray detector 4 using a γ-ray thermometer is provided inside the detector assembly 3.
And the local output detector 5, and the fixed γ-ray detector 4
Stainless steel tube 15, thermocouple 16, heat insulating rare gas region 17, and neutron capture γ-ray generator 18
It consists of. A high temperature contact 16a of a thermocouple is installed in a region where the stainless steel tube 15 for γ-ray heating is insulated by the rare gas region 17 and becomes high temperature, and a low temperature contact 16b is installed in a region where there is no rare gas region and the temperature is relatively low. Thus, the calorific value of the γ-ray is measured from the temperature difference between the two contacts. In this embodiment, the members for detecting these γ-rays are neutron capture γ.
The complete coverage with the ray generator 18 increases the neutron capture gamma rays generated by the detector assembly. As the substance used for the neutron capture γ-ray generation unit 18, a substance such as hafnium having a high neutron capture γ-ray intensity and having a small decrease in neutron capture ability even when used for a long period of time can be considered.

【0022】図4は、課題を解決するための第四の手段
に対応する、γ線温度計を用いた固定式γ線検出器の実
施例を水平方向断面図で示したものである。第四の手段
では、筒状のγ線遮蔽部材の内部に固定式γ線検出器を
設置し、燃料棒から生じたγ線を遮蔽することにより、
相対的に検出器集合体3からのγ線の検出割合を高める
ものである。図4に占めす実施例では、鉛製のγ線遮蔽
材19を検出器集合体の保護菅に内張りする構成として
いる。
FIG. 4 is a horizontal sectional view showing an embodiment of a fixed γ-ray detector using a γ-ray thermometer, corresponding to a fourth means for solving the problem. In the fourth means, by installing a fixed γ-ray detector inside the cylindrical γ-ray shielding member, by shielding γ-rays generated from the fuel rod,
This is to relatively increase the detection ratio of γ-rays from the detector assembly 3. In the embodiment occupied in FIG. 4, the gamma ray shielding member 19 made of lead is lined with the protective tube of the detector assembly.

【0023】[0023]

【発明の効果】本発明によれば、検出器位置でのγ線の
うち燃料棒以外から生じたγ線を陽に取扱うことがで
き、γ線検出器の出力信号を簡略な手法で高精度に隣接
燃料集合体出力に換算することが可能となる。また、燃
料棒以外から生じるγ線、特に検出器集合体自身で生じ
るγ線を増大し、検出器で測定されるγ線のうち出力変
化に即応しない遅発γ線成分を低減することで、応答の
速い出力測定を実現できる。
According to the present invention, γ-rays generated from parts other than the fuel rods among the γ-rays at the detector position can be explicitly handled, and the output signal of the γ-ray detector can be obtained with high accuracy by a simple method. Can be converted to the output of the adjacent fuel assembly. Also, by increasing the γ-rays generated from other than the fuel rods, particularly the γ-rays generated by the detector assembly itself, by reducing the delayed γ-ray components that do not respond to the output change among the γ-rays measured by the detector, Fast response output measurement can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例のシステム構成図である。FIG. 1 is a system configuration diagram of an embodiment of the present invention.

【図2】検出器付近での中性子束を利用した第二の実施
例のシステム構成図である。
FIG. 2 is a system configuration diagram of a second embodiment using a neutron flux near a detector.

【図3】中性子捕獲γ線発生部を備えた固定式γ線検出
器の実施例を示す図である。
FIG. 3 is a diagram illustrating an embodiment of a fixed γ-ray detector including a neutron capture γ-ray generation unit.

【図4】γ線遮蔽部材を備えた固定式γ線検出器の実施
例を示す図である。
FIG. 4 is a diagram showing an embodiment of a fixed type γ-ray detector provided with a γ-ray shielding member.

【符号の説明】[Explanation of symbols]

1…原子炉圧力容器、2…原子炉炉心、3…検出器集合
体、4…固定式γ線検出器、5…局所出力検出器、6…
LPRM処理手段、7…APRM(平均出力領域モニ
タ)、8…フィルタ、9…出力換算装置、10…隣接集
合体出力算出手段、11…燃料棒γ線算出手段、12…
構造材γ線算出手段、13…較正手段、14…検出器付
近中性子束算出装置、15…γ線発熱用のステンレス鋼
製チューブ、16…熱電対、17…断熱用希ガス領域、
18…中性子捕獲γ線発生部、19…γ線遮蔽部材。
DESCRIPTION OF SYMBOLS 1 ... Reactor pressure vessel, 2 ... Reactor core, 3 ... Detector assembly, 4 ... Fixed gamma ray detector, 5 ... Local power detector, 6 ...
LPRM processing means, 7: APRM (average output area monitor), 8: filter, 9: output conversion device, 10: adjacent assembly output calculation means, 11: fuel rod γ-ray calculation means, 12 ...
Structural material γ-ray calculating means, 13: Calibration means, 14: Neutron flux calculating device near detector, 15: Stainless steel tube for γ-ray heating, 16: Thermocouple, 17: Rare gas area for heat insulation,
18: neutron capture γ-ray generator, 19: γ-ray shielding member.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 栗原 国寿 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発本部内 (72)発明者 柴田 圭一郎 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発本部内 (72)発明者 真木 紘一 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発本部内 (72)発明者 長谷川 真 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発本部内 (72)発明者 有田 節男 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発本部内 Fターム(参考) 2G075 AA03 BA03 CA08 DA01 FA11 FA19 FB02 FB05 FB07 GA21 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Kunihara Kurihara, Inventor 7-2-1, Omika-cho, Hitachi City, Ibaraki Prefecture Within the Power & Electricity Development Division, Hitachi, Ltd. (72) Keiichiro Shibata, Inventor Keiichiro Shibata 7-2-1, Machi-cho, Hitachi, Ltd. Electricity & Electricity Development Division (72) Inventor Koichi Maki 7-2-1, Omika-cho, Hitachi City, Ibaraki Prefecture, Hitachi Ltd. Electricity & Electricity Development Division (72 ) Inventor Makoto Hasegawa 7-2-1, Omika-cho, Hitachi City, Ibaraki Pref.Hitachi, Ltd. Power and Electricity Development Division (72) Inventor Setsuo Arita 7-2-1, Omika-cho, Hitachi City, Ibaraki Pref. F-term (Reference) in Hitachi, Ltd. Electric Power & Electronics Development Division 2G075 AA03 BA03 CA08 DA01 FA11 FA19 FB02 FB05 FB07 GA21

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 原子炉内の中性子束から出力分布を測定
する局所出力検出器と、γ線温度計を用いた固定式γ線
検出器とを含む検出器集合体を原子炉内に複数設置し、
局所出力検出器および固定式γ線検出器での計測値から
原子炉出力および出力分布を求める原子炉出力測定装置
において、検出器集合体に隣接する燃料集合体の状態を
表すパラメータに基づき、隣接燃料集合体の燃料棒から
生じるγ線の検出器位置での値を算出する手段と、燃料
集合体内外の燃料棒以外の部材から生じるγ線の検出器
位置での値を算出する手段と、隣接燃料集合体の出力を
算出する手段と、前記2つのγ線算出値の和として求め
た全γ線の検出器位置での値と隣接燃料集合体出力の算
出値とを用いて、固定式γ線検出器の出力信号を隣接燃
料集合体の出力に換算する出力換算装置とを備えたこと
を特徴とする原子炉出力測定装置。
1. A plurality of detector assemblies including a local power detector for measuring a power distribution from a neutron flux in a reactor and a fixed γ-ray detector using a γ-ray thermometer are installed in the reactor. And
In a reactor power measuring device that obtains a reactor power and a power distribution from measured values of a local power detector and a fixed γ-ray detector, an adjacent power is measured based on a parameter representing a state of a fuel assembly adjacent to the detector assembly. Means for calculating a value at the detector position of γ-rays generated from the fuel rods of the fuel assembly, and means for calculating a value at the detector position of γ-rays generated from members other than the fuel rods inside and outside the fuel assembly, A means for calculating the output of the adjacent fuel assembly, and a fixed expression using a value at the detector position of all γ-rays calculated as a sum of the two calculated values of γ-rays and a calculated value of the output of the adjacent fuel assembly. a power conversion device for converting an output signal of the γ-ray detector into an output of an adjacent fuel assembly.
【請求項2】 請求項1において、燃料棒以外から生じ
るγ線の検出器位置での値を固定式γ線検出器付近の中
性子束レベルの関数として算出する手段を備えたことを
特徴とする原子炉出力測定装置。
2. The apparatus according to claim 1, further comprising means for calculating a value at a detector position of γ-rays generated from parts other than the fuel rod as a function of a neutron flux level near the fixed γ-ray detector. Reactor power measurement device.
【請求項3】 請求項1において、固定式γ線検出器の
検出部付近に該検出部部材よりも強い中性子捕獲γ線を
発生する物質を付加したことを特徴とする原子炉出力測
定装置。
3. The reactor power measuring apparatus according to claim 1, wherein a substance that generates neutron capture γ-rays stronger than the detection unit member is added near the detection unit of the fixed γ-ray detector.
【請求項4】 請求項1において、筒状のγ線遮蔽部材
の内部に固定式γ線検出器を設置したことを特徴とする
原子炉出力測定装置。
4. The reactor power measuring apparatus according to claim 1, wherein a fixed γ-ray detector is installed inside the cylindrical γ-ray shielding member.
JP11157486A 1999-06-04 1999-06-04 Reactor output measuring device Pending JP2000346980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11157486A JP2000346980A (en) 1999-06-04 1999-06-04 Reactor output measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11157486A JP2000346980A (en) 1999-06-04 1999-06-04 Reactor output measuring device

Publications (1)

Publication Number Publication Date
JP2000346980A true JP2000346980A (en) 2000-12-15

Family

ID=15650743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11157486A Pending JP2000346980A (en) 1999-06-04 1999-06-04 Reactor output measuring device

Country Status (1)

Country Link
JP (1) JP2000346980A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2077562A1 (en) * 2007-11-26 2009-07-08 GE-Hitachi Nuclear Energy Americas LLC Gamma thermometer axial apparatus and method for monitoring reactor core in nuclear power plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2077562A1 (en) * 2007-11-26 2009-07-08 GE-Hitachi Nuclear Energy Americas LLC Gamma thermometer axial apparatus and method for monitoring reactor core in nuclear power plant
US8175210B2 (en) 2007-11-26 2012-05-08 Ge-Hitachi Nuclear Energy Americas Llc Gamma thermometer axial apparatus and method for monitoring reactor core in nuclear power plant
US8644443B2 (en) 2007-11-26 2014-02-04 Ge-Hitachi Nuclear Energy Americas Llc Gamma thermometer axial apparatus and method for monitoring reactor core in nuclear power plant

Similar Documents

Publication Publication Date Title
KR101843603B1 (en) Self-calibrating, highly accurate, long-lived, dual rhodium vanadium emitter nuclear in-core detector
KR101428404B1 (en) Nuclear reactor protection system using in-core sensors
JP2014238353A (en) Neutron measurement system
JP5038158B2 (en) Neutron flux measurement system and method
JP6523877B2 (en) Reactor instrumentation system and reactor
JPH1039083A (en) In-furnace information monitoring apparatus
JP2000346980A (en) Reactor output measuring device
US20200219630A1 (en) Temperature measurement sensor using material with a temperature dependent neutron capture cross section
JP3556409B2 (en) Reactor power measurement device
JP2000258586A (en) Reactor power measuring device
JP7269150B2 (en) Reactor power monitor
JP2000137093A (en) Fixed in-pile nuclear instrumentation system of reactor, nuclear instrumentation process, power distribution calculating device and method, and power distribution monitoring system and method
JPH0587978A (en) Device for measuring reactor output
Koizumi et al. EXPERIMENTAL RESULTS OF ENVIRONMENTAL RESISTANCE AT A SEVERE ACCIDENT CONDITION TO A FIBER OPTIC RADIATION MONITOR AND OTHER TYPE OF DETECTOR
JP2000258585A (en) Reactor power measuring device
JP3863690B2 (en) Fixed in-reactor instrumentation system
JPS6138830B2 (en)
JP3442598B2 (en) Fixed in-core instrumentation system
JP4429707B2 (en) Automatic thermal limit value monitoring device
JP2001099983A (en) Nuclear reactor power measuring device
Loving Neutron, temperature and gamma sensors for pressurized water reactors
JP2011169707A (en) Reactor power measuring device
JPH0580185A (en) Nuclear reactor output measuring device
JP2023549609A (en) Radioisotope radiation monitoring device, system, and method
JP2015219163A (en) Nuclear instrumentation sensor system and nuclear reactor output monitoring system