JP2000346631A - Hole diameter measuring apparatus - Google Patents

Hole diameter measuring apparatus

Info

Publication number
JP2000346631A
JP2000346631A JP11155271A JP15527199A JP2000346631A JP 2000346631 A JP2000346631 A JP 2000346631A JP 11155271 A JP11155271 A JP 11155271A JP 15527199 A JP15527199 A JP 15527199A JP 2000346631 A JP2000346631 A JP 2000346631A
Authority
JP
Japan
Prior art keywords
pressure
mercury
hole
fluid
reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11155271A
Other languages
Japanese (ja)
Inventor
Yoichi Terai
洋一 寺井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP11155271A priority Critical patent/JP2000346631A/en
Publication of JP2000346631A publication Critical patent/JP2000346631A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Arrangements Characterized By The Use Of Fluids (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure the diameter of each hole in a member having holes of different diameter by detecting the fluid pressure when the member is placed in a noncompressive fluid in a reservoir and the quantity of fluid is varied by varying the fluid pressure. SOLUTION: A tip nozzle 13 having holes 14a-14c of different diameter is placed in a reservoir 2 and mercury L in the reservoir 2 is pressurized gradually at a predetermined rate in a pressurizing unit 8. The mercury L does not flow into each hole when it is not pressurized and when the mercury pressure P detected by a pressure sensor 10 reaches a some level PcL, the mercury L flows into the hole to move a pressurizing rod 9 and a moving amount sensor 11 detects the quantity of mercury being varied. Average pressure Pc of the PcL and a slightly higher pressure PcH is set as a mercury inlet pressure and an electronic controller 12 calculates the diameter of the hole 14c from the mercury inlet pressure Pc based on a prestored relation map of the mercury pressure P and the hole diameter. Furthermore, the mercury pressure P is increased and variation in the quantity of mercury is detected at a pressure Pb higher than the inlet pressure Pc and at a pressure Pa higher than the Pb. Diameters of the holes 14b, 14a are calculated based on the pressures Pb, Pa, respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は孔径測定装置に関す
る。
The present invention relates to a hole diameter measuring device.

【0002】[0002]

【従来の技術】例えば内燃機関の燃料噴射弁の噴射孔の
孔径を測定するための装置が実開昭63−150078
号公報に開示されている。ここでは圧縮された気体を噴
射孔に送り、噴射孔を通って流れる気体の量に基づいて
噴射孔の孔径を測定している。
2. Description of the Related Art For example, an apparatus for measuring the diameter of an injection hole of a fuel injection valve of an internal combustion engine is disclosed in Japanese Utility Model Laid-Open Publication No. 63-150078.
No. 6,009,045. Here, the compressed gas is sent to the injection hole, and the diameter of the injection hole is measured based on the amount of gas flowing through the injection hole.

【0003】[0003]

【発明が解決しようとする課題】上記公報に開示された
孔径測定装置では部材が径の異なる孔を有する場合には
これら孔のそれぞれの径を測定することはできない。そ
の理由は上記孔径測定装置では孔を通る気体量に基づい
て孔の径を測定するので部材が孔径の異なる孔を有する
場合にはこれら全ての孔を通るトータルの気体量しか検
出されず、したがって各孔を通る気体量を検出できない
ことにある。
In the hole diameter measuring device disclosed in the above publication, when the members have holes having different diameters, the diameters of these holes cannot be measured. The reason is that the above hole diameter measuring device measures the diameter of the hole based on the amount of gas passing through the hole, so if the member has holes with different hole diameters, only the total gas amount passing through all these holes is detected, therefore This is because the amount of gas passing through each hole cannot be detected.

【0004】そこで上記課題に鑑み本発明の目的は径の
異なる孔を有する部材の各孔の径を測定することにあ
る。
[0004] In view of the above problems, an object of the present invention is to measure the diameter of each hole of a member having holes having different diameters.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に一番目の発明によれば非圧縮性の流体を収容したリザ
ーバと、該リザーバ内の流体の圧力を変化させるための
圧力変化手段と、該リザーバ内の流体の圧力を検出する
ための流体圧検出手段と、該リザーバ内の流体の量を検
出するための流体量検出手段とを具備し、径の異なる孔
を有する部材を前記リザーバ内の流体内に配置した時に
前記圧力変化手段により前記リザーバ内の流体の圧力を
変化させ、前記流体量検出手段により前記リザーバ内の
流体量が変化した時に前記流体圧検出手段により検出さ
れた流体圧に基づいて前記部材の孔の径を測定する。
According to a first aspect of the present invention, there is provided a reservoir containing an incompressible fluid, and a pressure changing means for changing a pressure of the fluid in the reservoir. A fluid pressure detecting means for detecting a pressure of a fluid in the reservoir, and a fluid amount detecting means for detecting an amount of the fluid in the reservoir, wherein a member having holes having different diameters is provided in the reservoir. The fluid pressure in the reservoir is changed by the pressure changing means when the fluid is disposed in the fluid inside the fluid, and the fluid detected by the fluid pressure detecting means when the fluid amount in the reservoir is changed by the fluid amount detecting means. The hole diameter of the member is measured based on the pressure.

【0006】二番目の発明によれば一番目の発明におい
て前記圧力変化手段は前記リザーバ内の流体を加圧し、
前記リザーバ内の流体量が変化した時に検出された流体
圧が高いほど測定される孔の径が小さい。三番目の発明
によれば一番目の発明において前記部材が内燃機関の燃
料噴射弁であり、前記孔が該燃料噴射弁の噴射孔であ
る。
According to a second aspect, in the first aspect, the pressure changing means pressurizes the fluid in the reservoir,
The higher the fluid pressure detected when the amount of fluid in the reservoir changes, the smaller the diameter of the measured hole. According to a third aspect, in the first aspect, the member is a fuel injection valve of an internal combustion engine, and the hole is an injection hole of the fuel injection valve.

【0007】 〔発明の詳細な説明〕以下、図面を参照して本発明の孔
径測定装置を説明する。図1は本発明の孔径測定装置1
を示している。孔径測定装置1は孔径を測定するために
用いられる液体Lを収容し貯留するためのリザーバ2を
具備する。リザーバ2はその内部に液体を流入させるた
めの流入口3を有する。本発明において孔径を測定する
ために用いられる液体は表面張力が高く、粘性が比較的
低く、加圧された時に圧縮されない非圧縮性を有する必
要があり、本実施例における液体は水銀である。しかし
ながら水銀と同様の特性を有するならば他の流体を用い
てもよい。
[Detailed Description of the Invention] A pore diameter measuring apparatus according to the present invention will be described below with reference to the drawings. FIG. 1 shows a pore diameter measuring apparatus 1 of the present invention.
Is shown. The pore size measuring device 1 includes a reservoir 2 for containing and storing a liquid L used for measuring the pore size. The reservoir 2 has an inflow port 3 through which a liquid flows. In the present invention, the liquid used for measuring the pore size needs to have high surface tension, relatively low viscosity, and non-compressibility that is not compressed when pressed, and the liquid in this embodiment is mercury. However, other fluids having similar properties to mercury may be used.

【0008】また孔径測定装置1は水銀Lを貯めておく
ための水銀槽4を有する。水銀槽4は液体入口5と液体
出口6とを有する。液体出口6はリザーバ2の流入口3
に接続される。また液体入口5は液体加圧管7が接続さ
れている。液体加圧管7にはリザーバ3内の水銀Lを加
圧するための加圧器8が接続される。加圧器8は液体加
圧管7内に挿入される加圧棒9を有する。加圧器8はこ
の加圧棒9を液体加圧管7内で移動させることによりリ
ザーバ2内の水銀を加圧する。
The pore diameter measuring device 1 has a mercury tank 4 for storing mercury L. The mercury tank 4 has a liquid inlet 5 and a liquid outlet 6. The liquid outlet 6 is the inlet 3 of the reservoir 2
Connected to. The liquid inlet 5 is connected to a liquid pressurizing pipe 7. A pressurizer 8 for pressurizing the mercury L in the reservoir 3 is connected to the liquid pressurizing pipe 7. The pressurizer 8 has a pressurizing rod 9 inserted into the liquid pressurizing pipe 7. The pressurizer 8 presses the mercury in the reservoir 2 by moving the pressurizing rod 9 in the liquid pressurizing tube 7.

【0009】また本実施例では水銀槽4には圧力センサ
10が取り付けられる。圧力センサ10は水銀槽4内の
水銀の圧力、したがってリザーバ2内の水銀の圧力を検
出する。また本実施例の孔径測定装置1は加圧管7内に
おける加圧棒9の移動量を検出するための移動量センサ
11を有する。これら圧力センサ10および移動量セン
サ11は電子制御装置(ECU)12に接続される。
In this embodiment, a pressure sensor 10 is attached to the mercury tank 4. The pressure sensor 10 detects the pressure of mercury in the mercury tank 4 and therefore the pressure of mercury in the reservoir 2. Further, the hole diameter measuring device 1 of the present embodiment has a movement amount sensor 11 for detecting the movement amount of the pressure rod 9 in the pressure pipe 7. The pressure sensor 10 and the movement amount sensor 11 are connected to an electronic control unit (ECU) 12.

【0010】次に本発明の孔径測定方法を説明する。本
実施例では燃料噴射弁の先端ノズルの噴射孔(以下、
孔)の径を測定する。先端ノズルは図2〜図4に詳細に
示されている。図2は先端ノズル13の断面図である。
先端ノズル13は複数の孔から構成される孔群14を有
する。図3および図4を参照すると孔群14は三つの対
の孔14a,14b,14cから構成される。対となっ
た孔14a,14b,14cはそれぞれ先端ノズル13
の軸線Aに関して点対称に形成される。対となった孔1
4a,14b,14cの孔径da,db,dcは各対ご
とに異なる。すなわち先端ノズル13の軸線Aに最も近
く形成された孔(以下、第一孔)14aの径daは軸線
Aに関して第一孔14aの直ぐ外側に形成された対とな
った孔(以下、第二孔)14bの径dbより小さい。ま
た軸線Aに関して第二孔14bの直ぐ外側に形成された
孔(以下、第三孔)14cの径dcは第二孔14bの径
dbより大きい。
Next, the method for measuring the pore size of the present invention will be described. In this embodiment, an injection hole (hereinafter, referred to as an injection hole) of a tip nozzle of a fuel injection valve
The diameter of the hole is measured. The tip nozzle is shown in detail in FIGS. FIG. 2 is a sectional view of the tip nozzle 13.
The tip nozzle 13 has a hole group 14 composed of a plurality of holes. Referring to FIGS. 3 and 4, the hole group 14 includes three pairs of holes 14a, 14b, and 14c. The pair of holes 14a, 14b, 14c
Are formed point-symmetrically with respect to the axis A. Paired holes 1
The hole diameters da, db, dc of 4a, 14b, 14c are different for each pair. That is, the diameter da of the hole (hereinafter, first hole) 14a formed closest to the axis A of the tip nozzle 13 is a pair of holes (hereinafter, second hole) formed just outside the first hole 14a with respect to the axis A. The hole 14b is smaller than the diameter db. The diameter dc of a hole (hereinafter, referred to as a third hole) 14c formed just outside the second hole 14b with respect to the axis A is larger than the diameter db of the second hole 14b.

【0011】本実施例の孔径測定方法では初めに上述し
たような孔群14を有する先端ノズル13を図1に示し
たようにリザーバ2内に配置する。すなわち先端ノズル
13はリザーバ2内の水銀中に浸されている。この時に
おいてリザーバ2の内部空間は先端ノズル13自体が占
めている空間および先端ノズル13の孔14a,14
b,14c内の空間を除いて水銀Lにより完全に満たさ
れている。
In the hole diameter measuring method of the present embodiment, first, the tip nozzle 13 having the hole group 14 as described above is disposed in the reservoir 2 as shown in FIG. That is, the tip nozzle 13 is immersed in mercury in the reservoir 2. At this time, the internal space of the reservoir 2 is the space occupied by the tip nozzle 13 itself and the holes 14a, 14a of the tip nozzle 13.
Except for the space inside b and 14c, it is completely filled with mercury L.

【0012】次いで加圧器8によりリザーバ2内の水銀
Lを予め定められた割合で徐々に加圧する。そしてリザ
ーバ2内の水銀Lを加圧している間、圧力センサ10と
移動量センサ11とによりリザーバ2内の圧力と、加圧
棒9の移動量とを監視し続ける。なお加圧棒9の移動量
はリザーバ2内の水銀量の変化量を代表する値である。
Next, the pressurizer 8 gradually pressurizes the mercury L in the reservoir 2 at a predetermined ratio. While the mercury L in the reservoir 2 is being pressurized, the pressure sensor 10 and the displacement sensor 11 continue to monitor the pressure in the reservoir 2 and the displacement of the pressure rod 9. The amount of movement of the pressure rod 9 is a value representing the amount of change in the amount of mercury in the reservoir 2.

【0013】ここで本発明の孔径測定方法の基礎となる
原理を説明する。上述したように先端ノズル13をリザ
ーバ2内に配置し、リザーバ2内の水銀Lを加圧してい
ない時には水銀は先端ノズル13の孔14a,14b,
14c内には流入していない。これは水銀の表面張力が
大きく、各孔14a,14b,14cの径da,db,
dcが比較的小さいからである。次にリザーバ2内の水
銀を徐々に加圧すると水銀の圧力が或る値になった時に
水銀が孔14a,14b,14c内に流入する。このよ
うに水銀が孔内に流入する時の水銀の圧力は孔径によっ
て異なり、孔径に反比例する。すなわち水銀が孔内に流
入する時の水銀の圧力は孔径が大きいほど低い。したが
って孔内に水銀が流入した時の水銀の圧力に基づいて孔
径を測定することができる。なお孔内に水銀が流入する
を結果としてリザーバ2内の水銀量が増大することから
本実施例では移動量センサ11により加圧棒9の移動が
検出された時を水銀が孔内に流入した時と判断する。
Here, the principle underlying the pore diameter measuring method of the present invention will be described. As described above, the tip nozzle 13 is disposed in the reservoir 2, and when the mercury L in the reservoir 2 is not pressurized, mercury flows through the holes 14a, 14b,
It has not flowed into 14c. This is because the surface tension of mercury is large and the diameters da, db, of the holes 14a, 14b, 14c are large.
This is because dc is relatively small. Next, when the mercury in the reservoir 2 is gradually pressurized, the mercury flows into the holes 14a, 14b, 14c when the pressure of the mercury reaches a certain value. As described above, the pressure of mercury when mercury flows into the pores depends on the pore diameter and is inversely proportional to the pore diameter. That is, the pressure of mercury when mercury flows into the hole is lower as the hole diameter is larger. Therefore, the pore diameter can be measured based on the pressure of mercury when mercury flows into the pore. Since the amount of mercury in the reservoir 2 increases as a result of mercury flowing into the hole, in this embodiment, the mercury flows into the hole when the movement of the pressure rod 9 is detected by the moving amount sensor 11. Judge as time.

【0014】上記原理により本実施例においてリザーバ
2内の水銀を徐々に増大した時の圧力センサ10により
検出される水銀圧Pと移動量センサ11により検出され
るリザーバ2内の水銀量の変化量ΔVとの関係は図5に
示したようになる。すなわち水銀圧Pが或る圧力PcL
になった時に加圧棒9の移動、したがってリザーバ2内
の水銀量の変化が検出される。次いで水銀圧Pが上記圧
力PcLより僅かばかり高い或る圧力PcHになった時
にリザーバ2内の水銀量の変化が検出される。ここで本
実施例ではリザーバ2内の水銀量が変化する時のこれら
圧力PcLとPcHとの平均の圧力Pcを孔内に水銀が
流入した時の水銀圧とする。
According to the above principle, in this embodiment, when the amount of mercury in the reservoir 2 is gradually increased, the amount of change in the amount of mercury P in the reservoir 2 detected by the pressure sensor 10 and the amount of mercury in the reservoir 2 detected by the displacement sensor 11 The relationship with ΔV is as shown in FIG. That is, the mercury pressure P becomes a certain pressure PcL
Is reached, the movement of the pressure rod 9 and hence the change in the amount of mercury in the reservoir 2 is detected. Next, when the mercury pressure P reaches a certain pressure PcH slightly higher than the pressure PcL, a change in the amount of mercury in the reservoir 2 is detected. In this embodiment, the average pressure Pc of these pressures PcL and PcH when the amount of mercury in the reservoir 2 changes is defined as the mercury pressure when mercury flows into the hole.

【0015】本実施例では孔内に水銀が流入した時の水
銀圧(以下、水銀流入圧)Pと孔径dとの関係が図6に
示したようにマップの形で電子制御装置12に予め記憶
されている。したがってこのマップに基づいて水銀流入
圧Pcに基づいて第三孔14cの径dcが算出される。
さらにリザーバ2内の水銀圧Pを増大すると水銀流入圧
Pcより高い圧力Pbにおいてリザーバ2内の水銀量の
変化が検出され、さらにこの時の圧力Pbより高い圧力
Paにおいてリザーバ2内の水銀量の変化が検出され
る。そしてこれら圧力Pb,Paに基づいて第二孔14
bと第一孔14aとの径db,daが算出される。
In this embodiment, the relationship between the mercury pressure (hereinafter referred to as mercury inflow pressure) P when mercury flows into the hole and the hole diameter d is previously stored in the electronic control unit 12 in the form of a map as shown in FIG. It is remembered. Therefore, the diameter dc of the third hole 14c is calculated based on the mercury inflow pressure Pc based on this map.
When the mercury pressure P in the reservoir 2 is further increased, a change in the amount of mercury in the reservoir 2 is detected at a pressure Pb higher than the mercury inflow pressure Pc, and the mercury amount in the reservoir 2 is further increased at a pressure Pa higher than the pressure Pb at this time. A change is detected. Then, based on these pressures Pb and Pa, the second holes 14 are formed.
The diameters db and da between b and the first hole 14a are calculated.

【0016】このように本発明によれば異なる孔径を容
易に測定することができる。また本実施例では追加的に
各孔の容積、そして各孔の長さを測定することもでき
る。すなわち各水銀流入圧Pa,Pb,Pcに対応する
リザーバ2内の水銀量の変化量は各孔の容積であり、こ
の容積と各孔の径とを用いれば各孔の長さを測定するこ
ともできる。
As described above, according to the present invention, different pore sizes can be easily measured. In this embodiment, the volume of each hole and the length of each hole can be additionally measured. That is, the amount of change in the amount of mercury in the reservoir 2 corresponding to each of the mercury inflow pressures Pa, Pb, and Pc is the volume of each hole, and the length of each hole can be measured by using this volume and the diameter of each hole. Can also.

【0017】なお上記実施例ではリザーバ内の水銀の圧
力を増大させているが、初めに先端ノズルの孔内に水銀
を流入させておき、次いでリザーバ内の水銀の圧力を減
少させ、リザーバ内の水銀量が変化した時の水銀圧に基
づいて孔径を測定することもできる。
In the above embodiment, the pressure of mercury in the reservoir is increased. First, mercury is allowed to flow into the hole of the tip nozzle, and then the pressure of mercury in the reservoir is reduced, and The pore size can be measured based on the mercury pressure when the amount of mercury changes.

【0018】[0018]

【発明の効果】一番目から三番目の発明によればリザー
バ内の流体の圧力を変化させ、リザーバ内の流体量が変
化した時の流体圧に基づいて孔径が測定される。すなわ
ちリザーバ内の流体圧を変化させると孔内への流体の流
入または孔内からの流体の流出によりリザーバ内の流体
量が変化する。このように流体が孔内に流入する時の流
体圧力または孔内から流出する時の流体圧力は孔の径に
固有の値である。したがって流体が孔内に流入する時の
流体圧力または孔内から流出する時の流体圧力に基づい
て孔径の異なる複数の孔を有する部材の各孔の孔径を測
定することができる。
According to the first to third aspects of the invention, the pressure of the fluid in the reservoir is changed, and the hole diameter is measured based on the fluid pressure when the amount of fluid in the reservoir changes. That is, when the fluid pressure in the reservoir is changed, the amount of fluid in the reservoir changes due to the inflow of fluid into the hole or the outflow of fluid from the hole. As described above, the fluid pressure when the fluid flows into the hole or the fluid pressure when the fluid flows out of the hole is a value specific to the diameter of the hole. Therefore, the diameter of each hole of a member having a plurality of holes having different diameters can be measured based on the fluid pressure when the fluid flows into the hole or when the fluid flows out of the hole.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の孔径測定装置を示す図である。FIG. 1 is a view showing a pore size measuring device of the present invention.

【図2】孔径を測定されるべき先端ノズルの断面図であ
る。
FIG. 2 is a sectional view of a tip nozzle whose hole diameter is to be measured.

【図3】図2の先端ノズルの先端部の拡大図である。FIG. 3 is an enlarged view of a tip portion of the tip nozzle of FIG. 2;

【図4】図3の線IV−IVに沿った図である。FIG. 4 is a view along the line IV-IV in FIG. 3;

【図5】水銀圧力とリザーバ内水銀量の変化量との関係
を示す図である。
FIG. 5 is a diagram showing the relationship between mercury pressure and the amount of change in the amount of mercury in a reservoir.

【図6】水銀圧力と孔径との関係を示す図である。FIG. 6 is a diagram showing a relationship between mercury pressure and pore diameter.

【図7】リザーバ内水銀量の変化量と孔容積との関係を
示す図である。
FIG. 7 is a diagram showing a relationship between a change amount of a mercury amount in a reservoir and a pore volume.

【符号の説明】[Explanation of symbols]

1…孔径測定装置 2…リザーバ 8…加圧器 10…圧力センサ 11…移動量センサ 14a,14b,14c…孔 DESCRIPTION OF SYMBOLS 1 ... Hole diameter measuring device 2 ... Reservoir 8 ... Pressurizer 10 ... Pressure sensor 11 ... Movement amount sensor 14a, 14b, 14c ... Hole

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 非圧縮性の流体を収容したリザーバと、
該リザーバ内の流体の圧力を変化させるための圧力変化
手段と、該リザーバ内の流体の圧力を検出するための流
体圧検出手段と、該リザーバ内の流体の量を検出するた
めの流体量検出手段とを具備し、径の異なる孔を有する
部材を前記リザーバ内の流体内に配置した時に前記圧力
変化手段により前記リザーバ内の流体の圧力を変化さ
せ、前記流体量検出手段により前記リザーバ内の流体量
が変化した時に前記流体圧検出手段により検出された流
体圧に基づいて前記部材の孔の径を測定する孔径測定装
置。
A reservoir containing an incompressible fluid;
Pressure changing means for changing the pressure of the fluid in the reservoir, fluid pressure detecting means for detecting the pressure of the fluid in the reservoir, and fluid amount detection for detecting the amount of the fluid in the reservoir Means, when a member having holes having different diameters is arranged in the fluid in the reservoir, the pressure of the fluid in the reservoir is changed by the pressure changing means, and the fluid amount detecting means changes the pressure in the reservoir. A hole diameter measuring device for measuring a diameter of a hole of the member based on a fluid pressure detected by the fluid pressure detecting means when a fluid amount changes.
【請求項2】 前記圧力変化手段は前記リザーバ内の流
体を加圧し、前記リザーバ内の流体量が変化した時に検
出された流体圧が高いほど測定される孔の径が小さい請
求項1に記載の孔径測定装置。
2. The method according to claim 1, wherein the pressure changing means pressurizes the fluid in the reservoir, and the diameter of the hole measured decreases as the fluid pressure detected when the amount of fluid in the reservoir changes increases. Hole diameter measuring device.
【請求項3】 前記部材が内燃機関の燃料噴射弁であ
り、前記孔が該燃料噴射弁の噴射孔である請求項1に記
載の孔径測定装置。
3. The hole diameter measuring device according to claim 1, wherein the member is a fuel injection valve of an internal combustion engine, and the hole is an injection hole of the fuel injection valve.
JP11155271A 1999-06-02 1999-06-02 Hole diameter measuring apparatus Pending JP2000346631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11155271A JP2000346631A (en) 1999-06-02 1999-06-02 Hole diameter measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11155271A JP2000346631A (en) 1999-06-02 1999-06-02 Hole diameter measuring apparatus

Publications (1)

Publication Number Publication Date
JP2000346631A true JP2000346631A (en) 2000-12-15

Family

ID=15602264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11155271A Pending JP2000346631A (en) 1999-06-02 1999-06-02 Hole diameter measuring apparatus

Country Status (1)

Country Link
JP (1) JP2000346631A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101283276B1 (en) 2011-11-18 2013-07-11 주식회사 현대케피코 Apparatus for testing LPI injector of vehicle
CN103697791A (en) * 2013-12-05 2014-04-02 中国航空工业集团公司沈阳发动机设计研究所 Spraying pipe diameter measurement tool for engine
CN107061095A (en) * 2017-06-01 2017-08-18 哈尔滨工程大学 A kind of combined type fuel injector fuel injection characteristic measurement apparatus and measuring method
CN114485493B (en) * 2022-01-25 2024-03-08 洛阳优付电子科技有限公司 Pipe diameter measuring device and measuring method for deep pipe parts

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101283276B1 (en) 2011-11-18 2013-07-11 주식회사 현대케피코 Apparatus for testing LPI injector of vehicle
CN103697791A (en) * 2013-12-05 2014-04-02 中国航空工业集团公司沈阳发动机设计研究所 Spraying pipe diameter measurement tool for engine
CN107061095A (en) * 2017-06-01 2017-08-18 哈尔滨工程大学 A kind of combined type fuel injector fuel injection characteristic measurement apparatus and measuring method
CN114485493B (en) * 2022-01-25 2024-03-08 洛阳优付电子科技有限公司 Pipe diameter measuring device and measuring method for deep pipe parts

Similar Documents

Publication Publication Date Title
EP2230521A3 (en) Fluid dispense and liquid surface verification system and method
RU99100385A (en) PUMP FOR DELIVERY OF LIQUID FROM THE CONTAINER TO THE PATIENT, SYSTEM OF THE PUMP FOR DELIVERY OF LIQUID, METHOD OF DELIVERY OF LIQUID
CA2501530A1 (en) Continuous flow chemical metering apparatus
CN104156009A (en) Liquid small-flow precision measurement and control method
CN103852121A (en) Metering System and Method for Cryogenic Liquids
JP2000346631A (en) Hole diameter measuring apparatus
CN111207805A (en) Device and method for detecting liquid quantity of pressure container
CN108843475B (en) Simulation test machine control device for evaluating blockage rate of gasoline engine electric control fuel injector
CN201060149Y (en) Liquid line flow resistance force testing apparatus
CN206267914U (en) A kind of engine sump tank liquid level is demarcated and engine oil consumption measurement apparatus
EP0533831A1 (en) Apparatus for testing leak detectors
CN109781445B (en) Method for determining flow area of thermostatic expansion valve
CN206919949U (en) A kind of oil-feed stable-pressure device in the measurement applied to engine consumption
CN103850850A (en) Flow gauge for detecting circular fuel-injection quantity of oil injector of high-pressure common rail system of diesel engine
CN205280291U (en) Measurement device for small leakage quantity that lets out of hydraulic component
CN212429168U (en) Water pump lift flow testing device
CN212508857U (en) Self-priming pump testing device
US20160195461A1 (en) Vehicular liquid storage system, motor vehicle comprising said system and method for assessing a quality of a liquid therein
CN103411777B (en) Cylinder block flow resistance measurement system
CN103411853B (en) Cylinder head flow resistance measurement mechanism
CN206311457U (en) The automatic testing equipment that a kind of Corrosion Reinforcement section is axially distributed
JP3987454B2 (en) Device for measuring gas content in flowing liquid and control device for pump for injecting antifoaming agent
KR0137526Y1 (en) Tester for fuel pump
CN220170501U (en) Nozzle flow detection equipment
CN101614571A (en) A kind of pulsating flow measurement method and measuring system thereof