JP2000344815A - Olefin polymerization catalyst - Google Patents

Olefin polymerization catalyst

Info

Publication number
JP2000344815A
JP2000344815A JP11154050A JP15405099A JP2000344815A JP 2000344815 A JP2000344815 A JP 2000344815A JP 11154050 A JP11154050 A JP 11154050A JP 15405099 A JP15405099 A JP 15405099A JP 2000344815 A JP2000344815 A JP 2000344815A
Authority
JP
Japan
Prior art keywords
polymerization catalyst
skeleton
olefin polymerization
polyolefin
substituent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11154050A
Other languages
Japanese (ja)
Inventor
Hiromitsu Tanaka
洋充 田中
Kin Yao
キン ヤオ
Mitsuru Nakano
充 中野
Arimitsu Usuki
有光 臼杵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP11154050A priority Critical patent/JP2000344815A/en
Publication of JP2000344815A publication Critical patent/JP2000344815A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an olefin polymerization catalyst capable of controlling the stereostructure of the resulting polymer and synthesizing a polyolefin having desired physical properties, and a polyolefin copolymer produced by the polymerization using the catalyst. SOLUTION: An olefin polymerization catalyst comprises a metal atom and, coordinated thereto, an organic substance which has a planar skeleton represented by the formula in Figure. At least one of a combination of A- and B-positions, a combination of B- and C-positions and a combination of C- and D-positions in the skeleton forms a ring bond and substituent groups are attached to A-position and D-position. The skeleton is an phenanthroline skeleton which preferably has substituent groups attached to 2-position and 9-position. The substituent group is preferably selected from a 2,6-substituted benzene, a 2,6-substituted cyclohexane and a trimethylsilyl group.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は,金属中心を有するオレフィン重
合触媒,及びこれを用いて重合したポリオレフィン系共
重合体に関する。
TECHNICAL FIELD The present invention relates to an olefin polymerization catalyst having a metal center and a polyolefin copolymer polymerized using the catalyst.

【0002】[0002]

【従来技術】オレフィン重合触媒としては,デュポン社
から,図13に示すごとく,Ni,Pdなどの中心金属
(M)95とする重合触媒91が開示されている。この
重合触媒91はジイミン配位子92を持つ。ジイミン配
位子92は,2つの窒素原子にそれぞれ単芳香環921
が結合しており,分子構造が嵩高である。そのため,オ
レフィンの移動反応(β−水素脱離反応)が抑制され,
その結果高分子量のポリオレフィンが生成する。
2. Description of the Related Art As an olefin polymerization catalyst, DuPont discloses a polymerization catalyst 91 having a central metal (M) 95 such as Ni or Pd as shown in FIG. The polymerization catalyst 91 has a diimine ligand 92. The diimine ligand 92 has a single aromatic ring 921 at each of the two nitrogen atoms.
Are bonded, and the molecular structure is bulky. Therefore, the olefin transfer reaction (β-hydrogen elimination reaction) is suppressed,
As a result, a high molecular weight polyolefin is formed.

【0003】[0003]

【解決しようとする課題】しかしながら,上記重合触媒
91においては,単芳香環921が窒素原子に対して回
転可能である。そのため,生成ポリオレフィンの立体構
造(タクチシチー)の制御がし難く,このため,生成ポ
リオレフィンの物性を制御することは困難であった。ま
た,上記重合触媒では,オレフィンの配位できる空間が
広く,モノマーが配位できる立体的自由度が高いため,
ポリオレフィンに分岐を生じ易かった。
However, in the polymerization catalyst 91, the single aromatic ring 921 can rotate with respect to the nitrogen atom. Therefore, it was difficult to control the three-dimensional structure (tacticity) of the produced polyolefin, and it was difficult to control the physical properties of the produced polyolefin. In addition, in the above polymerization catalyst, the space in which the olefin can be coordinated is wide and the degree of steric freedom in which the monomer can be coordinated is high.
Branching was likely to occur in the polyolefin.

【0004】本発明はかかる従来の問題点に鑑み,立体
構造を制御でき,且つ所望の物性を有するポリオレフィ
ンを合成できるオレフィン重合触媒,及びこれを用いて
重合したポリオレフィン系共重合体を提供しようとする
ものである。
[0004] In view of the above problems, the present invention aims to provide an olefin polymerization catalyst capable of controlling a steric structure and synthesizing a polyolefin having desired physical properties, and a polyolefin-based copolymer polymerized using the catalyst. Is what you do.

【0005】[0005]

【課題の解決手段】請求項1の発明は,金属原子に,図
1の一般式(I)で示され同一平面上にある骨格を有す
る有機物が配位しているオレフィン重合触媒であって,
上記骨格におけるA位とB位,B位とC位,C位とD位
の少なくとも1組が環状結合を形成しており,且つ上記
A位及びD位には置換基が結合していることを特徴とす
るオレフィン重合触媒である。
The invention according to claim 1 is an olefin polymerization catalyst in which an organic substance having a skeleton represented by the general formula (I) in FIG. 1 and located on the same plane is coordinated to a metal atom,
At least one pair of the A-position and the B-position, the B-position and the C-position, and the C-position and the D-position in the skeleton form a cyclic bond, and a substituent is bonded to the A-position and the D-position. An olefin polymerization catalyst characterized by the following.

【0006】本発明のオレフィン重合触媒においては,
触媒活性中心となる金属原子に,図1の一般式(I)で
表される平面状の骨格を有する有機物が配位している。
上記骨格は,環状結合を有し,また上記骨格のA位,D
位には置換基が結合している。そのため,置換基の結合
軸は,環状結合を有する骨格により立体障害を受けて,
回転できない。このため,A位とD位の置換基の立体配
置を不斉対称とすることができる。ゆえに,オレフィン
触媒に,金属原子を中心とした不斉構造を導入できる。
したがって,本発明のオレフィン重合触媒によれば,オ
レフィンの立体規則性重合が可能であり,アイソタクテ
ィック,シンジオタクティックなどのような立体構造が
制御された生成ポリオレフィンを合成できる。
In the olefin polymerization catalyst of the present invention,
An organic substance having a planar skeleton represented by the general formula (I) in FIG. 1 is coordinated to a metal atom serving as a catalytic active center.
The skeleton has a cyclic bond.
A substituent is bonded to the position. Therefore, the bond axis of the substituent is sterically hindered by the skeleton having a cyclic bond,
Cannot rotate. Therefore, the configuration of the substituents at the A-position and the D-position can be asymmetrically symmetric. Therefore, an asymmetric structure centering on a metal atom can be introduced into the olefin catalyst.
Therefore, according to the olefin polymerization catalyst of the present invention, stereoregular polymerization of olefins is possible, and a produced polyolefin having a controlled steric structure such as isotactic and syndiotactic can be synthesized.

【0007】また,A,D位に嵩高い置換基を導入する
ことにより,重合触媒に対してオレフィンが配位できる
空間が小さくなり,オレフィン配位の自由度が減少す
る。このため,分枝したポリオレフィンが生じにくくな
り,直鎖状ポリオレフィンを高い収率で合成することが
できる。
Further, by introducing a bulky substituent at the A and D positions, the space in which the olefin can be coordinated with the polymerization catalyst is reduced, and the degree of freedom of the olefin coordination is reduced. For this reason, a branched polyolefin is not easily generated, and a linear polyolefin can be synthesized with a high yield.

【0008】また,有機物の骨格は,活性中心の金属原
子の真上(apical位)を,また嵩高の置換基は,金属原
子の両サイドをブロックする。そのため,オレフィンの
移動反応(β−水素脱離反応)が従来の触媒よりも更に
抑制される。したがって,本発明のオレフィン重合触媒
によれば,従来の触媒を用いた場合よりも,高い分子量
のポリオレフィンを合成することができる。
The skeleton of the organic substance blocks directly above the metal atom at the active center (apical position), and the bulky substituent blocks both sides of the metal atom. Therefore, the olefin transfer reaction (β-hydrogen elimination reaction) is further suppressed as compared with the conventional catalyst. Therefore, according to the olefin polymerization catalyst of the present invention, a polyolefin having a higher molecular weight can be synthesized as compared with the case where a conventional catalyst is used.

【0009】(有機物の骨格構造)上記骨格におけるA
位とB位,B位とC位,C位とD位の少なくとも1組
は,環状結合を形成している。環状結合は,例えば,炭
素,酸素,窒素などの1または2以上の原子を介して,
形成されている。環状結合を形成していない部位は,骨
格の末端となり,場合によっては側鎖が結合しているこ
ともある。上記骨格におけるA位とB位,B位とC位,
C位とD位は,いずれも環状結合を形成していることが
好ましい。これにより,生成ポリオレフィンの立体構造
をより効果的に制御できる。
(Skeletal structure of organic substance)
At least one pair of the positions B and B, the positions B and C, and the positions C and D form a cyclic bond. A cyclic bond can be formed, for example, via one or more atoms such as carbon, oxygen, nitrogen, etc.
Is formed. The site that does not form a cyclic bond is the end of the skeleton, and in some cases, a side chain is bonded. A and B positions, B and C positions in the above skeleton,
It is preferable that both the C-position and the D-position form a cyclic bond. Thereby, the three-dimensional structure of the produced polyolefin can be controlled more effectively.

【0010】請求項2の発明のように,上記骨格は,フ
ェナントロリン骨格であり,該フェナントロリン骨格に
おける2,9位には置換基が結合していることが好まし
い。
[0010] As in the invention of claim 2, the skeleton is a phenanthroline skeleton, and it is preferable that a substituent is bonded to the 2, 9-position in the phenanthroline skeleton.

【0011】上記フェナントロリン骨格は,図2に示す
化学構造を有しており,その2位,9位は,図1の上記
骨格の一般式(I)のA位,D位に相当する。図3に示
すごとく,フェナントロリン骨格1は,活性中心となる
金属原子(M)3に配位している。フェナントロリン骨
格1の2位,9位には,例えばフェニル基などの置換基
2が結合している。置換基2は,嵩高であり,またフェ
ナントロリン骨格1により立体障害を受けて,置換基2
の結合軸は回転できない。このため,2位と9位の置換
基の立体配置を不斉対称(C2対称)とすることができ
る。ゆえに,オレフィン触媒に,金属原子を中心とした
不斉構造を導入できる。したがって,上記オレフィン重
合触媒によれば,分岐量,分岐分布,幾何学的構造など
の立体構造が制御された生成ポリオレフィンを合成でき
る。
The phenanthroline skeleton has the chemical structure shown in FIG. 2, and the 2- and 9-positions correspond to the A-position and D-position in the general formula (I) of the skeleton in FIG. As shown in FIG. 3, the phenanthroline skeleton 1 is coordinated to a metal atom (M) 3 which is an active center. A substituent 2 such as a phenyl group is bonded to the 2- and 9-positions of the phenanthroline skeleton 1. Substituent 2 is bulky and sterically hindered by the phenanthroline skeleton 1;
Cannot rotate. Therefore, the configuration of the substituents at the 2-position and the 9-position can be asymmetrically symmetric (C2 symmetry). Therefore, an asymmetric structure centering on a metal atom can be introduced into the olefin catalyst. Therefore, according to the olefin polymerization catalyst, a product polyolefin having a controlled three-dimensional structure such as a branch amount, a branch distribution, and a geometric structure can be synthesized.

【0012】また,2位,9位に嵩高い置換基を導入す
ることにより,重合触媒に対してオレフィンが配位でき
る空間が小さくなり,オレフィン配位の自由度が減少す
る。したがって,上記オレフィン重合触媒によれば,立
体構造が制御された生成ポリオレフィンを合成できる。
Further, by introducing a bulky substituent at the 2-position and the 9-position, the space in which the olefin can be coordinated with the polymerization catalyst is reduced, and the degree of freedom of the olefin coordination is reduced. Therefore, according to the olefin polymerization catalyst, a product polyolefin having a controlled steric structure can be synthesized.

【0013】なお,図4に示すごとく,置換基2の結合
軸が回転可能な場合には,置換基2の立体的配置が定ま
らず,不斉構造は消失してしまい,これを触媒として用
いてポリオレフィンの合成をした場合には,生成ポリオ
レフィンの立体構造を制御することができない。
As shown in FIG. 4, when the bond axis of the substituent 2 is rotatable, the steric configuration of the substituent 2 is not determined, and the asymmetric structure disappears. When synthesizing a polyolefin by the above method, the three-dimensional structure of the produced polyolefin cannot be controlled.

【0014】また,本発明において,フェナントロリン
骨格1は,活性中心の金属原子3の真上(apical位)
を,また嵩高の置換基2は,金属原子3の両サイドをブ
ロックする。そのため,オレフィンの移動反応(β−水
素脱離反応)が従来の触媒よりも更に抑制される。した
がって,上記重合触媒によれば,高い分子量のポリオレ
フィンを合成することができる。
In the present invention, the phenanthroline skeleton 1 is located just above the metal atom 3 at the active center (apical position).
And the bulky substituent 2 blocks both sides of the metal atom 3. Therefore, the olefin transfer reaction (β-hydrogen elimination reaction) is further suppressed as compared with the conventional catalyst. Therefore, according to the polymerization catalyst, a polyolefin having a high molecular weight can be synthesized.

【0015】また,オレフィン重合触媒の有機物として
は,図5に示す骨格を有する有機物を用いることもでき
る。
As the organic substance of the olefin polymerization catalyst, an organic substance having a skeleton shown in FIG. 5 can be used.

【0016】(置換基)上記の図1の骨格のA,D位
(図2,図5の骨格の場合には2,9位に相当)に結合
している置換基について説明する。請求項3の発明のよ
うに,上記骨格のA,D位の置換基は,少なくとも2つ
の炭素原子を持つ炭化水素であることが好ましい。これ
により,置換基が嵩高となり,オレフィン重合触媒に不
斉構造を導入しやすくなる。
(Substituents) Substituents bonded to the A and D positions (corresponding to positions 2 and 9 in the case of the skeletons of FIGS. 2 and 5) of the skeleton of FIG. 1 will be described. As in the third aspect of the present invention, the substituent at the A and D positions of the skeleton is preferably a hydrocarbon having at least two carbon atoms. As a result, the substituent becomes bulky and it becomes easy to introduce an asymmetric structure into the olefin polymerization catalyst.

【0017】請求項4の発明のように,上記骨格のA,
D位の置換基は,2,6−置換ベンゼン,2,6−置換
シクロヘキサン,またはトリメチルシリル基のいずれか
から選ばれることが好ましい。これらは嵩高の置換基で
あるため,不斉構造を導入しやすくなる。
According to a fourth aspect of the present invention, A,
The substituent at the D-position is preferably selected from any of a 2,6-substituted benzene, a 2,6-substituted cyclohexane, and a trimethylsilyl group. Since these are bulky substituents, it becomes easy to introduce an asymmetric structure.

【0018】上記置換基は,例えば,炭化水素骨格を基
本とするものであるが,更に炭素,水素が,ホウ素,窒
素,酸素,ハロゲン,リン(P),イオウ(S),スズ
(Sn)などと置換されていても良い。置換基として
は,例えば,アルキル,アリール基.アリル基,アルケ
ン基,アルキン基,アルコキシ基,ヒドロキシ基,ヒド
ロキシル基,ヒドロキシレート基,チオカルボキシ基,
ジチオカルボキシ基.スルホ基,スルフィノ基,スルフ
ェノ基,オキシカルボニル基,ハロホルミル基,カルバ
モイル基,ヒドラジノカルボニル基,アミジノ基,シア
ノ基,イソシアン基,シアナト基,イソシアナト基,チ
オシアナト基,インチオシアナト基,ホルミル基,オキ
ソ基,チオホルミル基,チオキソ基,メルカプト基,ア
ミノ基,イミノ基,ヒドラジノ基,アルコキシ基,アリ
ロキシ基,スルフィド基,ハロゲン,ニトロ基等を用い
ることが好ましい。これにより,生成ポリオレフィンの
タクチシチー(立体)制御を効果的に行うことができ
る。
The above substituents are based on, for example, a hydrocarbon skeleton, and further include carbon, hydrogen, boron, nitrogen, oxygen, halogen, phosphorus (P), sulfur (S), and tin (Sn). It may be replaced with, for example. Examples of the substituent include an alkyl group and an aryl group. Allyl, alkene, alkyne, alkoxy, hydroxy, hydroxyl, hydroxylate, thiocarboxy,
Dithiocarboxy group. Sulfo group, sulfino group, sulfeno group, oxycarbonyl group, haloformyl group, carbamoyl group, hydrazinocarbonyl group, amidino group, cyano group, isocyanate group, cyanato group, isocyanato group, thiocyanato group, inthiocyanato group, formyl group, It is preferable to use an oxo group, a thioformyl group, a thioxo group, a mercapto group, an amino group, an imino group, a hydrazino group, an alkoxy group, an allyloxy group, a sulfide group, a halogen, a nitro group, or the like. Thereby, the tacticity (stereoscopic) control of the produced polyolefin can be effectively performed.

【0019】上記骨格のA,D位の置換基の化学的,幾
何学的,立体的な構造は,互いに異なることが好まし
い。これにより,金属原子を中心とした不斉構造が形成
され,生成ポリオレフィンの立体構造の制御をすること
ができる。
It is preferable that the substituents at the A and D positions of the skeleton have different chemical, geometric and steric structures. As a result, an asymmetric structure centering on the metal atom is formed, and the three-dimensional structure of the resulting polyolefin can be controlled.

【0020】骨格のA,D位に不斉構造を導入した結
果,重合触媒全体が不斉構造をとることになってもよ
い。たとえば,骨格がフェナントロリンの場合,図3に
示すごとく,フェナントロリン骨格1の2,9位に,置
換基2としての,2,6−ジアルキルベンゼン環が結合
している場合には,ベンゼン環に結合しているアルキル
基R〜Rのいずれかの種類が異なることによって
(例えば,R=R,R =R,R≠R
≠R≠R≠Rなど),重合触媒全体が不斉構
造をとることになる。
[0020] A bond having an asymmetric structure introduced at the A and D positions of the skeleton.
As a result, the entire polymerization catalyst may have an asymmetric structure.
No. For example, if the skeleton is phenanthroline,
As shown, positions 2 and 9 of the phenanthroline skeleton 1 were
2,6-dialkylbenzene ring as a substituent 2 is bonded
If it is, alkyl attached to the benzene ring
Group R1~ R4By any one of the different
(For example, R1= R4, R 3= R2, R1≠ R2,
R1≠ R2≠ R3≠ R4Etc.), the entire polymerization catalyst is asymmetric
Will be built.

【0021】骨格のA,D位に結合している置換基の化
学的,幾何学的,立体的な構造は,互いに同一であって
もよい。この場合には,分枝の少ないアタクティックな
直鎖状のポリオレフィンを合成できる。骨格のA,D位
以外の位置にも置換基が結合していてもよい。
The substituents bonded to the A and D positions of the skeleton may have the same chemical, geometric and steric structure. In this case, an atactic linear polyolefin with few branches can be synthesized. A substituent may be bonded to a position other than the A and D positions of the skeleton.

【0022】オレフィンの分枝制御のためには,置換基
の構造が重要である。オレフィンの配位空間が大きい場
合,即ち配位子の置換基が大きい場合には,分枝の少な
いオレフィンが生成する。
For controlling the branching of the olefin, the structure of the substituent is important. When the coordination space of the olefin is large, that is, when the substituent of the ligand is large, a less branched olefin is formed.

【0023】(金属原子)本発明のオレフィン重合触媒
の金属原子は,Ni,Pd,Ti,Fe,Co,Zr,
Hf,V,Sc,Mn,Cr,Sn,Yなどからなり,
中でもNiまたはPdであることが好ましい。これによ
り,オレフィンの他に,アクリル,メタクリルなどの極
性モノマーとオレフィンとの共重合体を合成することが
できる。金属原子には,上記フェナントロリン以外の配
位子が結合していてもよい。配位子としては,例えば,
アルミン,ホスフィン,フェノール,アミン系配位子が
ある。
(Metal atom) The metal atom of the olefin polymerization catalyst of the present invention is Ni, Pd, Ti, Fe, Co, Zr,
Hf, V, Sc, Mn, Cr, Sn, Y, etc.
Among them, Ni or Pd is preferable. This makes it possible to synthesize a copolymer of an olefin and a polar monomer such as acryl and methacryl in addition to the olefin. A ligand other than the above phenanthroline may be bonded to the metal atom. As a ligand, for example,
There are almin, phosphine, phenol and amine ligands.

【0024】(重合反応条件)本発明のオレフィン重合
触媒を用いてポリオレフィンを合成するにあたっては,
オレフィン重合触媒を溶解させた反応溶液に,オレフィ
ンを添加して重合反応を行う。この重合反応の条件は,
−86〜200℃,不活性雰囲気(例えばN,Ar)
であることが好ましい。
(Polymerization Reaction Conditions) In synthesizing a polyolefin using the olefin polymerization catalyst of the present invention,
An olefin is added to a reaction solution in which an olefin polymerization catalyst has been dissolved to carry out a polymerization reaction. The conditions for this polymerization reaction are:
−86 to 200 ° C., inert atmosphere (for example, N 2 , Ar)
It is preferred that

【0025】また,反応溶液中におけるオレフィン重合
触媒の含有量は0.001%〜30%であることが好ま
しい。0.001%未満では,反応効率が低下するおそ
れがある。30%を超える場合には,生成高分子の分子
量が低下するおそれがある。なお,重合するオレフィン
は,環状,鎖状,分岐状のいずれでもよい。
The content of the olefin polymerization catalyst in the reaction solution is preferably 0.001% to 30%. If it is less than 0.001%, the reaction efficiency may decrease. If it exceeds 30%, the molecular weight of the produced polymer may decrease. The olefin to be polymerized may be cyclic, chain, or branched.

【0026】(ポリオレフィン)上記オレフィン重合触
媒を用いて合成されるポリオレフィンとしては,タクテ
ィシティー,分枝などのポリマー主鎖構造を制御したポ
リオレフィンがあり,その具体例としては,ポリエチレ
ン,ポリプロピレンを含むα−オレフィン(アタクティ
ック,シンジオタクティック,アイソタクティック),
環状ポリオレフィンがある。
(Polyolefin) Polyolefins synthesized using the olefin polymerization catalyst include polyolefins having controlled polymer main chain structures such as tacticity and branching. Specific examples thereof include α, including polyethylene and polypropylene. -Olefins (atactic, syndiotactic, isotactic),
There are cyclic polyolefins.

【0027】また,上記オレフィン重合触媒によれば,
請求項5の発明のように,ポリマー主鎖に規則性を持つ
ポリオレフィンと極性モノマーとを共重合してなること
を特徴とする新規なポリオレフィン系共重合体を合成す
ることができる。
According to the olefin polymerization catalyst,
As in the invention of claim 5, a novel polyolefin copolymer characterized by copolymerizing a polyolefin having regularity in the polymer main chain with a polar monomer can be synthesized.

【0028】「ポリマー主鎖に規則性を持つ」とは,例
えば,ポリオレフィンがアタクティック,シンジオタク
ティック,アイソタクティックなどのように立体規則性
や,分枝が少なく直鎖状の規則的な配列を持つことをい
う。極性モノマーとしては,メタクリル,アクリルなど
がある。
The phrase "having regularity in the polymer main chain" means that, for example, the polyolefin has a stereoregularity such as atactic, syndiotactic and isotactic, and a linear regularity with few branches. Having an array. Examples of the polar monomer include methacryl and acrylic.

【0029】本発明のオレフィン重合触媒を用いて合成
されるポリオレフィンは,立体制御及び物性制御及びオ
レフィン−アクリル共重合体が合成可能であることか
ら,たとえば,接着剤,塗料,相溶化剤,粘着剤,構造
材料,増粘剤の用途に適している。
The polyolefin synthesized using the olefin polymerization catalyst of the present invention can be controlled, for example, in the form of an adhesive, a paint, a compatibilizer, a tackifier, because it can control steric control and physical properties and can synthesize an olefin-acrylic copolymer. Suitable for use in chemicals, structural materials and thickeners.

【0030】[0030]

【発明の実施の形態】実施形態例1 本例においては,図6〜図11に示すごとく,本発明の
実施形態に係るオレフィン重合触媒を製造し,これを用
いて,オレフィンの重合を行った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 In this embodiment, as shown in FIGS. 6 to 11, an olefin polymerization catalyst according to an embodiment of the present invention was manufactured, and olefin polymerization was performed using the catalyst. .

【0031】まず,以下の方法によりオレフィン重合触
媒を製造した。 (2,9−ジフェニルフェナントロリン(以下,Ph−
Phという)の合成)フェナントロリン1水和物1.0
0gを真空下に80℃で5分間加熱した。アルゴン雰囲
気下で脱水トルエン15mlを加え,攪拌,氷冷下に
1.8Mフェニルリチウム溶液(シクロヘキサン−エー
テル溶液)11.5mlを15分かけて加えた。ゆっく
りと室温に昇温し,一晩攪拌した後,水25mlをゆっ
くり加えた。30分攪拌し,二酸化マンガン15gを加
え,3時間攪拌した。濾過,エバポレーションして真空
乾燥した。シリカゲルカラムクロマトグラフィ(溶媒ク
ロロホルム)で単離し,560mgのPh−Ph(図8
(a))を得た。この反応を図6の反応式(I)に示し
た。
First, an olefin polymerization catalyst was produced by the following method. (2,9-diphenylphenanthroline (hereinafter, Ph-
Ph)) Phenanthroline monohydrate 1.0
0 g was heated under vacuum at 80 ° C. for 5 minutes. 15 ml of dehydrated toluene was added under an argon atmosphere, and 11.5 ml of a 1.8 M phenyllithium solution (cyclohexane-ether solution) was added over 15 minutes while stirring and cooling with ice. After slowly raising the temperature to room temperature and stirring overnight, 25 ml of water was slowly added. The mixture was stirred for 30 minutes, 15 g of manganese dioxide was added, and the mixture was stirred for 3 hours. Filtration, evaporation and vacuum drying. It was isolated by silica gel column chromatography (solvent chloroform) and 560 mg of Ph-Ph (FIG. 8)
(A)) was obtained. This reaction is shown in the reaction formula (I) in FIG.

【0032】((2,9−ジフェニルフェナントロリ
ン)ニッケル(II)ジブロミド(以下,Ph−PhN
iという。)の合成)グローブボックス中でPh−Ph
254.6mg及び(ジメトキシエチレン)ニッケル
(II)ブロミド((DME)NiBr)236mg
の混合物に,脱水THF(テトラヒドロフラン)10.
3gを加え,一晩攪拌した。沈殿物をろ取,真空乾燥
し,150mgのPh−PhNi(図8(b))をピン
ク色の固体として得た。この反応を図6の反応式(I
I)に示した。
((2,9-diphenylphenanthroline) nickel (II) dibromide (hereinafter Ph-PhN
It is called i. Ph) Ph in a glove box
254.6 mg and 236 mg of (dimethoxyethylene) nickel (II) bromide ((DME) NiBr 2 )
9. In a mixture of the above, dehydrated THF (tetrahydrofuran)
3 g was added and stirred overnight. The precipitate was collected by filtration and dried in vacuo to obtain 150 mg of Ph-PhNi (FIG. 8B) as a pink solid. This reaction is represented by the reaction formula (I) in FIG.
This is shown in I).

【0033】(2,5−ジイソプロピルイオドベンゼン
の合成)2,5−ジイソプロピルアニリン10gを10
0mlの酢酸に溶解し,30mlの濃硫酸を加えた。攪
拌下に氷冷して,0〜5℃に保ちながら亜硝酸ナトリウ
ム(NaNO)5.06gの水溶液(10ml)を3
0分かけて滴下した。15分攪拌した後,氷冷水を10
0ml加えた。このサスペンジョンを,よう化カリウム
水溶液(100g/250ml)に加え,攪拌しながら
60〜80℃で30分加熱した。室温に冷却した後,反
応混合物をヘキサン200mlで抽出した。水層に残存
する生成物をヘキサン100mlで再度抽出し,この抽
出液を,先のヘキセン抽出液とあわせた。あわせた抽出
液(有機層)を水酸化カリウム水溶液,亜硫酸水素ナト
リウム水溶液,水の順で洗浄した。抽出液を硫酸ナトリ
ウムで乾燥し,シリカゲルで濾過した。溶液をエバポレ
ーションして,2.75gの2,5−ジイソプロピルイ
オドベンゼン(図8(c))を得た。この反応を図7の
反応式(III)に示した。
(Synthesis of 2,5-diisopropyliodobenzene)
It was dissolved in 0 ml of acetic acid and 30 ml of concentrated sulfuric acid was added. The mixture was cooled on ice with stirring, and an aqueous solution (10 ml) of 5.06 g of sodium nitrite (NaNO 2 ) was added while maintaining the temperature at 0 to 5 ° C.
It was added dropwise over 0 minutes. After stirring for 15 minutes, add ice cold water for 10 minutes.
0 ml was added. This suspension was added to an aqueous potassium iodide solution (100 g / 250 ml) and heated at 60 to 80 ° C. for 30 minutes with stirring. After cooling to room temperature, the reaction mixture was extracted with 200 ml of hexane. The product remaining in the aqueous layer was extracted again with 100 ml of hexane, and this extract was combined with the hexene extract. The combined extract (organic layer) was washed with an aqueous solution of potassium hydroxide, an aqueous solution of sodium bisulfite and water in this order. The extract was dried over sodium sulfate and filtered over silica gel. The solution was evaporated to give 2.75 g of 2,5-diisopropyliodobenzene (FIG. 8 (c)). This reaction is shown in the reaction formula (III) in FIG.

【0034】(2,9−ジ(2,5−ジイソプロピルフ
ェニル)フェナントロリン(以下,Ph−iPrとい
う。)の合成)アルゴン雰囲気下に8.9gの2,5−
ジイソプロピルイオドベンゼンを脱水エーテル30ml
に溶解し,室温で,1.53Mのn−ブチルリチウム
(BuLi)14.9mlを20分かけて加えた。20
時間攪拌した後,エバポレーションし,真空乾燥した。
液体窒素で冷却した状態で,1,10−フェナントロリ
ン(水和物を昇華精製したもの)1.03gのトルエン
40mlの溶液を加えた。ゆっくりと攪拌しつつ室温に
戻し,一晩攪拌しながら放置した。70℃で3時間攪拌
した後,2日間攪拌した。氷冷下に水50mlを加え,
トルエン層を分取し,水層をクロロホルム30mlで2
回抽出したものと合せ,有機層とした。有機層に二酸化
マンガン(MnO)15gを加え,一日攪拌した。濾
過,エバポレーションをした後,シリカゲルカラムクロ
マトグラフィー(溶媒クロロホルム/ヘキサン=3/
1)で精製して,350mgのPh−iPr(図9
(a))を得た。この反応を図7の反応式(IV,V)
に示した。
(Synthesis of 2,9-di (2,5-diisopropylphenyl) phenanthroline (hereinafter referred to as Ph-iPr)) 8.9 g of 2,5-
30 ml of dehydrated ether from diisopropyl iodobenzene
And 14.9 ml of 1.53 M n-butyllithium (BuLi) was added over 20 minutes at room temperature. 20
After stirring for an hour, it was evaporated and dried under vacuum.
While cooling with liquid nitrogen, a solution of 1.03 g of 1,10-phenanthroline (sublimated and purified hydrate) in 40 ml of toluene was added. The mixture was returned to room temperature with gentle stirring, and allowed to stand with stirring overnight. After stirring at 70 ° C. for 3 hours, the mixture was stirred for 2 days. Add 50 ml of water under ice cooling,
Separate the toluene layer and wash the aqueous layer with 30 ml of chloroform.
The organic layer was combined with the one extracted twice. 15 g of manganese dioxide (MnO 2 ) was added to the organic layer, and the mixture was stirred for one day. After filtration and evaporation, silica gel column chromatography (solvent chloroform / hexane = 3 /
Purified in 1), 350 mg of Ph-iPr (FIG. 9)
(A)) was obtained. This reaction is represented by the reaction formula (IV, V) shown in FIG.
It was shown to.

【0035】(2,9−ジ(2,5−ジイソプロピルイ
オドベンゼン)フェナントロリンニッケル(II)ジブ
ロミド(以下,Ph−iPrNiという。)の合成)ブ
ローブボックス中で,Ph−iPr150mg及び(ジ
メトキシエチレン)ニッケル(II)ブロミド((DM
E)NiBr)92mgの混合物に,脱水THF2g
を加え,一晩攪拌した。赤褐色溶液をエバポレーション
し,真空乾燥して赤色固体のPh−iPrNi(図9
(b))を定量的収率で得た。この反応は図7の反応式
(VI)に示した。
(Synthesis of 2,9-di (2,5-diisopropyliodobenzene) phenanthroline nickel (II) dibromide (hereinafter referred to as Ph-iPrNi)) In a probe box, 150 mg of Ph-iPr and (dimethoxyethylene) Nickel (II) bromide ((DM
E) 2 g of dehydrated THF was added to a mixture of 92 mg of NiBr 2 ).
Was added and stirred overnight. The reddish-brown solution was evaporated and dried under vacuum to obtain a red solid Ph-iPrNi (FIG. 9).
(B)) was obtained in quantitative yield. This reaction is shown in the reaction formula (VI) in FIG.

【0036】(Ph−PhNiを用いたエチレンの重合
反応)アルゴン雰囲気下で,図8(b)に示すPh−P
hNi(10mg)を脱水トルエン2.2mgに懸濁
し,メチルアルミノキサン(以下,MAOという。トー
ソーアクゾから購入)2.5gを加えた。赤黒い溶液を
攪拌下に100mlの耐圧容器に移し,攪拌下にエチレ
ンを2MPa導入した。20時間後,塩酸酸性エタノー
ルを加え,沈殿を濾過し,エタノールで洗浄した。真空
乾燥後,1規定塩酸,エタノールで洗浄し,10.1m
gのポリマーを得た。このポリマーは,ポリエチレンで
あり,分子量は5万であった。
(Polymerization Reaction of Ethylene Using Ph-PhNi) Under an argon atmosphere, the Ph-P shown in FIG.
hNi (10 mg) was suspended in 2.2 mg of dehydrated toluene, and 2.5 g of methylaluminoxane (hereinafter, referred to as MAO; purchased from Tosoh Akzo) was added. The red-black solution was transferred to a 100 ml pressure vessel with stirring, and 2 MPa of ethylene was introduced with stirring. Twenty hours later, hydrochloric acid-ethanol was added, and the precipitate was filtered and washed with ethanol. After vacuum drying, wash with 1N hydrochloric acid and ethanol, 10.1m
g of polymer were obtained. This polymer was polyethylene and had a molecular weight of 50,000.

【0037】(Ph−iPrNiを用いたエチレンの重
合反応)アルゴン雰囲気下で,図9(b)に示すPh−
iPrNi(5mg)を脱水トルエン3mgに懸濁し,
MAO(0.24g)を加えた。赤黒い溶液を攪拌下に
100mlの耐圧容器に移し,攪拌下にエチレンを2M
Pa導入した。6日後,濃塩酸を加え,トルエン層を分
取し,水洗した後,エバポレーション,真空乾燥して1
59mgのポリマーを得た。カーボンNMR(核磁気共
鳴分析)の結果を図10に示した。このポリマーは,ポ
リエチレンであり,分子量は3万であり,直鎖状の主鎖
を有していた。
(Polymerization Reaction of Ethylene Using Ph-iPrNi) Under an argon atmosphere, the Ph-iPrNi shown in FIG.
iPrNi (5 mg) was suspended in 3 mg of dehydrated toluene,
MAO (0.24 g) was added. The red-black solution was transferred to a 100 ml pressure vessel with stirring, and 2M of ethylene was stirred.
Pa was introduced. Six days later, concentrated hydrochloric acid was added, the toluene layer was separated, washed with water, evaporated and dried under vacuum.
59 mg of polymer were obtained. FIG. 10 shows the result of carbon NMR (nuclear magnetic resonance analysis). This polymer was polyethylene, had a molecular weight of 30,000, and had a linear main chain.

【0038】(比較例)アルゴン雰囲気下でBrookhart
触媒5mgを脱水トルエン3mgに懸濁し,MAO
(0.24g)を加えた。赤黒い溶液を攪拌下に100
mlの耐圧容器に移し,攪拌下にエチレンを2MPa導
入した。1日後,濃塩酸を加え,トルエン層を分取し,
水洗した後,エバポレーション,真空乾燥して,250
mgのポリマーを得た。カーボンNMR(核磁気共鳴分
析)の結果を図11に示した。このポリマーは,ポリエ
チレンであり,分子量は1万であり,主鎖は分枝に富ん
だ構造であった。
(Comparative Example) Brookhart under an argon atmosphere
5 mg of the catalyst were suspended in 3 mg of dehydrated toluene,
(0.24 g) was added. The red-black solution is stirred for 100
Then, the mixture was transferred to a pressure-resistant container of 2 ml, and 2 MPa of ethylene was introduced under stirring. One day later, concentrated hydrochloric acid was added, and the toluene layer was separated.
After washing with water, evaporate and dry under vacuum,
mg of polymer were obtained. FIG. 11 shows the results of carbon NMR (nuclear magnetic resonance analysis). This polymer was polyethylene, the molecular weight was 10,000, and the main chain had a branched structure.

【0039】図10,図11より,Ph−iPhNiで
重合して得られたポリエチレンは,Brookhart触媒を用
いる従来の方法で得られたものよりも分枝が少ないこと
がわかる。
FIGS. 10 and 11 show that the polyethylene obtained by polymerization with Ph-iPhNi has less branches than the polyethylene obtained by the conventional method using a Brookhart catalyst.

【0040】実施形態例2 まず,以下の方法によりオレフィン重合触媒を製造し
た。 (2,9−ジ(2−メチル−6−イソプロピルベンゼ
ン)フェナントロリン(以下,Ph−MiPrとい
う。)の合成)アルゴン雰囲気下に7.9gの2-methyl
-6-isopropylbromobenzeneを脱水エーテルに溶解し,室
温で,1.53Mのn-buthyllithium 14.9m1を1
5分かけて加えた。20時間攪拌した後,エバポレーシ
ョン,真空乾燥をした。液体窒素で冷却した状態で,
1,10−フェナントロリン(水和物を昇華精製したも
の)1.03gのトルエン40m1の溶液を加えた。ゆ
っくりと攪拌下に室温に戻し,一晩攪拌下に放置した。
70℃で3時間攪拌した後,2日間攪拌した。氷冷下に
水50m1を加え,トルエン層を分取し,水層をクロロ
ホルム50mlで2回抽出したものと合わせ,有機層と
した。有機層に二酸化マンガン13gを加え,一日攪拌
した。ろ過,エパポレーションした後,シリカゲルカラ
ムクロマトグラフィー(溶媒クロロホルム−ヘキサン
3:1)で精製し,290mgのPh−MiPr(図1
2(a))を得た。
Embodiment 2 First, an olefin polymerization catalyst was produced by the following method. (Synthesis of 2,9-di (2-methyl-6-isopropylbenzene) phenanthroline (hereinafter referred to as Ph-MiPr)) Under argon atmosphere, 7.9 g of 2-methyl
-6-isopropylbromobenzene was dissolved in dehydrated ether, and 14.9 ml of 1.53 M n-buthyllithium was added at room temperature.
Added over 5 minutes. After stirring for 20 hours, evaporation and vacuum drying were performed. With cooling with liquid nitrogen,
A solution of 1.03 g of 1,10-phenanthroline (sublimated and purified hydrate) in 40 ml of toluene was added. The temperature was returned to room temperature with gentle stirring and left overnight with stirring.
After stirring at 70 ° C. for 3 hours, the mixture was stirred for 2 days. Under ice-cooling, 50 ml of water was added, the toluene layer was separated, and the aqueous layer was extracted twice with 50 ml of chloroform to obtain an organic layer. 13 g of manganese dioxide was added to the organic layer and stirred for one day. After filtration and evaporation, purification was performed by silica gel column chromatography (solvent: chloroform-hexane 3: 1), and 290 mg of Ph-MiPr (FIG. 1)
2 (a)) was obtained.

【0041】(2,9−ジ(2−メチル−6−イソプロ
ピルベンゼン)フェナントロリンニッケル(II)ジク
ロミド(以下,Ph−MiPrNi(t)という。)の
合成)グローブボックス中で,Ph−MiPr 130
mg,(dimethoxyethylene)nickel(II)bromide92mg
の混合物に,脱水THF2gを加え,一晩攪拌した。赤
褐色溶液をエバポレーションし,真空乾燥して赤色固体
を定量的収率で得た。ヘキサン−トルエンより再結晶し
て,図12(b)に示す100mgのPh−MiPrN
i(t)を得た。
(Synthesis of 2,9-di (2-methyl-6-isopropylbenzene) phenanthroline nickel (II) diclomide (hereinafter referred to as Ph-MiPrNi (t))) In a glove box, Ph-MiPr 130 was used.
mg, (dimethoxyethylene) nickel (II) bromide92mg
Was added to 2 g of dehydrated THF, and the mixture was stirred overnight. The red-brown solution was evaporated and dried in vacuo to give a red solid in quantitative yield. Recrystallized from hexane-toluene, 100 mg of Ph-MiPrN shown in FIG.
i (t) was obtained.

【0042】(Ph−MiPrNi(t)を用いたプロ
ピレンの重合)アルゴン雰囲気下でPh−MiPrNi
(t)10mgを脱水トルエン2mlに懸濁し,MAO
(2.5g)を加えた。赤黒い溶液を攪拌下に100m
1の耐圧容器に移し,攪拌下にプロピレンを2MPa導
入した。20時間後,塩酸酸性エタノールを加え,沈殿
をろ過,エタノールで洗浄した。真空乾燥後,1規定塩
酸,エタノールで洗浄し,120mgの白色固体ポリマ
ーを得た。Mm%(連鎖の割合を意味する。以下,同
様。)は97%で,アイソタクティック連鎖に富んだポ
リマーであった。
(Polymerization of Propylene Using Ph-MiPrNi (t)) Ph-MiPrNi under argon atmosphere
(T) 10 mg was suspended in 2 ml of dehydrated toluene,
(2.5 g) was added. 100m red and black solution with stirring
Then, it was transferred to the pressure-resistant container No. 1 and propylene was introduced at 2 MPa with stirring. Twenty hours later, hydrochloric acid-ethanol was added, and the precipitate was filtered and washed with ethanol. After vacuum drying, the precipitate was washed with 1N hydrochloric acid and ethanol to obtain 120 mg of a white solid polymer. Mm% (meaning the ratio of chains; hereinafter the same) was 97%, indicating that the polymer was rich in isotactic chains.

【0043】(比較例)アルゴン雰囲気下でBrookhart
触媒10mgを脱水トルエン2m1に懸濁し,MAO
(2.5g)を加えた。赤黒い溶液を攪拌下に100m
lの耐圧容器に移し,攪拌下にプロピレンを2MPa導
入した。20時間後,塩酸酸性エタノールを加え,沈殿
をろ過,エタノールで洗浄した。真空乾燥後,1規定塩
酸,エタノールで洗浄し,100mgのオイル状ポリマ
ーを得た。得られたポリマーはアタクティックなポリマ
ーであった。
(Comparative Example) Brookhart under an argon atmosphere
10 mg of the catalyst was suspended in 2 ml of dehydrated toluene, and
(2.5 g) was added. 100m red and black solution with stirring
Then, 2 MPa of propylene was introduced under stirring. Twenty hours later, hydrochloric acid-ethanol was added, and the precipitate was filtered and washed with ethanol. After vacuum drying, the product was washed with 1N hydrochloric acid and ethanol to obtain 100 mg of an oily polymer. The resulting polymer was an atactic polymer.

【0044】(Ph−MiPrNi(t)を用いたプロ
ピレンとメチルメタクリレート(MMA)との共重合)
アルゴン雰囲気下でPh−MiPrNi(t) 10m
gを脱水トルエン2mlに懸濁し,MAO(2.5g)
を加えた。赤黒い溶液を攪拌下に100m1の耐圧容器
に移し,攪拌下にプロピレンを2MPaとMMA20m
gとを導入した。20時間後,塩酸酸性エタノールを加
え,沈殿をろ過,エタノールで洗浄した。真空乾燥後,
1規定塩酸,エタノールで洗浄し,150mgの白色固
体ポリマーを得た。Mm%は80%で,アイソタクティ
ック連鎖に富んだポリマーであり,アクリルモノマーは
5%共重合していた。
(Copolymerization of propylene and methyl methacrylate (MMA) using Ph-MiPrNi (t))
Ph-MiPrNi (t) 10m under argon atmosphere
g in 2 ml of dehydrated toluene and MAO (2.5 g)
Was added. The reddish black solution was transferred to a 100 ml pressure vessel under stirring, and propylene was added at 2 MPa and MMA 20 m2 under stirring.
g was introduced. Twenty hours later, hydrochloric acid-ethanol was added, and the precipitate was filtered and washed with ethanol. After vacuum drying,
After washing with 1N hydrochloric acid and ethanol, 150 mg of a white solid polymer was obtained. Mm% was 80%, a polymer rich in isotactic chains, and 5% of acrylic monomer was copolymerized.

【0045】[0045]

【発明の効果】本発明によれば,立体構造を制御でき,
且つ所望の物性を有するポリオレフィンを合成できるオ
レフィン重合触媒,及びこれを用いて重合したポリオレ
フィン系共重合体を提供することができる。
According to the present invention, the three-dimensional structure can be controlled,
Further, it is possible to provide an olefin polymerization catalyst capable of synthesizing a polyolefin having desired physical properties, and a polyolefin-based copolymer polymerized using the catalyst.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における,一般式(I)で表される有機
物の説明図。
FIG. 1 is an explanatory view of an organic substance represented by the general formula (I) in the present invention.

【図2】本発明における,フェナントロリン骨格を示す
説明図。
FIG. 2 is an explanatory diagram showing a phenanthroline skeleton in the present invention.

【図3】本発明における,オレフィン重合触媒の説明
図。
FIG. 3 is an explanatory view of an olefin polymerization catalyst according to the present invention.

【図4】置換基の回転軸が回転可能な場合のオレフィン
重合触媒の立体構造を示す説明図。
FIG. 4 is an explanatory diagram showing a three-dimensional structure of an olefin polymerization catalyst when a rotation axis of a substituent is rotatable.

【図5】本発明における,有機物の骨格の一例を示す説
明図。
FIG. 5 is an explanatory view showing an example of a skeleton of an organic substance in the present invention.

【図6】実施形態例1における,オレフィン重合触媒の
製造方法における反応式(I)〜(II)を示す説明
図。
FIG. 6 is an explanatory view showing reaction formulas (I) to (II) in the method for producing an olefin polymerization catalyst in the first embodiment.

【図7】図6に続く,反応式(III)〜(VI)の説
明図。
FIG. 7 is an explanatory view of Reaction Formulas (III) to (VI) following FIG. 6;

【図8】実施形態例1における,オレフィン重合触媒の
製造方法における中間生成物の化学構造を示す説明図
(a),(c)及び,オレフィン重合触媒の化学構造を
示す説明図(b)。
FIGS. 8A and 8C are explanatory diagrams showing a chemical structure of an intermediate product in a method for producing an olefin polymerization catalyst in Embodiment 1 and FIGS. 8B and 8B are explanatory diagrams showing a chemical structure of an olefin polymerization catalyst.

【図9】実施形態例1における,オレフィン重合触媒の
製造方法における中間生成物の化学構造を示す説明図
(a)及び,オレフィン重合触媒の化学構造を示す説明
図(b)。
FIG. 9 is an explanatory diagram (a) showing a chemical structure of an intermediate product in the method for producing an olefin polymerization catalyst in Embodiment 1, and an explanatory diagram (b) showing a chemical structure of an olefin polymerization catalyst.

【図10】実施形態例1における,図8(b)に示すオ
レフィン重合触媒を用いて合成されたポリオレフィンの
カーボンNMRの分析結果を示す説明図。
FIG. 10 is an explanatory diagram showing the results of carbon NMR analysis of a polyolefin synthesized using the olefin polymerization catalyst shown in FIG.

【図11】実施形態例1における,比較例1としてのBr
ookhart触媒を用いて合成されたポリオレフィンのカー
ボンNMRの分析結果を示す説明図。
FIG. 11 shows Br as Comparative Example 1 in Embodiment 1;
Explanatory drawing which shows the analysis result of the carbon NMR of the polyolefin synthesize | combined using the ookhart catalyst.

【図12】実施形態例2における,オレフィン重合触媒
の製造方法における中間生成物の化学構造を示す説明図
(a)及び,オレフィン重合触媒の化学構造を示す説明
図(b)。
FIG. 12 is an explanatory diagram (a) showing a chemical structure of an intermediate product in a method for producing an olefin polymerization catalyst in Embodiment 2, and an explanatory diagram (b) showing a chemical structure of an olefin polymerization catalyst.

【図13】従来例におけるオレフィン重合触媒の化学構
造を示す説明図。
FIG. 13 is an explanatory view showing a chemical structure of an olefin polymerization catalyst in a conventional example.

【符号の説明】[Explanation of symbols]

1...フェナントロリン骨格, 2...置換基, 3...金属原子, 1. . . 1. phenanthroline skeleton, . . 2. a substituent; . . Metal atom,

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中野 充 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 臼杵 有光 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 Fターム(参考) 4J028 AA01A AB00A AB01A AC01A AC08A AC18A AC26A AC29A AC37A AC42A AC45A AC46A AC47A AC48A BA00A BA01B BB00A BB01B BC25B EB01 EB02 EB04 EB25 GA12 GA14 GA16 4J100 AA00P AA02P AA03P AL03Q CA01 CA04 CA11 CA12 DA19 FA09  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Mitsuru Nakano 41-cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture Inside of Toyota Central Research Laboratory Co., Ltd. (72) Inventor Yumitsu Usuki Nagakute-machi, Aichi-gun No. 41, Chochu-Yokomichi 1 Toyota Central Research Laboratory Co., Ltd. F-term (reference) 4J028 AA01A AB00A AB01A AC01A AC08A AC18A AC26A AC29A AC37A AC42A AC45A AC46A AC47A AC48A BA00A BA01B BB00A BB01B BC25B EB01 A02P02 GA04 AL03Q CA01 CA04 CA11 CA12 DA19 FA09

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 金属原子に,下記の一般式(I) 【化1】 で示され同一平面上にある骨格を有する有機物が配位し
ているオレフィン重合触媒であって,上記骨格における
A位とB位,B位とC位,C位とD位の少なくとも1組
が環状結合を形成しており,且つ上記A位及びD位には
置換基が結合していることを特徴とするオレフィン重合
触媒。
1. A metal atom having the following general formula (I): An olefin polymerization catalyst in which an organic substance having a skeleton having the same plane and having a skeleton is coordinated, wherein at least one pair of the A position and the B position, the B position and the C position, and the C position and the D position in the skeleton is An olefin polymerization catalyst, wherein a cyclic bond is formed and a substituent is bonded to the A-position and the D-position.
【請求項2】 請求項1において,上記骨格は,フェナ
ントロリン骨格であり,該フェナントロリン骨格におけ
る2,9位には置換基が結合していることを特徴とする
オレフィン重合触媒。
2. The olefin polymerization catalyst according to claim 1, wherein the skeleton is a phenanthroline skeleton, and a substituent is bonded to positions 2 and 9 of the phenanthroline skeleton.
【請求項3】 請求項1または2において,上記置換基
は,少なくとも2つの炭素原子を持つ炭化水素であるこ
とを特徴とするオレフィン重合触媒。
3. The olefin polymerization catalyst according to claim 1, wherein the substituent is a hydrocarbon having at least two carbon atoms.
【請求項4】 請求項3において,上記置換基は,2,
6−置換ベンゼン,2,6−置換シクロヘキサン,また
はトリメチルシリル基のいずれかから選ばれることを特
徴とするオレフィン重合触媒。
4. The method according to claim 3, wherein the substituent is 2,2.
An olefin polymerization catalyst selected from 6-substituted benzene, 2,6-substituted cyclohexane, and trimethylsilyl groups.
【請求項5】 ポリマー主鎖に規則性を持つポリオレフ
ィンと極性モノマーとを共重合してなることを特徴とす
るポリオレフィン系共重合体。
5. A polyolefin-based copolymer obtained by copolymerizing a polyolefin having a regular polymer main chain with a polar monomer.
JP11154050A 1999-06-01 1999-06-01 Olefin polymerization catalyst Pending JP2000344815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11154050A JP2000344815A (en) 1999-06-01 1999-06-01 Olefin polymerization catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11154050A JP2000344815A (en) 1999-06-01 1999-06-01 Olefin polymerization catalyst

Publications (1)

Publication Number Publication Date
JP2000344815A true JP2000344815A (en) 2000-12-12

Family

ID=15575827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11154050A Pending JP2000344815A (en) 1999-06-01 1999-06-01 Olefin polymerization catalyst

Country Status (1)

Country Link
JP (1) JP2000344815A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003048909A (en) * 2001-08-09 2003-02-21 Tosoh Corp Catalyst for polymerizing methacrylic ester and method for producing the same
JP2007063469A (en) * 2005-09-01 2007-03-15 Kuraray Co Ltd Metallic compound, catalyst composition for vinyl ester monomer polymerization containing metallic compound and use of the composition for polymerization of vinyl ester monomer
WO2008093879A1 (en) * 2007-02-01 2008-08-07 Sumitomo Chemical Company, Limited Method for producing conjugated aromatic compound

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003048909A (en) * 2001-08-09 2003-02-21 Tosoh Corp Catalyst for polymerizing methacrylic ester and method for producing the same
JP2007063469A (en) * 2005-09-01 2007-03-15 Kuraray Co Ltd Metallic compound, catalyst composition for vinyl ester monomer polymerization containing metallic compound and use of the composition for polymerization of vinyl ester monomer
WO2008093879A1 (en) * 2007-02-01 2008-08-07 Sumitomo Chemical Company, Limited Method for producing conjugated aromatic compound

Similar Documents

Publication Publication Date Title
JP6563884B2 (en) Propylene polymer and molded body
US7405261B2 (en) Organometallic transition metal compound, biscyclopentadienyl ligand system, catalyst system and process for preparing polyolefins
JPWO2006126610A1 (en) Transition metal compound, catalyst for olefin polymerization, and process for producing olefin polymer
JP6440268B2 (en) Metallocene compound, catalyst composition containing the same, and method for producing olefin polymer using the same
JP6456736B2 (en) Olefin polymerization catalyst and method for producing olefin polymer
WO2019205309A1 (en) Pyridine imine iron or cobalt metal complex catalyst, preparation method therefor, and application thereof
US6114480A (en) Process and catalyst for producing polyolefins having low molecular weight
JP2000344815A (en) Olefin polymerization catalyst
JP6735292B2 (en) Heteroatom-containing π-ligand metallocene complex, method for producing the same, catalyst system thereof and application of catalyst system
KR20150003145A (en) Novel ligand compound, method for preparing the same, transition metal compound and method for preparing the same
JP4658335B2 (en) Organometallic catalyst for polymerization of unsaturated compounds
WO2020124557A1 (en) VINYLIDENE ACENAPHTHENE α-DIIMINE NICKEL OLEFIN CATALYST AND PREPARATION METHOD AND APPLICATION THEREOF
JP2021523962A (en) Transition metal compounds for olefin polymerization catalysts and olefin polymerization catalysts containing them
US9260457B2 (en) Ligand compound, a preparation method thereof, a transition metal compound including the ligand compound, and a preparation method thereof
CN103304709A (en) Solid catalyst for 1-butene polymerization
JP2015189713A (en) Fluorene compound, transition metal compound, catalyst for olefin polymerization and manufacturing method for olefin polymer
KR101583671B1 (en) Method for preparing of novel ligand compoun and transition metal compound
JP4131448B6 (en) Heterocyclic metallocenes and polymerization catalysts
JP4131448B2 (en) Heterocyclic metallocenes and polymerization catalysts
Liu et al. Electron Effect of p‐Substituent on Iron (II) and Cobalt (II) Pyridinebisimine Catalyst for Ethylene Polymerization
CN117866003A (en) Naphthalene ring bridged metal complex and application thereof in catalyzing olefin polymerization
Jung et al. Synthesis and characterization of Group 4 metallocene complexes with two disiloxanediyl bridges
JP2014073983A (en) Novel metallocene compound, olefin polymerization catalyst, and production process of olefin polymer
JP2002037811A (en) Method for producing polyolefin with low molecular weight and catalyst
Rajesh Synthesis, characterization and olefin polymerization reactivity of some early and late transition metal complexes