JP2000345997A - Variable stationary vane mechanism for axial flow compressor - Google Patents

Variable stationary vane mechanism for axial flow compressor

Info

Publication number
JP2000345997A
JP2000345997A JP11158068A JP15806899A JP2000345997A JP 2000345997 A JP2000345997 A JP 2000345997A JP 11158068 A JP11158068 A JP 11158068A JP 15806899 A JP15806899 A JP 15806899A JP 2000345997 A JP2000345997 A JP 2000345997A
Authority
JP
Japan
Prior art keywords
variable
compressor
axial flow
end parts
vane mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11158068A
Other languages
Japanese (ja)
Inventor
Kuniyuki Imanari
邦之 今成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP11158068A priority Critical patent/JP2000345997A/en
Publication of JP2000345997A publication Critical patent/JP2000345997A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a variable stationary vane mechanism for an axial flow compressor capable of controlling a gap-flow flowing from a pressure surface to a suction surface through the gaps between end parts of a variable stationary vane for reducing the pressure loss in vicinity of a passage wall to improve the efficiency of a compressor. SOLUTION: Stationary vanes 1 constituting a cascade of blades are supported being allowed to swing around a shaft core 1a extended in the radial direction, and flexible sealing members 10 are attached on the end parts of the stationary vanes. The sealing members are heat-resistant rubber members whose end parts are thicker than those of tip parts thereof, and one ends 10a are fixed to the end parts of the vanes and the other ends 10b slide on the wall surface 6 supporting the stationary vanes while contacting with it.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、軸流圧縮機の可変
静翼機構に関する。
The present invention relates to a variable vane mechanism for an axial compressor.

【0002】[0002]

【従来の技術】ジェットエンジン等の軸流圧縮機では、
定格回転速度時の静翼の向きに対して、アイドリング時
や高回転時には、性能の保持・向上のために静翼の向き
を大きく揺動させる必要がある。この揺動角度は、例え
ば最大で60〜70°にも達する。そのため軸流圧縮機
では、低速回転から高速回転までの幅広い作動域で作動
安定性を確保するために図2に模式的に示す可変静翼機
構(Variable Static Vane: VSV)が用いられる。
2. Description of the Related Art In an axial compressor such as a jet engine,
It is necessary to largely swing the direction of the stationary blade at the time of idling or high rotation with respect to the direction of the stationary blade at the rated rotation speed in order to maintain and improve the performance. The swing angle reaches, for example, 60 to 70 ° at the maximum. Therefore, in the axial-flow compressor, a variable static vane mechanism (Variable Static Vane: VSV) schematically shown in FIG. 2 is used to secure operation stability in a wide operation range from low-speed rotation to high-speed rotation.

【0003】[0003]

【発明が解決しようとする課題】一般に圧縮機の流路
は、気体(空気)の圧縮に応じて上流側から下流側に徐
々に狭くなる。このような流路内で可変静翼が流路壁と
接触することなく支持軸のまわりに回転できるように、
可変静翼の両端部には隙間が設けられる。この隙間は、
最小でも約0.2mm位、大きい場合には約1mm以上
にもなる。
Generally, the flow path of a compressor gradually narrows from an upstream side to a downstream side in accordance with the compression of gas (air). In such a flow path, the variable vane can rotate around the support axis without contacting the flow path wall,
A gap is provided at both ends of the variable stationary blade. This gap is
The minimum is about 0.2 mm, and when it is large, it is about 1 mm or more.

【0004】図3は可変静翼1の主流2と翼端隙間の隙
間流れ3を模式的に示している。なお、この図で(A)
は可変静翼1の翼列図、(B)はそのA−A矢視図、
(C)圧力損失特性図である。図3(A)(B)に示す
ように、翼端隙間があると、翼面付近に存在する正圧面
(腹側)と負圧面(背側)の圧力差によって、翼の腹側
から背側に流れる隙間流れ3が発生する。この隙間流れ
3は、翼間の主流2に対してほぼ直交する方向に流れる
ため、図3(C)に示すように、流路壁付近の圧力損失
が急増し効率が低下する。なお、図3(B)において、
4は動翼である。
FIG. 3 schematically shows a main flow 2 of the variable stationary blade 1 and a gap flow 3 in a blade tip clearance. In this figure, (A)
Is a cascade diagram of the variable stator vane 1, (B) is a view taken along the line AA,
FIG. 3C is a pressure loss characteristic diagram. As shown in FIGS. 3A and 3B, when there is a blade tip clearance, the pressure difference between the pressure side (ventral side) and the suction side (back side) existing near the wing surface causes the wing from the ventral side of the wing. A gap flow 3 flowing to the side is generated. Since this gap flow 3 flows in a direction substantially orthogonal to the main flow 2 between the blades, as shown in FIG. 3 (C), the pressure loss near the flow path wall rapidly increases, and the efficiency decreases. Note that in FIG.
4 is a moving blade.

【0005】本発明は、かかる問題点を解決するために
創案されたものである。すなわち、本発明の目的は、可
変静翼の端部に生じる隙間を通して正圧面から負圧面に
流れる隙間流れを防止することができ、これにより流路
壁付近の圧力損失を低減し圧縮機の効率を向上させるこ
とができる軸流圧縮機の可変静翼機構を提供することに
ある。
The present invention has been made to solve such a problem. That is, an object of the present invention is to prevent a gap flow flowing from the pressure side to the suction side through a gap generated at the end of the variable vane, thereby reducing the pressure loss near the flow path wall and improving the efficiency of the compressor. It is an object of the present invention to provide a variable vane mechanism of an axial flow compressor which can improve the pressure.

【0006】[0006]

【課題を解決するための手段】本発明によれば、翼列を
構成する各静翼(1)が半径方向に延びる軸心(1a)
を中心に揺動可能に支持され、各静翼の翼端部に一端
(10a)が固定され他端(10b)が静翼を支持する
壁面(6)に接触しながら摺動する可撓性シール部材
(10)を備える、ことを特徴とする軸流圧縮機の可変
静翼機構が提供される。
According to the present invention, each vane (1) constituting a cascade has an axial center (1a) extending in a radial direction.
, And one end (10a) is fixed to the blade tip of each stationary blade, and the other end (10b) slides while contacting the wall surface (6) supporting the stationary blade. A variable vane mechanism for an axial flow compressor, comprising a seal member (10) is provided.

【0007】上記本発明の構成により、可変静翼の揺動
により、その両端部の隙間が変化しても、可撓性シール
部材(10)の他端(10b)が壁面(6)に接触しな
がら摺動するので、例えば、揺動角度が全開状態では変
形なし状態となって翼端隙間を埋め、角度全閉状態では
変形して翼端隙間を埋めることができる。従って低速回
転から高速回転までの全作動域で翼端隙間を実質的にな
くすことができ、隙間流れをなくし、側壁部の圧力損失
を低減することができる。
According to the configuration of the present invention, the other end (10b) of the flexible seal member (10) comes into contact with the wall surface (6) even if the gap at both ends changes due to the swing of the variable stator blade. Since the sliding is performed while the swing angle is in the fully open state, for example, there is no deformation and the wing tip gap is filled, and when the swing angle is in the fully closed state, the wing tip gap can be deformed and filled. Therefore, the blade tip clearance can be substantially eliminated in the entire operation range from low-speed rotation to high-speed rotation, clearance flow can be eliminated, and pressure loss on the side wall can be reduced.

【0008】本発明の好ましい実施形態によれば、前記
可撓性シール部材(10)は、壁面(6)への追従性を
高めるように、末端部が厚く先端部が薄く構成された耐
熱ゴム部材である。
According to a preferred embodiment of the present invention, the flexible seal member (10) has a heat-resistant rubber having a thick end portion and a thin tip portion so as to enhance the ability to follow the wall surface (6). It is a member.

【0009】この構成により、車のワイパーゴムのよう
に可撓性シール部材(10)の先端部が柔軟に変形し、
末端部が可変静翼に強固に固定されるので、壁面(6)
への追従性を高めることができる。また、耐熱ゴム部材
を用いることにより、軸流圧縮機の可変静翼機構が一般
に設けられるファン又は圧縮機の前段側での作動温度
(100〜200℃)に耐えることができる。
With this configuration, the tip of the flexible seal member (10) is flexibly deformed like a wiper rubber of a car,
Since the end is firmly fixed to the variable vane, the wall (6)
Follow-up performance can be improved. Further, by using the heat-resistant rubber member, it is possible to withstand the operating temperature (100 to 200 ° C.) on the front stage side of the fan or the compressor in which the variable stationary blade mechanism of the axial flow compressor is generally provided.

【0010】[0010]

【発明の実施の形態】以下本発明の好ましい実施形態に
ついて、図面を参照して説明する。なお、各図におい
て、共通する部分には同一の符号を付し、重複した説明
を省略する。図1は、本発明の軸流圧縮機の可変静翼機
構の模式図である。この図において、(A)は軸流圧縮
機の翼列図、(B)はそのA−A線における部分断面
図、(C)はその特性図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. In each of the drawings, common portions are denoted by the same reference numerals, and redundant description will be omitted. FIG. 1 is a schematic diagram of a variable vane mechanism of the axial compressor of the present invention. In this figure, (A) is a cascade diagram of the axial compressor, (B) is a partial cross-sectional view along the line AA, and (C) is a characteristic diagram thereof.

【0011】図1(A)に示すように、本発明の軸流圧
縮機の可変静翼機構は、軸流圧縮機の外側流路壁5aと
内側流路壁5bの間に設置される。可変静翼1は、両端
面に固定された2本の支持軸1aにより支持され、その
軸心を中心に図示しない可変機構により揺動するように
なっている。また、可変静翼1の下流側には動翼4が配
置されている。なお、図2に例示したように、可変静翼
1を1本の支持軸で支持してもよい。また、本発明の軸
流圧縮機の可変静翼機構は、ファン又は圧縮機の前段側
に設けるのがよい。
As shown in FIG. 1A, the variable vane mechanism of the axial compressor of the present invention is installed between the outer flow path wall 5a and the inner flow path wall 5b of the axial flow compressor. The variable stationary blade 1 is supported by two support shafts 1a fixed to both end surfaces, and swings about its axis by a variable mechanism (not shown). A moving blade 4 is disposed downstream of the variable stationary blade 1. In addition, as illustrated in FIG. 2, the variable stationary blade 1 may be supported by one support shaft. Further, the variable vane mechanism of the axial flow compressor of the present invention is preferably provided at a stage preceding the fan or the compressor.

【0012】図1(A)(B)に示すように、本発明の
軸流圧縮機の可変静翼機構は、各静翼1の翼端部に可撓
性シール部材10を備えている。このシール部材10
は、外側流路壁5aと内側流路壁5bの壁面6への追従
性を高めるように、末端部が厚く先端部が薄く構成され
ている。またこの部材10は、ファン又は圧縮機の前段
側における作動温度(例えば100〜200℃)に耐え
る周知の耐熱ゴム(例えばシリコンゴム)からなる。
As shown in FIGS. 1A and 1B, the variable vane mechanism of the axial flow compressor according to the present invention includes a flexible seal member 10 at the tip of each vane 1. This sealing member 10
Is thicker at the end and thinner at the tip so as to enhance the followability of the outer flow path wall 5a and the inner flow path wall 5b to the wall surface 6. The member 10 is made of a well-known heat-resistant rubber (for example, silicon rubber) that withstands an operating temperature (for example, 100 to 200 ° C.) on the front side of the fan or the compressor.

【0013】図1(B)に示すように、このシール部材
10は、一端10a(末端部)が静翼1の翼端部に固定
され、他端10b(先端部)が静翼を支持する壁面6に
接触しながら摺動する。翼端部への固定は、例えば接着
もしくは機械的に組立・装着する。また、図1(A)に
示すように、支持軸1aが比較的太い場合には、支持軸
1aの前後に1個ずつ、内側壁部と外側壁部の両方で4
個の部品にシール部材10を分割して取り付けるのがよ
い。従って、この部品は1枚の可変静翼1について4つ
装着される。
As shown in FIG. 1B, one end 10a (end) of the seal member 10 is fixed to the tip of the vane 1, and the other end 10b (tip) supports the vane. It slides while contacting the wall surface 6. The fixing to the wing tip is performed, for example, by bonding or mechanically assembling and mounting. Further, as shown in FIG. 1A, when the support shaft 1a is relatively thick, one is provided before and after the support shaft 1a on both the inner wall and the outer wall.
It is preferable that the seal member 10 is divided and attached to individual parts. Therefore, four such components are mounted on one variable stationary blade 1.

【0014】耐熱ゴムには、車のワイパーゴムのように
柔軟に変形可能なものを使用する。従って翼端部に固定
されたこの部品は柔軟で変形可能であり、例えば可変静
翼1の揺動角度が全開状態では変形なし状態となって翼
端隙間を埋め、角度全閉状態では変形して翼端隙間を埋
めることができる。
As the heat-resistant rubber, a flexible rubber such as a wiper rubber of a car is used. Therefore, this part fixed to the wing tip is flexible and deformable. For example, when the swing angle of the variable vane 1 is fully open, there is no deformation to fill the wing tip gap, and when the angle is fully closed, it deforms. To fill the wing tip gap.

【0015】上述した本発明の構成により、可変静翼1
の揺動により、その両端部の隙間が変化しても、可撓性
シール部材10の他端10bが壁面6に接触しながら摺
動するので、可撓性シール部材10の変形により翼端隙
間を常に埋めることができる。従って低速回転から高速
回転までの全作動域で翼端隙間を実質的になくすことが
でき、隙間流れをなくし、図1(C)に示すように側壁
部の圧力損失を低減することができる。
According to the configuration of the present invention described above, the variable vane 1
Even if the gap between the two ends changes due to the swinging, the other end 10 b of the flexible seal member 10 slides while contacting the wall surface 6. Can always be filled. Therefore, the blade tip clearance can be substantially eliminated in the entire operation range from low-speed rotation to high-speed rotation, the clearance flow can be eliminated, and the pressure loss in the side wall can be reduced as shown in FIG.

【0016】なお、本発明は上述した実施形態及び実施
例に限定されず、本発明の要旨を逸脱しない範囲で種々
に変更できることは勿論である。
It should be noted that the present invention is not limited to the above-described embodiments and examples, and it is needless to say that various changes can be made without departing from the gist of the present invention.

【0017】[0017]

【発明の効果】上述したように、本発明の軸流圧縮機の
可変静翼機構は、可変静翼の端部に生じる隙間を通して
正圧面から負圧面に流れる隙間流れを防止することがで
き、これにより流路壁付近の圧力損失を低減し圧縮機の
効率を向上させることができる、等の優れた効果を有す
る。
As described above, the variable vane mechanism of the axial flow compressor according to the present invention can prevent the gap flow from the pressure side to the suction side through the gap generated at the end of the variable vane. Thereby, there is an excellent effect that pressure loss near the flow path wall can be reduced and the efficiency of the compressor can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の軸流圧縮機の可変静翼機構の模式図で
ある。
FIG. 1 is a schematic view of a variable stationary blade mechanism of an axial flow compressor according to the present invention.

【図2】従来の軸流圧縮機の可変静翼機構の構成図であ
る。
FIG. 2 is a configuration diagram of a variable vane mechanism of a conventional axial flow compressor.

【図3】従来の可変静翼機構における隙間流れの模式図
である。
FIG. 3 is a schematic diagram of a gap flow in a conventional variable vane mechanism.

【符号の説明】[Explanation of symbols]

1 可変静翼 2 主流 3 隙間流れ 4 動翼 5a 外側流路壁 5b 内側流路壁 6 壁面 10 可撓性シール部材 10a 一端 10b 他端 DESCRIPTION OF SYMBOLS 1 Variable stationary blade 2 Main flow 3 Gap flow 4 Moving blade 5a Outer channel wall 5b Inner channel wall 6 Wall surface 10 Flexible seal member 10a One end 10b Other end

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 翼列を構成する各静翼(1)が半径方向
に延びる軸心(1a)を中心に揺動可能に支持され、各
静翼の翼端部に一端(10a)が固定され他端(10
b)が静翼を支持する壁面(6)に接触しながら摺動す
る可撓性シール部材(10)を備える、ことを特徴とす
る軸流圧縮機の可変静翼機構。
1. A stationary blade (1) constituting a cascade is supported swingably around an axial center (1a) extending in a radial direction, and one end (10a) is fixed to a blade end of each stationary blade. And the other end (10
b) comprises a flexible seal member (10) that slides while contacting a wall surface (6) supporting the vane, wherein the variable vane mechanism of the axial flow compressor is provided.
【請求項2】 前記可撓性シール部材(10)は、壁面
(6)への追従性を高めるように、末端部が厚く先端部
が薄く構成された耐熱ゴム部材である、ことを特徴とす
る請求項1に記載の軸流圧縮機の可変静翼機構。
2. The flexible seal member (10) is a heat-resistant rubber member having a thick end portion and a thin tip portion so as to enhance the followability to the wall surface (6). The variable vane mechanism of the axial flow compressor according to claim 1.
JP11158068A 1999-06-04 1999-06-04 Variable stationary vane mechanism for axial flow compressor Pending JP2000345997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11158068A JP2000345997A (en) 1999-06-04 1999-06-04 Variable stationary vane mechanism for axial flow compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11158068A JP2000345997A (en) 1999-06-04 1999-06-04 Variable stationary vane mechanism for axial flow compressor

Publications (1)

Publication Number Publication Date
JP2000345997A true JP2000345997A (en) 2000-12-12

Family

ID=15663608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11158068A Pending JP2000345997A (en) 1999-06-04 1999-06-04 Variable stationary vane mechanism for axial flow compressor

Country Status (1)

Country Link
JP (1) JP2000345997A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2380527A (en) * 2001-08-11 2003-04-09 Rolls Royce Plc Gas turbine engine guide vane assembly with noise reduction
WO2007025375A3 (en) * 2005-08-30 2007-04-19 Flowork Systems Ii Llc Automotive coolant pump apparatus
FR2927951A1 (en) * 2008-02-27 2009-08-28 Snecma Sa DIFFUSER-RECTIFIER ASSEMBLY FOR A TURBOMACHINE
JP2010001821A (en) * 2008-06-20 2010-01-07 Mitsubishi Heavy Ind Ltd Variable stationary blade drive method and device for axial flow compressor
JP2010048110A (en) * 2008-08-19 2010-03-04 Kunststoff Schwanden Ag Jalousie shutter for vehicle
JP2012233424A (en) * 2011-04-28 2012-11-29 Ihi Corp Variable stator blade mechanism of axial flow type compressor
US8347633B2 (en) 2007-07-27 2013-01-08 United Technologies Corporation Gas turbine engine with variable geometry fan exit guide vane system
US8459035B2 (en) 2007-07-27 2013-06-11 United Technologies Corporation Gas turbine engine with low fan pressure ratio
FR3010464A1 (en) * 2013-09-11 2015-03-13 Snecma VARIABLE SETTING RECTIFIER STAGE FOR TURBOMACHINE COMPRESSOR COMPRISING A BRUSHED GASKET
WO2016024461A1 (en) * 2014-08-12 2016-02-18 株式会社Ihi Compressor stator vane, axial flow compressor, and gas turbine
WO2018181939A1 (en) * 2017-03-30 2018-10-04 三菱日立パワーシステムズ株式会社 Variable stator blade, and compressor
WO2019123787A1 (en) * 2017-12-21 2019-06-27 株式会社Ihi Axial flow compressor
CN114321019A (en) * 2021-12-27 2022-04-12 中国航发沈阳发动机研究所 Adjustable stator structure of gas compressor

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6764276B2 (en) 2001-08-11 2004-07-20 Rolls-Royce Plc Guide vane assembly
GB2380527B (en) * 2001-08-11 2004-10-27 Rolls Royce Plc A guide vane assembly
GB2380527A (en) * 2001-08-11 2003-04-09 Rolls Royce Plc Gas turbine engine guide vane assembly with noise reduction
WO2007025375A3 (en) * 2005-08-30 2007-04-19 Flowork Systems Ii Llc Automotive coolant pump apparatus
US8347633B2 (en) 2007-07-27 2013-01-08 United Technologies Corporation Gas turbine engine with variable geometry fan exit guide vane system
US8459035B2 (en) 2007-07-27 2013-06-11 United Technologies Corporation Gas turbine engine with low fan pressure ratio
EP2096266A1 (en) * 2008-02-27 2009-09-02 Snecma Nozzle-synchronising ring assembly for a turbomachine
US8142148B2 (en) 2008-02-27 2012-03-27 Snecma Diffuser-nozzle assembly for a turbomachine
FR2927951A1 (en) * 2008-02-27 2009-08-28 Snecma Sa DIFFUSER-RECTIFIER ASSEMBLY FOR A TURBOMACHINE
JP2010001821A (en) * 2008-06-20 2010-01-07 Mitsubishi Heavy Ind Ltd Variable stationary blade drive method and device for axial flow compressor
JP2010048110A (en) * 2008-08-19 2010-03-04 Kunststoff Schwanden Ag Jalousie shutter for vehicle
JP2012233424A (en) * 2011-04-28 2012-11-29 Ihi Corp Variable stator blade mechanism of axial flow type compressor
FR3010464A1 (en) * 2013-09-11 2015-03-13 Snecma VARIABLE SETTING RECTIFIER STAGE FOR TURBOMACHINE COMPRESSOR COMPRISING A BRUSHED GASKET
WO2016024461A1 (en) * 2014-08-12 2016-02-18 株式会社Ihi Compressor stator vane, axial flow compressor, and gas turbine
JP2016040448A (en) * 2014-08-12 2016-03-24 株式会社Ihi Compressor stator vane, axial compressor, and gas turbine
US10480532B2 (en) 2014-08-12 2019-11-19 Ihi Corporation Compressor stator vane, axial flow compressor, and gas turbine
WO2018181939A1 (en) * 2017-03-30 2018-10-04 三菱日立パワーシステムズ株式会社 Variable stator blade, and compressor
US11168704B2 (en) 2017-03-30 2021-11-09 Mitsubishi Power, Ltd. Variable stator vane and compressor
WO2019123787A1 (en) * 2017-12-21 2019-06-27 株式会社Ihi Axial flow compressor
JPWO2019123787A1 (en) * 2017-12-21 2020-12-17 株式会社Ihi Axial flow compressor
US11236630B2 (en) 2017-12-21 2022-02-01 Ihi Corporation Axial compressor
CN114321019A (en) * 2021-12-27 2022-04-12 中国航发沈阳发动机研究所 Adjustable stator structure of gas compressor

Similar Documents

Publication Publication Date Title
KR100571465B1 (en) Apparatus for Minimizing Inlet Airflow Turbulence in a Gas Turbine Engine
US7594794B2 (en) Leaned high pressure compressor inlet guide vane
KR101146641B1 (en) Variable capacity-type exhaust turbo supercharger equipped with variable nozzle mechanism
US4013377A (en) Intermediate transition annulus for a two shaft gas turbine engine
JP2000345997A (en) Variable stationary vane mechanism for axial flow compressor
JP2006233970A (en) Inner casing of turbo machine equipped with thermal shelter
US10900366B2 (en) Passageway between a shroud and a rotor platform in a turbine engine
JP5651459B2 (en) System and apparatus for compressor operation in a turbine engine
JPH10274004A (en) Static blade assembly for gas turbine engine and its sealing method
US8235654B2 (en) Compressor stator with partial shroud
JP2002371802A (en) Shroud integrated type moving blade in gas turbine and split ring
JP2002201914A (en) Rotor and stator leaf spring seal of turbine and related method
JP2014514501A (en) Sealing device for turbomachine turbine nozzle
JP2004514839A (en) Flange for disk with moving blade and its layout
JP2002327604A (en) Gas turbine
KR20040002526A (en) Turbine
CN107795525B (en) Inner shroud and orientable blade for axial turbomachine compressor
JP2006523803A (en) Cutting blade centrally located on turbine blade with shroud
AU2005325824A1 (en) Blade with covering strip
JP5228311B2 (en) Compressor vane
JP2000145407A (en) Axial flow turbine
JP6694950B2 (en) Variable capacity turbocharger
JP3040560B2 (en) Stator blade shroud integrated turbine
JP2001342803A (en) Variable air flow apparatus of gas turbine
JP2001193696A (en) Variable stationary blade device for axial-flow compressor