JP2000346307A - Thermal power plant and method for managing its operation - Google Patents

Thermal power plant and method for managing its operation

Info

Publication number
JP2000346307A
JP2000346307A JP11158227A JP15822799A JP2000346307A JP 2000346307 A JP2000346307 A JP 2000346307A JP 11158227 A JP11158227 A JP 11158227A JP 15822799 A JP15822799 A JP 15822799A JP 2000346307 A JP2000346307 A JP 2000346307A
Authority
JP
Japan
Prior art keywords
corrosion potential
water
boiler
metal
thermal power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11158227A
Other languages
Japanese (ja)
Other versions
JP3992881B2 (en
Inventor
Mamoru Hirota
広田  守
Hiroshi Yamauchi
博史 山内
Takeshi Kanbayashi
剛 神林
Shigeto Murata
重人 村田
Nobuo Shimono
展雄 下野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP15822799A priority Critical patent/JP3992881B2/en
Publication of JP2000346307A publication Critical patent/JP2000346307A/en
Application granted granted Critical
Publication of JP3992881B2 publication Critical patent/JP3992881B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermal power plant having excellent corrosion resistance capable of deciding a charging amount of a deoxidizer by using a result by clarifying a necessary deoxidizer concentration by measuring the corrosion electric potential in a boiler circulating water system and a method for managing its operation. SOLUTION: The thermal power plant having a water circulating system including a boiler, a turbine and a condenser comprises a means for measuring a corrosion potential of metal brought into contact with boiler water or feed water, and a means for regulating a concentration of a less toxic deoxidizer than a hydrazine so as to make corrosion potential lower than that of metal when deaerated. The method for managing an operation of the plant comprises the steps of measuring the corrosion potential of the metal brought into contact with boiler water or feed water by using a reference electrode and a potentiometer, and regulating the concentration of the deoxidizer so that its molecular weight is larger than that of the hydrazine and smaller than that of a tunnin and the concentration of the deoxidizer reacted with oxygen in water is lower than the potential of the metal when deaerated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は発電用プラント等の
ボイラを含む密閉系の循環水の酸素を取り除くために、
循環水へ脱酸素剤を添加する水処理手段を用いた火力プ
ラントとその運転管理方法に関する。
The present invention relates to a method for removing oxygen from circulating water in a closed system including a boiler of a power plant or the like.
The present invention relates to a thermal power plant using water treatment means for adding a deoxidizer to circulating water and an operation management method thereof.

【0002】[0002]

【従来の技術】ボイラへの脱酸素剤の添加は、給水ある
いはボイラ水の酸素濃度を測定しそれに必要な理論的な
脱酸素剤量の数倍のを添加している。また、日本工業規
格JIS-B8223はボイラ水の水質分析から酸素と
未反応な脱酸素剤の濃度をある一定値以上で、循環水の
水流が停止する保管時には運転時よりもはるかに高い脱
酸素剤の濃度とするように推奨している。
2. Description of the Related Art An oxygen scavenger is added to a boiler by measuring the oxygen concentration of feed water or boiler water and adding several times the theoretical amount of the oxygen scavenger required for the measurement. According to Japanese Industrial Standard JIS-B8223, boiler water quality analysis shows that the concentration of oxygen and unreacted oxygen scavenger is more than a certain value. It is recommended that the concentration of the drug be used.

【0003】また、特開平10―325508号公報に
はボイラ給水に特開平6―109207号公報には亜燐
酸系の脱酸素剤を注入する方法の開示がある。特開平5
―98476号公報には金属と水とが接触している系に
おいて、該金属の自然電位をモニタリングしてその値が
孔食電位未満になるように該系に腐食抑制剤を添加する
金属の腐食方法が開示されている。
Further, Japanese Patent Application Laid-Open No. Hei 10-325508 discloses a method of injecting a phosphite-based oxygen scavenger into boiler water supply and Japanese Patent Application Laid-Open No. Hei 6-109207. JP 5
Japanese Patent Publication No. 98476 discloses that in a system where a metal and water are in contact, the corrosion potential of the metal is monitored by monitoring the spontaneous potential of the metal and adding a corrosion inhibitor to the system so that the value becomes lower than the pitting potential. A method is disclosed.

【0004】また、特開平6―109207号公報には
ボイラ給水にヒドラジンを0.5〜1.5ppm注入す
る方法が開示されている。
Japanese Patent Application Laid-Open No. 6-109207 discloses a method of injecting 0.5 to 1.5 ppm of hydrazine into boiler feed water.

【0005】また、特開平6―109207号公報には
亜燐酸塩又は次亜燐酸塩と、白金の錯体とからなる脱酸
素剤が開示されているが、脱酸素剤を注入する時の濃度
管理に関する開示はない。
Japanese Patent Application Laid-Open No. 6-109207 discloses an oxygen scavenger comprising a phosphite or a hypophosphite and a complex of platinum. However, concentration control when injecting the oxygen scavenger is performed. There is no disclosure.

【0006】[0006]

【発明が解決しようとする課題】ボイラ運転時において
脱酸素剤の添加量は過去の経験から理論的に必要な量の
数倍を用いており、低価格化の一つの障害となってい
る。
The amount of the oxygen absorber added during boiler operation is several times the amount theoretically necessary based on past experience, and this is one obstacle to cost reduction.

【0007】また、ボイラが運転停止した状態でのボイ
ラ保管時には運転時以上に高い脱酸素剤の濃度でボイラ
の管理がなされている。それはボイラ保管時に循環水が
静止した状態で、脱酸素剤の濃度の把握が難しくなるた
め、脱酸素剤の不足による事故予防のために多量の脱酸
素剤を添加し酸素リークに対応している。 これはボイ
ラ内に予想以上の酸素が混入する事態が発生した場合、
理論上必要とされる一定量の脱酸素剤の添加では脱酸素
剤が全て消費された後の残存酸素による腐食が発生する
ことがあるためである。
[0007] Further, when storing the boiler in a state where the operation of the boiler is stopped, the boiler is managed with a higher concentration of the oxygen scavenger than during operation. It is difficult to grasp the concentration of the oxygen absorber when the circulating water is stationary when storing the boiler, so a large amount of oxygen absorber is added to prevent accidents due to lack of oxygen absorber and respond to oxygen leaks. . This is because if more than expected oxygen is mixed into the boiler,
This is because the addition of a certain amount of oxygen scavenger theoretically required may cause corrosion due to residual oxygen after the oxygen scavenger is completely consumed.

【0008】現在、脱酸素剤としてはヒドラジンが主に
用いられている。ヒドラジンは毒性(ラットのLD50
が59mg/kg)が強く安全衛生の観点からプラント
設計等に制約を受ける。
At present, hydrazine is mainly used as an oxygen scavenger. Hydrazine is toxic (LD 50 in rats)
(59 mg / kg) is strongly restricted by plant design and the like from the viewpoint of safety and health.

【0009】さらに、多量のヒドラジンを添加するとヒ
ドラジンは高温で分解してアンモニアを生成し、復水経
路に高濃度のアンモニアを含有することになりpHが上
昇し、復水器の銅系材料の腐食が加速される。
Further, when a large amount of hydrazine is added, the hydrazine is decomposed at a high temperature to produce ammonia, which contains a high concentration of ammonia in the condensate passage and raises the pH. Corrosion is accelerated.

【0010】近年、該ヒドラジンに代わる各種の脱酸素
剤が開発されている。しかし、それらの中には酸素との
反応が複雑で、酸素と反応した後の物質濃度に基ずき、
添加する脱酸素剤の濃度を管理することが困難な場合が
多い。
In recent years, various oxygen scavengers have been developed in place of the hydrazine. However, among them, the reaction with oxygen is complicated, and based on the substance concentration after reacting with oxygen,
It is often difficult to control the concentration of the oxygen scavenger to be added.

【0011】例えば、エルソルビン酸等は高温で分解し
炭酸や硝酸等を生成しpHを低下させる。
For example, ersorbic acid and the like decompose at a high temperature to generate carbonic acid and nitric acid and lower the pH.

【0012】したがって、ヒドラジン代替えの脱酸素剤
には安全衛生上の問題が少なく、かつ低価格で脱酸素剤
の添加量を必要最小限にする管理方法が求められてい
る。
[0012] Therefore, there is a need for a management method that minimizes the amount of oxygen scavenger required at a low cost with less problems on safety and hygiene for the oxygen scavenger instead of hydrazine.

【0013】本発明の目的は、ボイラ循環水系への脱酸
素剤の注入量を腐食電位を測定することで必要な脱酸素
剤濃度を明らかにし、その結果を用いてより腐食の少な
い火力プラントとその管理方法を提供することにある。
An object of the present invention is to determine the required oxygen scavenger concentration by measuring the corrosion potential by measuring the injection amount of the oxygen scavenger into the boiler circulating water system. It is to provide a management method.

【0014】[0014]

【課題を解決するための手段】本発明は、ボイラ、ター
ビン及び覆水器を含む水循環系を有する火力プラントに
おいて、ボイラ水あるいは給水と接している金属の腐食
電位を測定する手段、ヒドラジンよりも低毒性、好まし
くはラットのLD50が100mg/kg以上の脱酸素
剤の濃度が前記金属の脱気時の腐食電位よりも低くなる
ように脱酸素剤の濃度を調整する手段を有することを特
徴とする火力プラントにある。
SUMMARY OF THE INVENTION The present invention relates to a means for measuring the corrosion potential of metal in contact with boiler water or feedwater in a thermal power plant having a water circulation system including a boiler, a turbine and a water impeller. toxicity, preferably a comprising means for adjusting the concentration of the oxygen scavenger to be lower than the corrosion potential at the time of deaeration of the concentration of the metal of the LD 50 is 100 mg / kg or more oxygen scavenger rats Thermal power plant.

【0015】また、本発明は、ボイラ、タービン及び覆
水器を含む水循環系を有する火力プラントの運転管理方
法において、ボイラ水あるいは給水と接している金属の
腐食電位を参照電極と電位差計を用いて測定し、ヒドラ
ジンより分子量が大きく、タンニンよりも分子量が小さ
く水中で酸素と反応する脱酸素剤の濃度が前記金属の脱
気時の腐食電位よりも低くなるように脱酸素剤の濃度を
調整することを特徴とする火力プラントの運転管理方法
にある。
Further, according to the present invention, in a method for managing the operation of a thermal power plant having a water circulation system including a boiler, a turbine and a water cover, the corrosion potential of a metal in contact with boiler water or feedwater is determined by using a reference electrode and a potentiometer. Measure and adjust the concentration of the oxygen absorber so that the molecular weight is larger than hydrazine, smaller than tannin, and the concentration of the oxygen absorber that reacts with oxygen in water is lower than the corrosion potential at the time of degassing the metal. An operation management method for a thermal power plant characterized by the above feature.

【0016】前記の火力プラントの運転管理方法はボイ
ラの運転時あるいは循環水流が停止した保管時に水質を
管理することを特徴とする。
The method for managing the operation of a thermal power plant is characterized in that the quality of the water is managed during operation of the boiler or during storage when the circulating water flow is stopped.

【0017】前述の発明において、前記脱酸素剤の添加
量を調整する手段が、ボイラ水あるいは給水と接してい
る金属の腐食電位を参照電極と電位差計を用いて測定
し、該腐食電位と未反応な該脱酸素剤の濃度の関係から
所定の該脱酸素剤の濃度に相当する腐食電位になるよう
に該脱酸素剤の添加量を制御、あるいは監視すること、
前記金属の脱気時の腐食電位は、ボイラ水あるいは給水
と接している金属の腐食電位を脱酸素剤を注入しない状
態で定期的に測定する手段、又は常時脱気時の腐食電位
は脱塩器出口又は脱気器出口の脱酸素剤を含まない給水
と接する部分の腐食電位を測定する手段を用いて測定す
る手段を用いること、又は脱塩器出口の給水にアンモニ
アを注入し、ボイラ水又は給水と接している金属の腐食
電位を参照電極と電位差計を用いて測定する部分と同等
の温度に制御し測定すること、前記脱酸素剤は、亜硫酸
塩、亜硫酸水素塩、ピロ亜硫酸塩、亜リン酸塩、メチル
エチルケトオキシム、エリソルビン酸、ジエチルヒドロ
キシルアミン、ハイドロキノン、カルボン酸アミン塩、
糖類の中から選ばれる化合物であって、該化合物はヒド
ラジンより分子量が大きく、タンニンよりも分子量が小
さく水中で酸素と反応する化合物であることを特徴とす
る火力プラントの運転管理方法である。
In the above invention, the means for adjusting the addition amount of the oxygen scavenger measures the corrosion potential of the metal in contact with the boiler water or feed water using a reference electrode and a potentiometer, and determines the corrosion potential with the potential difference. Controlling or monitoring the addition amount of the oxygen absorber so as to have a corrosion potential corresponding to a predetermined concentration of the oxygen absorber from the relationship of the concentration of the oxygen absorber that is reactive;
The corrosion potential at the time of degassing of the metal is a means for periodically measuring the corrosion potential of the metal in contact with boiler water or feedwater without injecting a deoxidizer, or the corrosion potential at the time of constant degassing is desalination. Using a means to measure the corrosion potential of the part in contact with the deoxidizer-free feedwater at the outlet of the degasifier or deaerator, or by injecting ammonia into the feedwater at the demineralizer outlet and boiler water Or controlling and measuring the corrosion potential of the metal in contact with the feed water to the same temperature as the portion to be measured using a reference electrode and a potentiometer, the oxygen scavenger, sulfite, bisulfite, pyrosulfite, Phosphite, methyl ethyl ketoxime, erythorbic acid, diethylhydroxylamine, hydroquinone, carboxylic acid amine salt,
A method for controlling the operation of a thermal power plant, comprising a compound selected from saccharides, the compound having a higher molecular weight than hydrazine, a lower molecular weight than tannin, and reacting with oxygen in water.

【0018】また、本発明はボイラ、タービン及び覆水
器を含む水循環系を有する火力プラントにおいて、ボイ
ラ水あるいは給水と接している金属の腐食電位を測定す
る手段及び前記金属の腐食電位を該金属の脱気時の腐食
電位よりも低くなるように調整する脱酸素剤添加手段を
有することを特徴とする火力プラントにある。
Further, the present invention relates to a thermal power plant having a water circulation system including a boiler, a turbine, and a water flooder, wherein a means for measuring a corrosion potential of a metal in contact with boiler water or feed water and a corrosion potential of the metal are measured. There is provided a thermal power plant having an oxygen scavenger adding means for adjusting the corrosion potential to be lower than the corrosion potential at the time of degassing.

【0019】また、本発明はボイラ、タービン及び覆水
器を含む水循環系を有する火力プラントの運転管理方法
において、ボイラ水あるいは給水と接している金属の腐
食電位を参照電極と電位差計を用いて測定し、前記金属
の腐食電位を該金属の脱気時の腐食電位よりも低くなる
ように脱酸素剤の添加量を調整することを特徴とする火
力プラントの運転管理方法にある。
The present invention also relates to an operation management method for a thermal power plant having a water circulation system including a boiler, a turbine and a water cover, wherein the corrosion potential of a metal in contact with boiler water or feed water is measured using a reference electrode and a potentiometer. In addition, there is provided an operation management method for a thermal power plant, wherein an addition amount of a deoxidizer is adjusted so that a corrosion potential of the metal is lower than a corrosion potential at the time of degassing of the metal.

【0020】[0020]

【発明の実施の形態】図2は本発明の火力プラントにお
ける腐食電位の測定位置を示す系統図である。
FIG. 2 is a system diagram showing a measurement position of a corrosion potential in a thermal power plant according to the present invention.

【0021】本発明において、腐食電位を測定する場
合、腐食電位の測定位置は給水系では脱酸素剤の添加位
置より下流側に設けることが好ましく、脱気器4が或る
ボイラでは3箇所( 5、6、7)に設けることが好ま
しい。
In the present invention, when the corrosion potential is measured, it is preferable that the corrosion potential is measured at a position downstream of the position where the oxygen scavenger is added in the water supply system. 5, 6, 7).

【0022】すなわち、復水器3より下流で脱酸素剤が
添加された下流側で脱気器4手前の腐食電位測定位置5
にて測定する方法、脱気器4より下流でボイラ1手前の
腐食電位測定位置6で測定する方法、ボイラ1内の腐食
電位測定位置7で測定する方法がある。
That is, the corrosion potential measurement position 5 in front of the deaerator 4 on the downstream side where the oxygen scavenger is added downstream of the condenser 3
, A method of measuring at a corrosion potential measurement position 6 in the boiler 1 downstream of the deaerator 4 and just before the boiler, and a method of measuring at a corrosion potential measurement position 7 in the boiler 1.

【0023】また、各腐食電位測定位置の手前には脱気
時の腐食電位測定位置8,9,10がありその下流側に
脱酸素剤の注入ラインに取り付けられた脱酸素剤注入用
バルブ11,12,13があり、その場所それぞれに脱
酸素剤制御装置14,15,16を設置し脱酸素剤の注
入量を制御する。
In front of each corrosion potential measurement position, there are corrosion potential measurement positions 8, 9 and 10 at the time of deaeration, and downstream of the corrosion potential measurement positions 8, 9 and 10, an oxygen absorber injection valve 11 attached to an oxygen absorber injection line. , 12 and 13, and oxygen absorber control devices 14, 15 and 16 are installed at the respective locations to control the injection amount of the oxygen absorber.

【0024】また、ボイラ1は運転時と同様に保管時に
も脱酸素剤の添加がなされる。一般に保管時は水の循環
がない静止保管となるが、腐食電位の測定は水の流動が
なくても測定は可能であり、ボイラ停止保管時にも脱酸
素剤の濃度の制御や監視も可能である。
Further, the deoxidizer is added to the boiler 1 during storage as well as during operation. In general, storage is a static storage without water circulation, but the corrosion potential can be measured without water flow, and the concentration of oxygen scavenger can be controlled and monitored even when the boiler is stopped and stored. is there.

【0025】上記の5、6、7のそれぞれの位置におい
て腐食電位あるいは脱気時の腐食電位を測定する場合に
は、例えば次の方法がある。プラントの配管等の電位を
直接測定する方法、給水等を採取し所定の水質や温度に
調整した後に測定する方法である。
In the case where the corrosion potential or the corrosion potential at the time of degassing is measured at each of the positions 5, 6, and 7 described above, for example, the following method is available. This is a method of directly measuring the potential of a pipe or the like in a plant, or a method of measuring the water supply or the like after collecting the water and adjusting the water quality and temperature to a predetermined value.

【0026】図3は循環水経路の配管17の腐食電位を
直接測定する方法の概略図である。
FIG. 3 is a schematic diagram of a method for directly measuring the corrosion potential of the piping 17 in the circulating water path.

【0027】配管17などに参照電極18を取り付け近
傍の配管等17の腐食電位を電位差計19で測定する方
法である。参照電極18には外部参照電極や内部参照電
極があり、水素標準電位に変換できる標準電極ならどれ
でも良い。測定した腐食電位の信号は脱酸素剤の添加量
を制御する制御装置や監視する場所へ送られる。この方
法は運転時及び保管時に適用可能である。
In this method, a reference electrode 18 is attached to the pipe 17 or the like, and the corrosion potential of the pipe 17 or the like near the pipe 17 is measured by a potentiometer 19. The reference electrode 18 includes an external reference electrode and an internal reference electrode, and any standard electrode that can be converted to a hydrogen standard potential may be used. The signal of the measured corrosion potential is sent to a control device for controlling the amount of the oxygen scavenger added or a monitoring place. This method is applicable during operation and storage.

【0028】図4は給水等のサンプル水を採取し所定の
環境に制御し測定する方法の概略図である。
FIG. 4 is a schematic diagram of a method for collecting a sample water such as a water supply and controlling and measuring a predetermined environment.

【0029】図4は測定箇所のサンプル水を取り出し圧
力容器20内で金属の腐食電位を測定する方法である。
図3の方法が不可能な場合は、測定したいボイラ水ある
いは給水を抽出し圧力容器20に導き試験片22の腐食
電位を参照電極21と電位差計23を用いて測定する。
電位差計23で測定した信号は脱酸素剤の添加量の制御
や監視する制御装置へ送られる。この方法はボイラ運転
時及び保管時に適用可能である。ボイラの停止保管時に
適用するには圧力容器20内のサンプル水をボイラ水と
同様な水質にするため、ポンプ等をとりつけサンプル水
を循環させる必要がある。ここで、試験片22の材質は
高温水中で腐食電位が測定できるものであればよく、特
に限定されない。
FIG. 4 shows a method of taking out the sample water at the measuring point and measuring the corrosion potential of the metal in the pressure vessel 20.
When the method of FIG. 3 is not possible, the boiler water or feed water to be measured is extracted, introduced into the pressure vessel 20, and the corrosion potential of the test piece 22 is measured using the reference electrode 21 and the potentiometer 23.
The signal measured by the potentiometer 23 is sent to a control device that controls and monitors the amount of the oxygen scavenger added. This method is applicable during boiler operation and storage. When the boiler is stopped and stored, it is necessary to attach a pump or the like to circulate the sample water so that the sample water in the pressure vessel 20 has the same quality as the boiler water. Here, the material of the test piece 22 is not particularly limited as long as its corrosion potential can be measured in high-temperature water.

【0030】本発明によれば、ボイラ水あるいは給水に
接する金属の腐食電位を測定し、その電位を脱気時の腐
食電位よりも低く管理する。詳しくは、脱気時と脱酸素
剤添加時の電位差の関係から、脱酸素剤を適切な濃度で
ボイラの運転管理することでボイラの酸素による腐食を
抑制するボイラの運転管理方法である。
According to the present invention, the corrosion potential of a metal in contact with boiler water or feedwater is measured, and the potential is controlled to be lower than the corrosion potential at the time of degassing. More specifically, the present invention relates to a boiler operation management method in which the boiler is operated and controlled at an appropriate concentration of an oxygen absorber to suppress corrosion of the boiler by oxygen from the relationship between the potential difference between the time of degassing and the time of addition of the oxygen absorber.

【0031】また、脱酸素剤を過多なく脱酸素剤を添加
し、余剰な脱酸素剤のコストを抑制、脱酸素剤と酸素の
反応が複雑な場合や、異なる種類の脱酸素剤を混合して
添加した場合などに、未反応物質濃度の管理が難しい場
合も脱気時と脱酸素剤添加時の電位差の関係から、未反
応の脱酸素剤濃度を腐食電位で管理することができる。
In addition, the oxygen scavenger is added without excessive oxygen scavenger to suppress the cost of the surplus oxygen scavenger, and when the reaction between the oxygen scavenger and oxygen is complicated or when different types of oxygen scavengers are mixed. Even when the concentration of the unreacted substance is difficult to control, for example, when the unreacted oxygen is added, the concentration of the unreacted oxygen absorber can be controlled by the corrosion potential from the relationship between the potential difference between the time of degassing and the time of addition of the oxygen scavenger.

【0032】さらに、ボイラ静止保管時に脱酸素剤濃度
の把握が従来困難であったが、配管等の腐食電位を停止
時に測定することで可能となり、従来非常に高濃度な脱
酸素剤が添加されていたが、それを削減することができ
脱酸素剤による価格を抑制できる。この時、使用される
脱酸素剤は水中で酸素と反応し脱気時よりも腐食電位が
低下する物質は全て適用できる。
Further, it has been conventionally difficult to grasp the oxygen scavenger concentration at the time of boiler stationary storage. However, it is possible to measure the corrosion potential of pipes and the like at the time of stoppage, and conventionally, a very high oxygen scavenger is added. However, this can be reduced and the price of the oxygen scavenger can be reduced. At this time, any substance used as a deoxidizer reacts with oxygen in water and has a lower corrosion potential than at the time of degassing.

【0033】これらに対し、本発明である腐食電位を脱
気時の腐食電位よりも低くし運転することで、脱酸素剤
の反応が複雑であっても腐食電位で脱酸素剤の濃度を制
御して対応できる。
On the other hand, by controlling the corrosion potential according to the present invention so as to be lower than the corrosion potential at the time of degassing, even if the reaction of the oxygen scavenger is complicated, the concentration of the oxygen scavenger can be controlled by the corrosion potential. Can respond.

【0034】また、何かの原因でボイラ内に酸素のリー
クが発生しボイラ水の酸素濃度が高くなっても、腐食電
位を管理することによりすぐに脱酸素剤の添加量を増す
ことで対応でき、酸素による腐食を回避できる。
Also, even if oxygen leaks in the boiler for some reason and the oxygen concentration in the boiler water becomes high, it is possible to control the corrosion potential by immediately increasing the amount of the oxygen scavenger added. And corrosion by oxygen can be avoided.

【0035】金属の腐食電位を測定することで循環水系
の水の酸化雰囲気あるいは還元雰囲気を検知することが
できる。純水を不活性なガスで置換した環境で測定した
腐食電位と酸素などの酸化作用のある物質が存在する場
合、腐食電位は貴側に変化する。逆にヒドラジンなどの
還元作用のある物質が存在する場合は卑側に変化する。
By measuring the corrosion potential of the metal, the oxidizing atmosphere or the reducing atmosphere of the water in the circulating water system can be detected. If there is an oxidizing substance such as oxygen and corrosion potential measured in an environment where pure water is replaced with an inert gas, the corrosion potential changes to a noble side. Conversely, when a substance having a reducing action such as hydrazine is present, it changes to a lower side.

【0036】ボイラの水処理に酸素除去を目的として使
用されているあらゆる脱酸素剤は金属の腐食電位を脱気
時の腐食電位よりも低くする効果がある。
All oxygen scavengers used for boiler water treatment for the purpose of removing oxygen have the effect of lowering the corrosion potential of metals below that of degassing.

【0037】本発明で脱酸素剤濃度と脱気時と脱酸素剤
添加時の腐食電位差の関係から、目的とする脱酸素剤濃
度に腐食電位を監視して添加量を制御することができ
る。
In the present invention, from the relationship between the oxygen scavenger concentration and the corrosion potential difference between the time of deaeration and the time of addition of the oxygen scavenger, it is possible to monitor the corrosion potential at the desired oxygen scavenger concentration and control the amount of addition.

【0038】さらに、酸化剤となる溶存酸素が微量でも
存在すると著しく腐食電位は上昇し、脱酸素剤が不足し
ていることが瞬時に検知可能でより安全な運転管理が可
能となる。つまり、ボイラの運転時及び保管時にボイラ
水あるいは給水に接する配管等の腐食電位を測定するこ
とで、適正な脱酸素濃度に制御あるいは監視できるボイ
ラ運転管理方法を提供できる。
Furthermore, when a small amount of dissolved oxygen as an oxidizing agent is present, the corrosion potential is significantly increased, and it is possible to instantaneously detect the shortage of the deoxidizing agent, thereby enabling safer operation management. That is, it is possible to provide a boiler operation management method that can control or monitor an appropriate deoxygenation concentration by measuring the corrosion potential of piping connected to boiler water or feedwater during operation and storage of the boiler.

【0039】本発明において、ヒドラジンよりも低毒性
であるラットのLD50が100mg/kg以上の脱酸
素剤としては、例えばメチルケチルオキシム:LD50
が3100mg/kg、ジヒドロキシルアミン:LD
50が2190mg/kg及び亜硫酸ナトリウム:毒性
無し、等が挙げられる。
In the present invention, examples of the oxygen scavenger having an LD 50 of 100 mg / kg or more in rats having lower toxicity than hydrazine include, for example, methylketyl oxime: LD 50
Is 3100 mg / kg, dihydroxylamine: LD
50 is 2190 mg / kg and sodium sulfite: no toxicity.

【0040】[0040]

【実施例1〜6】及びExamples 1 to 6 and

【比較例1〜12】表1は脱酸素剤(化合物)の種類と
添加条件および100時間経過後の炭素鋼の腐食電位を
示す。
Comparative Examples 1 to 12 Table 1 shows the types and addition conditions of oxygen scavengers (compounds) and the corrosion potential of carbon steel after 100 hours.

【0041】[0041]

【表1】 [Table 1]

【0042】腐食電位測定試験は、試験部の水質を制御
できる循環式のオートクレーブ装置を用いた。試験片は
炭素鋼(STB−35)を用いた。試験温度は300
℃、給水のpHはアンモニアを用いてpH9.5に調整
し溶存酸素濃度は<1ppbとした。 表1の結果を図
1に示す。
In the corrosion potential measurement test, a circulating autoclave device capable of controlling the water quality of the test section was used. The test piece used was carbon steel (STB-35). Test temperature is 300
C., the pH of the feed water was adjusted to pH 9.5 using ammonia, and the dissolved oxygen concentration was <1 ppb. The results in Table 1 are shown in FIG.

【0043】図1は炭素鋼の脱酸素剤添加時における腐
食電位変化を示す。比較例1は他の測定値の基準となる
値で、給水の酸素濃度1ppb以下で脱酸素剤未添加の
条件である。その値は100時間経過後では−481m
V(vs SHE)でほぼ安定していた。図中では基準とな
る腐食電位の差は0である。
FIG. 1 shows the change in corrosion potential when carbon dioxide is added with a deoxidizer. Comparative Example 1 is a reference value for other measured values, and is a condition where the oxygen concentration of the feedwater is 1 ppb or less and the oxygen scavenger is not added. The value is -481 m after 100 hours.
It was almost stable at V (vs SHE). In the figure, the difference in the reference corrosion potential is 0.

【0044】実施例1、2は亜硫酸ナトリウムを添加し
た場合である。酸素濃度400ppbと理論的に反応す
る濃度を添加した実施例2の腐食電位は、脱気時の比較
例1と比較し約180mV低い。
Examples 1 and 2 are cases where sodium sulfite is added. The corrosion potential of Example 2 to which a concentration theoretically reacting with the oxygen concentration of 400 ppb was added was about 180 mV lower than that of Comparative Example 1 at the time of degassing.

【0045】比較例2、3はヒドラジンを添加した場合
である。酸素濃度400ppbと理論的に反応する濃度
を添加した比較例3の場合は、比較例_1に比較し約93
mV低い。
Comparative Examples 2 and 3 are cases where hydrazine was added. In the case of Comparative Example 3 in which a concentration that theoretically reacts with the oxygen concentration of 400 ppb was added, compared with Comparative Example_1, about 93
mV lower.

【0046】実施例3、4はカルボヒドラジドを添加し
た場合の結果である。酸素濃度400ppbと理論的に
反応する濃度を添加した実施例4ときの腐食電位は比較
例1に比較し205mV低い。
Examples 3 and 4 show the results when carbohydrazide was added. The corrosion potential in Example 4 in which a concentration theoretically reacting with the oxygen concentration of 400 ppb was added was 205 mV lower than that in Comparative Example 1.

【0047】実施例5、6はグルコースを添加したとき
の結果である。酸素濃度500ppbと理論的に反応す
る濃度を添加した比較例6ときの腐食電位は、比較例1
に比較し107mV低い。比較例4は酸素濃度35pp
b添加し測定した結果である。腐食電位は比較例1に比
較し107mV高い。
Examples 5 and 6 show the results when glucose was added. The corrosion potential in Comparative Example 6 in which a concentration theoretically reacting with an oxygen concentration of 500 ppb was added,
107 mV lower than that of Comparative Example 4 has an oxygen concentration of 35 pp
It is the result of adding and measuring. The corrosion potential is 107 mV higher than that of Comparative Example 1.

【0048】以上の結果から脱酸素剤が添加されると脱
気時の腐食電位よりも低くなり、添加量と低下する電位
は脱酸素剤により異なる。 したがって、未反応な脱酸
素剤が存在すると脱気時の腐食電位よりも低い値を示
し、脱酸素剤の濃度と脱酸素剤の添加時と未添加時の腐
食電位差には相関性があり、この腐食電位差を測定し脱
酸素剤の濃度を制御あるいは監視することができる。
From the above results, when the oxygen scavenger is added, it becomes lower than the corrosion potential at the time of deaeration, and the amount of addition and the decreased potential differ depending on the oxygen scavenger. Therefore, when an unreacted oxygen scavenger is present, it shows a value lower than the corrosion potential at the time of degassing, and there is a correlation between the concentration of the oxygen scavenger and the corrosion potential difference between when the oxygen scavenger is added and when it is not added, By measuring the corrosion potential difference, the concentration of the oxygen scavenger can be controlled or monitored.

【0049】さらに、比較例2のように溶存酸素が存在
すると著しく腐食電位は上昇し、脱酸素剤が不足してい
る場合も直ちに検知可能である。
Further, when dissolved oxygen is present as in Comparative Example 2, the corrosion potential is significantly increased, and the case where the oxygen scavenger is insufficient can be immediately detected.

【0050】以上の手法は脱気時の腐食電位が経時変化
する場合である。この手法以外に、制御したい水の水質
が常に一定で脱気時の腐食電位に変化がない場合は、一
定の電位になるように脱酸素剤の添加を制御することも
できる。
The above method is a case where the corrosion potential at the time of degassing changes with time. In addition to this method, when the quality of the water to be controlled is always constant and there is no change in the corrosion potential at the time of degassing, the addition of the oxygen scavenger can be controlled so that the potential becomes constant.

【0051】表2は炭素鋼(STB−35),低合金鋼
(STBA−22), ステンレス鋼(SUS304)
を用いて脱酸素剤の有無による腐食電位の変化を測定し
た実験条件とその結果である。
Table 2 shows carbon steel (STB-35), low alloy steel (STBA-22), and stainless steel (SUS304).
5 shows the experimental conditions and results of the measurement of the change in corrosion potential with and without the oxygen scavenger using the method.

【0052】[0052]

【表2】 [Table 2]

【0053】試験は温度300℃、給水のpHはアンモ
ニアを用いてpH9.5に調整し溶存酸素は<1ppb
とした。
The test was performed at a temperature of 300 ° C., the pH of the feed water was adjusted to 9.5 with ammonia, and the dissolved oxygen was <1 ppb.
And

【0054】脱酸素剤にはヒドラジンを用い消費可能な
酸素濃度200ppb相当を添加し、100時間経過後
の腐食電位を測定した。脱酸素剤の未添加の腐食電位を
比較すると、比較例5の低合金鋼は比較例1の炭素鋼の腐
食電位よりも約28mV高い、−4610mV(VS SH
E)であった。
Hydrazine was used as the oxygen scavenger, and a consumable oxygen concentration of 200 ppb was added, and the corrosion potential was measured after 100 hours. Comparing the corrosion potential without the addition of the oxygen scavenger, the low alloy steel of Comparative Example 5 was −4610 mV (VS SH), which was approximately 28 mV higher than the carbon steel of Comparative Example 1.
E).

【0055】比較例7のス テ ン レ ス鋼は比較例1の炭素鋼
より約130mV高い−351mV(VS SHE)であっ
た。同じ材質で脱酸素剤の有無で比較すると、炭素鋼で
ある比較例2は比較例1と比較し70mV低くなってい
る。低合金鋼である比較例6は比較例5と比較し63m
V低くなっている。ステンレス鋼である比較例8は比較
例7と比較し75mV低くなっている。以上のことか
ら、どの材質でも未添加時と比較し63〜75mV低い
値となりあまり差がないことがわかる。また、材質が異
なり脱気時の腐食電位が異なっても、脱酸素剤が添加さ
れるとその腐食電位は低下する。
The stainless steel of Comparative Example 7 was -351 mV (VS SHE), which was about 130 mV higher than the carbon steel of Comparative Example 1. Comparing the same material with and without a deoxidizer, Comparative Example 2, which is carbon steel, is 70 mV lower than Comparative Example 1. Comparative Example 6, which is a low alloy steel, is 63 m longer than Comparative Example 5.
V is low. Comparative Example 8, which is stainless steel, is 75 mV lower than Comparative Example 7. From the above, it can be seen that there is not much difference between any of the materials, which is 63 to 75 mV lower than that when no material is added. Further, even if the material is different and the corrosion potential at the time of degassing is different, the corrosion potential is reduced when an oxygen scavenger is added.

【0056】表3は炭素鋼を用いて脱酸素剤の有無によ
る腐食電位の変化を温度を変えて調べた実験条件とその
結果である。
Table 3 shows the experimental conditions and the results of examining the change in corrosion potential with and without the oxygen scavenger at different temperatures using carbon steel.

【0057】[0057]

【表3】 [Table 3]

【0058】試験温度は100,200,300℃、給
水のpHはアンモニアを用いてpH9.5に調整し溶存
酸素は<1ppbとした。脱酸素剤にはヒドラジンを用
い消費可能な酸素濃度200ppb相当を添加し、10
0時間経過後の腐食電位を測定した。試験温度が100
℃である比較例10は未添加の比較例9に比較し腐食電
位が55mV低い。試験温度200℃でる比較例12と
未添加の比較例11と比べると腐食電位が62mV低
い。試験温度が300℃である実施例2は未添加の比較
例1と比較し腐食電位が70mV低くい。以上から何れ
の温度領域でも脱酸素剤を添加すると腐食電位は低下す
るが、温度が低いほど脱酸素剤の添加時における腐食電
位の低下は小さい。
The test temperatures were 100, 200 and 300 ° C., the pH of the feed water was adjusted to pH 9.5 using ammonia, and the dissolved oxygen was <1 ppb. Hydrazine is used as a deoxidizer, and a consumable oxygen concentration of 200 ppb is added.
After 0 hour, the corrosion potential was measured. Test temperature is 100
Comparative Example 10 in which the temperature was 0 ° C. had a corrosion potential lower by 55 mV than Comparative Example 9 in which no additive was added. The corrosion potential is 62 mV lower than that of Comparative Example 12 at a test temperature of 200 ° C. and Comparative Example 11 not added. In Example 2 where the test temperature was 300 ° C., the corrosion potential was lower by 70 mV than in Comparative Example 1 where no additive was added. From the above, when the oxygen scavenger is added in any temperature range, the corrosion potential decreases. However, the lower the temperature, the smaller the corrosion potential when the oxygen scavenger is added.

【0059】表4は炭素鋼を用いて脱酸素剤の有無によ
る腐食電位の変化をpHを変えて調べた実験条件とその
結果である。
Table 4 shows the experimental conditions and results obtained by examining the change in corrosion potential with and without the oxygen scavenger using carbon steel while changing the pH.

【0060】[0060]

【表4】 [Table 4]

【0061】試験温度は300℃、給水のpHはアンモ
ニアを用いてpHを調整し溶存酸素は<1ppbとし
た。試験は脱酸素剤のヒドラジンを消費可能な酸素濃度
200ppb 相当を添加し100時間経過後の腐食電
位を測定した。試験pH8.0である比較例14を未添
加の比較例13と比較すると腐食電位が72mV低い。
試験pH9.5である比較例2は比較例1と比較し腐食
電位が70mV低い。以上から弱アルカリ領域において
脱酸素剤を添加すると腐食電位は低下し、その傾向は中
性付近ほど大きい。
The test temperature was 300 ° C., and the pH of the feed water was adjusted using ammonia to adjust the dissolved oxygen to <1 ppb. In the test, an oxygen concentration equivalent to 200 ppb capable of consuming hydrazine as a deoxidizer was added, and the corrosion potential was measured after 100 hours. The corrosion potential is 72 mV lower than that of Comparative Example 13 in which the test pH of 8.0 was not added.
Comparative Example 2, which has a test pH of 9.5, has a corrosion potential lower by 70 mV than Comparative Example 1. From the above, when the oxygen scavenger is added in the weakly alkaline region, the corrosion potential is lowered, and the tendency is larger near neutrality.

【0062】また、脱酸素剤を薬液タンクから注入する
場合、常温で反応が速い物質はタンクの酸素リークによ
り薬液タンク内で反応が進み脱酸素剤が消費されるた
め、有効に働く脱酸素剤の濃度が低下している場合があ
る。このような状態でもボイラ水あるいは給水に接して
いる金属の腐食電位を測定することで脱酸素剤の濃度を
適切に制御できる。
When the oxygen scavenger is injected from the chemical tank, a substance which reacts quickly at room temperature reacts in the chemical tank due to oxygen leak of the tank and consumes the oxygen scavenger. Concentration may have decreased. Even in such a state, the concentration of the oxygen scavenger can be appropriately controlled by measuring the corrosion potential of the metal in contact with the boiler water or the feed water.

【0063】[0063]

【発明の効果】本発明によれば、ボイラ水あるいは給水
に接している金属の腐食電位を酸素が存在しない脱気環
境で腐食電位を測定し、その腐食電位よりも低い腐食電
位になるように脱酸素剤の濃度を制御できる。
According to the present invention, the corrosion potential of a metal in contact with boiler water or feed water is measured in a degassed environment in the absence of oxygen so that the corrosion potential is lower than the corrosion potential. The concentration of the oxygen scavenger can be controlled.

【0064】各脱酸素剤の濃度と腐食電位の関係は、測
定する金属及びその温度pHやその他に水に溶解してい
る物質に左右される。したがって、実機に適用する場合
は実機と同一の環境で脱気時の腐食電位を測定し、その
後脱酸素剤を添加し脱酸素剤と腐食電位の関係を明らか
にし調整したい脱酸素剤の濃度に対応する腐食電位にな
るように脱酸素剤を添加する。この脱酸素剤と腐食電位
の関係を実機で行う場合は、脱酸素剤の分析値と照らし
合わせて行うか、あるいは実際に脱気時の腐食電位を測
定し、その後脱酸素剤を添加し腐食電位と脱酸素濃度の
関係を求めることより達成できる。
The relationship between the concentration of each oxygen scavenger and the corrosion potential depends on the metal to be measured, its temperature pH, and other substances dissolved in water. Therefore, when applied to an actual machine, measure the corrosion potential at the time of degassing in the same environment as the actual machine, and then add a oxygen scavenger to clarify the relationship between the oxygen scavenger and the corrosion potential and adjust the concentration of the oxygen scavenger to be adjusted. Add the oxygen scavenger to the corresponding corrosion potential. When the relationship between the oxygen scavenger and the corrosion potential is to be measured using an actual machine, the corrosion potential is measured by comparing it with the analysis value of the oxygen scavenger or by actually measuring the corrosion potential at the time of degassing, and then adding the oxygen scavenger to the corrosion potential. This can be achieved by determining the relationship between the potential and the deoxygenation concentration.

【0065】本発明は、従来経験に頼っていた脱酸素剤
の注入量を腐食電位を測定することで簡便に必要な脱酸
素剤濃度を明らかにし、その結果を用いて適切に脱酸素
剤の注入量を決定できるボイラの管理方法を提供する。
According to the present invention, the required oxygen scavenger concentration can be easily determined by measuring the corrosion potential with respect to the injection amount of the oxygen scavenger, which has conventionally depended on experience, and the results can be used to appropriately determine the oxygen scavenger concentration. Provided is a boiler management method capable of determining an injection amount.

【図面の簡単な説明】[Brief description of the drawings]

【図1】炭素鋼の脱酸素剤添加時における腐食電位変化
を示す。
FIG. 1 shows a change in corrosion potential at the time of adding a deoxidizer to carbon steel.

【図2】実機ボイラにおける腐食電位の測定位置を示す
火力プラントの系統図。
FIG. 2 is a system diagram of a thermal power plant showing a measurement position of a corrosion potential in an actual boiler.

【図3】配管等の腐食電位を直接測定する方法を示す概
略図。
FIG. 3 is a schematic diagram showing a method for directly measuring a corrosion potential of a pipe or the like.

【図4】ボイラ水および給水を抽出して測定する方法を
示す概略図。
FIG. 4 is a schematic diagram showing a method of extracting and measuring boiler water and feedwater.

【符号の説明】[Explanation of symbols]

1…ボイラ、 2…タービン、 3…復水器、 4…脱
気器、 5腐食電位測定位置、 6…腐食電位測定位
置、 7…腐食電位測定位置、 8…脱気時の腐食電位
測定位置、 9…脱気時の腐食電位測定位置、 10…
脱気時の腐食電位測定位置、 11…脱酸素剤タンク、
12…脱酸素剤タンク、 13…脱酸素剤タンク、
14…脱酸素剤濃度制御装置、 15…脱酸素剤濃度制
御装置、 16…脱酸素剤濃度制御装置、 17…配
管、 18…参照電極、 19…電位差計、 20…圧
力容器、 21…参照電極、 22…電位を測定する
試験片、23…電位差計。
DESCRIPTION OF SYMBOLS 1 ... Boiler, 2 ... Turbine, 3 ... Condenser, 4 ... Deaerator, 5 Corrosion potential measurement position, 6 ... Corrosion potential measurement position, 7 ... Corrosion potential measurement position, 8 ... Corrosion potential measurement position at the time of degassing , 9 ... Corrosion potential measurement position during degassing, 10 ...
Corrosion potential measurement position during deaeration, 11 ... Oxygen absorber tank,
12 ... oxygen absorber tank 13 ... oxygen absorber tank
14: oxygen scavenger concentration control device, 15: oxygen scavenger concentration control device, 16: oxygen scavenger concentration control device, 17: piping, 18: reference electrode, 19: potentiometer, 20: pressure vessel, 21: reference electrode , 22: Test piece for measuring electric potential, 23: Potentiometer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山内 博史 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 神林 剛 茨城県日立市幸町三丁目1番1号 株式会 社日立茨城ビジネスエンジニアリング内 (72)発明者 村田 重人 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 下野 展雄 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 Fターム(参考) 4K062 AA03 AA05 BA08 BB04 BB06 BB07 BB12 BB15 BB18 CA05 CA10 DA01 EA04 FA05 FA06 GA08  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroshi Yamauchi 7-1-1, Omikacho, Hitachi City, Ibaraki Prefecture Within Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Tsuyoshi Kambayashi 3-chome, Sachimachi, Hitachi City, Ibaraki Prefecture No. 1 Hitachi Ibaraki Business Engineering Co., Ltd. (72) Inventor Shigeto Murata 3-1-1 Kochicho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd. Hitachi Plant (72) Inventor Norio Shimono Kure City, Hiroshima Prefecture 6-9 Takaracho Babcock Hitachi Kure Factory F-term (reference) 4K062 AA03 AA05 BA08 BB04 BB06 BB07 BB12 BB15 BB18 CA05 CA10 DA01 EA04 FA05 FA06 GA08

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】ボイラ、タービン及び覆水器を含む水循環
系を有する火力プラントにおいて、ボイラ水あるいは給
水と接している金属の腐食電位を測定する手段及びヒド
ラジンよりも低毒性の脱酸素剤の濃度が前記金属の脱気
時の腐食電位よりも低くなるように調整する手段を有す
ることを特徴とする火力プラント。
In a thermal power plant having a water circulation system including a boiler, a turbine and a water cover, a means for measuring a corrosion potential of metal in contact with boiler water or feed water and a concentration of a deoxidizer having a lower toxicity than hydrazine are provided. A thermal power plant having means for adjusting the corrosion potential to be lower than the corrosion potential at the time of degassing of the metal.
【請求項2】ボイラ、タービン及び覆水器を含む水循環
系を有する火力プラントの運転管理方法において、ボイ
ラ水あるいは給水と接している金属の腐食電位を参照電
極と電位差計を用いて測定し、ヒドラジンより分子量が
大きく、タンニンよりも分子量が小さく水中で酸素と反
応する脱酸素剤の濃度が前記金属の脱気時の腐食電位よ
りも低くなるように調整することを特徴とする火力プラ
ントの運転管理方法。
2. A method for controlling the operation of a thermal power plant having a water circulation system including a boiler, a turbine, and a water cover, wherein the corrosion potential of a metal in contact with boiler water or feedwater is measured using a reference electrode and a potentiometer, and hydrazine is used. Operation management of a thermal power plant characterized by adjusting the concentration of a deoxidizer having a higher molecular weight, a lower molecular weight than tannin and reacting with oxygen in water to be lower than a corrosion potential at the time of degassing of the metal. Method.
【請求項3】請求項1又は請求項2において、前記脱酸
素剤の濃度を調整する手段が、ボイラ水あるいは給水と
接している金属の腐食電位を参照電極と電位差計を用い
て測定し、該腐食電位と未反応な該脱酸素剤の濃度の関
係から所定の該脱酸素剤の濃度に相当する腐食電位にな
るように該脱酸素剤の添加量を制御、あるいは監視する
ことを特徴とする火力プラントの運転管理方法。
3. The method according to claim 1, wherein the means for adjusting the concentration of the oxygen scavenger measures a corrosion potential of a metal in contact with the boiler water or the feedwater using a reference electrode and a potentiometer. Controlling or monitoring the amount of the oxygen scavenger added so that the corrosion potential corresponds to a predetermined concentration of the oxygen scavenger from the relationship between the corrosion potential and the concentration of the unreacted oxygen scavenger. Operation management method for thermal power plants.
【請求項4】請求項1又は請求項2において、前記金属
の脱気時の腐食電位は、ボイラ水あるいは給水と接して
いる金属の腐食電位を脱酸素剤を注入しない状態で定期
的に測定する手段、又は常時脱気時の腐食電位は脱塩器
出口又は脱気器出口の脱酸素剤を含まない給水と接する
部分の腐食電位を測定する手段を用いて測定する手段を
用いることを特徴とする火力プラントの運転管理方法。
4. The method according to claim 1, wherein the corrosion potential of the metal at the time of degassing is measured periodically without introducing a deoxidizer into the metal in contact with the boiler water or the feed water. A means for measuring the corrosion potential at the time of degassing or a means for measuring the corrosion potential at the outlet of the demineralizer or at the part in contact with the water supply containing no oxygen absorber at the outlet of the deaerator. Operation management method for thermal power plants.
【請求項5】請求項1又は請求項2において、 前記金
属の脱気時の腐食電位は、脱塩器出口の給水にアンモニ
アを注入し、ボイラ水又は給水と接している金属の腐食
電位を参照電極と電位差計を用いて測定する部分と同等
の温度に制御し測定することを特徴とする火力プラント
の運転管理方法。
5. The corrosion potential at the time of degassing of the metal according to claim 1 or 2, wherein ammonia is injected into the feed water at the outlet of the desalter and the corrosion potential of the boiler water or the metal in contact with the feed water is determined. An operation management method for a thermal power plant, wherein the temperature is controlled and measured at a temperature equivalent to that of a part to be measured using a reference electrode and a potentiometer.
【請求項6】前記ボイラの運転管理方法はボイラ運転時
あるいは循環水流が停止した保管時に水質を管理するこ
とを特徴とする請求項1又は請求項2記載の火力プラン
トの運転管理方法。
6. The operation management method for a thermal power plant according to claim 1, wherein the water quality is controlled during the operation of the boiler or during storage when the circulation water flow is stopped.
【請求項7】請求項1又は請求項2において、前記脱酸
素剤は、亜硫酸塩、亜硫酸水素塩、ピロ亜硫酸塩、亜リ
ン酸塩、メチルエチルケトオキシム、エリソルビン酸、
ジエチルヒドロキシルアミン、ハイドロキノン、カルボ
ン酸アミン塩、糖類の中から選ばれる化合物であって、
該化合物はヒドラジンより分子量が大きく、タンニンよ
りも分子量が小さく水中で酸素と反応する化合物である
ことを特徴とする火力プラントの運転管理方法。
7. The method according to claim 1, wherein the oxygen scavenger comprises sulfite, bisulfite, pyrosulfite, phosphite, methyl ethyl ketoxime, erythorbic acid,
Diethylhydroxylamine, hydroquinone, carboxylic acid amine salt, a compound selected from saccharides,
A method for controlling operation of a thermal power plant, wherein the compound has a higher molecular weight than hydrazine and a lower molecular weight than tannin and reacts with oxygen in water.
【請求項8】ボイラ、タービン及び覆水器を含む水循環
系を有する火力プラントにおいて、ボイラ水あるいは給
水と接している金属の腐食電位を測定する手段及び前記
金属の腐食電位を該金属の脱気時の腐食電位よりも低く
なるように調整する脱酸素剤添加手段を有することを特
徴とする火力プラント。
8. In a thermal power plant having a water circulation system including a boiler, a turbine, and a water flooder, means for measuring a corrosion potential of a metal in contact with boiler water or feed water, and measuring a corrosion potential of the metal when degassing the metal. A thermal power plant, comprising a deoxidizer adding means for adjusting so as to be lower than the corrosion potential of the fuel cell.
【請求項9】ボイラ、タービン及び覆水器を含む水循環
系を有する火力プラントの運転管理方法において、ボイ
ラ水あるいは給水と接している金属の腐食電位を参照電
極と電位差計を用いて測定し、前記金属の腐食電位を該
金属の脱気時の腐食電位よりも低くなるように脱酸素剤
の添加量を調整することを特徴とする火力プラントの運
転管理方法。
9. An operation management method for a thermal power plant having a water circulation system including a boiler, a turbine, and a water cover, wherein the corrosion potential of a metal in contact with boiler water or feedwater is measured using a reference electrode and a potentiometer. An operation management method for a thermal power plant, comprising adjusting an addition amount of a deoxidizer so that a corrosion potential of a metal is lower than a corrosion potential at the time of degassing the metal.
JP15822799A 1999-06-04 1999-06-04 Thermal power plant Expired - Fee Related JP3992881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15822799A JP3992881B2 (en) 1999-06-04 1999-06-04 Thermal power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15822799A JP3992881B2 (en) 1999-06-04 1999-06-04 Thermal power plant

Publications (2)

Publication Number Publication Date
JP2000346307A true JP2000346307A (en) 2000-12-15
JP3992881B2 JP3992881B2 (en) 2007-10-17

Family

ID=15667066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15822799A Expired - Fee Related JP3992881B2 (en) 1999-06-04 1999-06-04 Thermal power plant

Country Status (1)

Country Link
JP (1) JP3992881B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089889A (en) * 2001-09-14 2003-03-28 Sumitomo Chem Co Ltd Brine and method of preventing corrosion of metal using the same
JP2007217773A (en) * 2006-02-20 2007-08-30 Chugoku Electric Power Co Inc:The Method for treating water in unit, and system for treating water in unit
CN105854523A (en) * 2016-05-20 2016-08-17 黄立维 Harmful gas treating method and device
JP2017172838A (en) * 2016-03-22 2017-09-28 三浦工業株式会社 Drain recovery system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089889A (en) * 2001-09-14 2003-03-28 Sumitomo Chem Co Ltd Brine and method of preventing corrosion of metal using the same
JP2007217773A (en) * 2006-02-20 2007-08-30 Chugoku Electric Power Co Inc:The Method for treating water in unit, and system for treating water in unit
JP2017172838A (en) * 2016-03-22 2017-09-28 三浦工業株式会社 Drain recovery system
CN105854523A (en) * 2016-05-20 2016-08-17 黄立维 Harmful gas treating method and device

Also Published As

Publication number Publication date
JP3992881B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
US7635449B2 (en) Method of inhibiting corrosion in hot water systems
US20060157420A1 (en) Automated process for inhibiting corrosion in an inactive boiler containing an aqueous system
US20020046976A1 (en) Oxygen scavenger and boiler water treatment chemical
US9352980B2 (en) Method and device for preventing corrosion in hot water systems
EP2179076B1 (en) Method for preventing corrosion in hot water systems
JP2005043051A (en) Method for mitigating stress corrosion cracking in structural material for nuclear power plant
US4728497A (en) Use of aminophenol compounds as oxygen scavengers in an aqueous medium
US5227010A (en) Regeneration of ferric chloride etchants
US5904857A (en) 4-alkyl and aryl semicarbazides as oxygen scavengers
JP2000346307A (en) Thermal power plant and method for managing its operation
JP3257450B2 (en) Chemical injection control method and chemical injection control device for hydrogen sulfide remover
US20020100896A1 (en) Oxygen scavenger
JP5519920B2 (en) PWR power plant secondary cooling system water treatment system and method
JP2013188655A (en) Organic matter decomposition system using ozone
JP4654392B2 (en) Boiler water treatment system and blow water management method using the same
US5660736A (en) Sodium sulfoxylate formaldehyde as a boiler additive for oxygen scavenging
US5750037A (en) Use of tartronic acid as an oxygen scavenger
JP2019128053A (en) Anticorrosion method for boiler and boiler facility
JP6663302B2 (en) Organic acid solution decomposition apparatus and organic acid solution decomposition method
KR19980079419A (en) Dissolved oxygen removal method and device by activated carbon fiber
JP4581306B2 (en) Carbon steel local corrosion monitoring method and carbon steel local corrosion prevention method
CA2896657C (en) Systems and methods for monitoring and controlling corrosion in hot water systems
JP2617981B2 (en) Metal corrosion protection method
JP3982272B2 (en) Carbon steel local corrosion monitoring method and carbon steel local corrosion prevention method
JPH05197450A (en) Cooling device for electronic computer and electronic computer using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350