JP2000342541A - Ear hole type clinical thermometer - Google Patents

Ear hole type clinical thermometer

Info

Publication number
JP2000342541A
JP2000342541A JP11159054A JP15905499A JP2000342541A JP 2000342541 A JP2000342541 A JP 2000342541A JP 11159054 A JP11159054 A JP 11159054A JP 15905499 A JP15905499 A JP 15905499A JP 2000342541 A JP2000342541 A JP 2000342541A
Authority
JP
Japan
Prior art keywords
signal
temperature
multiplier
pass filter
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11159054A
Other languages
Japanese (ja)
Other versions
JP4126806B2 (en
Inventor
Tadashi Nakatani
直史 中谷
Keiko Noda
桂子 野田
Hirofumi Inui
弘文 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15905499A priority Critical patent/JP4126806B2/en
Publication of JP2000342541A publication Critical patent/JP2000342541A/en
Application granted granted Critical
Publication of JP4126806B2 publication Critical patent/JP4126806B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve measuring precision without necessitating a filter having steep interrupting characteristic. SOLUTION: In order to extract the signal of the same frequency as a reference signal in order to fetch only a signal having very small temperature information from an infrared detector 1, this clinical thermometer multiplies a signal from the detector 1 and the reference signal by a multiplier 22 and detects the intensity of infrared rays from the DC components of an output to precisely measure the temperature of an ear drum.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非接触で耳孔内の鼓
膜温度を検出する耳孔式体温計に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ear canal thermometer for detecting eardrum temperature in an ear canal without contact.

【0002】[0002]

【従来の技術】赤外線検出器を用いた耳孔内の鼓膜温度
を計測する耳孔式体温計は赤外線検出器の出力信号を帯
域通過フィルタあるいは低域通過フィルタを通した後、
AD変換し、AD変換後の信号から赤外線の強度を検出
し鼓膜の温度を算出するものであった。
2. Description of the Related Art An ear thermometer for measuring eardrum temperature in an ear canal using an infrared detector passes an output signal of the infrared detector through a band-pass filter or a low-pass filter.
A / D conversion was performed, and the intensity of infrared rays was detected from the signal after the A / D conversion to calculate the temperature of the eardrum.

【0003】[0003]

【発明が解決しようとする課題】前記従来の構成の耳孔
式体温計は、赤外線検出器からの信号をフィルタを通し
て雑音を除いてからAD変換するものであるが、フィル
タにより温度情報を持つ信号だけを取り出すためには急
峻な遮断特性を持つフィルタを用意しなければならず、
設計が非常に困難である上に雑音は完全には除去しきれ
ず計測精度を向上させるのは困難であった。
The ear canal thermometer of the above-mentioned conventional construction is designed to remove the noise from the signal from the infrared detector through a filter and then to perform A / D conversion. To take it out, a filter with steep cutoff characteristics must be prepared,
The design is very difficult, and the noise cannot be completely removed, so that it is difficult to improve the measurement accuracy.

【0004】[0004]

【課題を解決するための手段】本発明は、赤外線検出器
からの微小な温度情報を持つ信号だけを取り出すため
に、参照信号と同じ周波数の信号を抽出できるよう乗算
器により赤外線検出器からの信号と参照信号とを掛け算
し出力の直流成分の大きさから赤外線の強度を検出し鼓
膜の温度を精度良く測定できる耳孔式体温計としてい
る。
SUMMARY OF THE INVENTION In order to extract only a signal having minute temperature information from an infrared detector, the present invention uses a multiplier to extract a signal having the same frequency as a reference signal from the infrared detector. An ear canal thermometer capable of multiplying a signal by a reference signal and detecting the intensity of infrared rays from the magnitude of the output DC component to accurately measure the temperature of the eardrum.

【0005】[0005]

【発明の実施の形態】請求項1に記載した発明は、赤外
線検出器の出力信号が後段の回路に伝達されるのを周期
的に遮るチョッパ手段と、チョッパ手段の出力信号を増
幅する増幅器と、交流信号を出力する参照信号発生部
と、前記増幅器の出力信号と参照信号発生部の出力信号
とを掛け算して出力する乗算器と、乗算器の出力信号か
ら低域周波数成分だけを取り出す低域通過フィルタと、
前記赤外線検出器の温度検出部の出力信号と前記低域通
過フィルタの出力信号をAD変換するAD変換器と、A
D変換器の信号を受けて測定対象の温度に応じた信号を
出力する温度換算手段から構成することにより精度良く
測定できる耳孔式体温計としている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention described in claim 1 comprises a chopper means for periodically blocking an output signal of an infrared detector from being transmitted to a subsequent circuit, an amplifier for amplifying an output signal of the chopper means. A reference signal generating unit that outputs an AC signal, a multiplier that multiplies the output signal of the amplifier by the output signal of the reference signal generating unit and outputs the multiplied signal, and a low-pass filter that extracts only low-frequency components from the output signal of the multiplier. A bandpass filter;
An AD converter for AD-converting an output signal of the temperature detection unit of the infrared detector and an output signal of the low-pass filter;
An ear canal thermometer that can measure accurately with a temperature conversion unit that receives a signal from the D converter and outputs a signal corresponding to the temperature of the measurement target.

【0006】請求項2に記載した発明は、参照信号発生
部は外部からの制御信号により出力する信号の位相を変
化させることで精度良く計測できる耳孔式体温計として
いる。
According to a second aspect of the present invention, the reference signal generating section is an ear-hole type thermometer capable of performing accurate measurement by changing the phase of a signal output by an external control signal.

【0007】請求項3に記載した発明は、参照信号発生
部はチョッパ手段のチョッパ駆動信号をもとに参照信号
を発生させることで精度良く計測できる耳孔式体温計と
している。
According to a third aspect of the present invention, the reference signal generating section is an ear-hole type thermometer capable of performing accurate measurement by generating a reference signal based on a chopper drive signal of the chopper means.

【0008】請求項4に記載した発明は、低域通過フィ
ルタの遮断周波数は外部からの制御信号により変化させ
ることで精度良く計測できる耳孔式体温計としている。
According to a fourth aspect of the invention, there is provided an ear-hole type thermometer which can accurately measure the cutoff frequency of the low-pass filter by changing the cut-off frequency by an external control signal.

【0009】請求項5に記載した発明は、増幅器の出力
信号の位相を参照信号発生部の出力信号により反転して
出力する第2の乗算器と、第2の乗算器の出力信号から
低域周波数成分だけを取り出す第2の低域通過フィルタ
とを備え、参照信号発生部は第1の乗算器に与える交流
信号と周波数は同じで位相が90度遅れた2つ目の交流
信号を第2の乗算器に与え、AD変換器はさらに第2の
低域通過フィルタからの信号もAD変換し温度換算手段
へ送ることで精度良く計測できる耳孔式体温計としてい
る。
According to a fifth aspect of the present invention, there is provided a second multiplier for inverting the phase of an output signal of an amplifier by an output signal of a reference signal generator and outputting the inverted signal. A second low-pass filter for extracting only the frequency component, wherein the reference signal generation unit converts a second AC signal having the same frequency and a phase delay of 90 degrees as that of the AC signal supplied to the first multiplier into a second AC signal. The AD converter further converts the signal from the second low-pass filter into an A / D converter and sends the signal to a temperature conversion means so as to accurately measure the temperature.

【0010】請求項6に記載した発明は、チョッパ手段
の駆動周波数は外部からの制御信号により変化させるこ
とで精度良く計測できる耳孔式体温計としている。
The invention described in claim 6 is an ear-hole type thermometer which can accurately measure the driving frequency of the chopper means by changing the driving frequency by an external control signal.

【0011】[0011]

【実施例】(実施例1)以下本発明の第1の実施例を図
1を参照しながら説明する。図1は本実施例の耳孔式体
温計の構成を示すブロック図である。13は測定対象物
である人の鼓膜を示している。11はこの鼓膜13から
放射された赤外線を捉えるためのプローブで、プローブ
11内を通過した赤外線は凹面鏡によって構成した集光
手段12によって集光される。赤外線検出器1は、複数
の熱電対を受光部に集めて配置したサーモパイルであ
る。図2は赤外線検出器1の内部を上面より見た図であ
る。図2において14は赤外線が集光手段12によって
集光されて照射される範囲である受光部である。2は赤
外線が照射されても温度が上昇しないところに配置され
た温度検出器であり赤外線検出器1自体の温度を検出し
ている。なお受光部14の熱は赤外線検出器1全体に伝
わらないように熱絶縁されている。また、受光部14は
複数の熱電対が集められて構成されており受光部14の
温度が上昇することで赤外線の強さを検出している。
(Embodiment 1) A first embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a block diagram showing the configuration of the ear canal thermometer of the present embodiment. Reference numeral 13 denotes a human eardrum, which is an object to be measured. Reference numeral 11 denotes a probe for catching infrared rays emitted from the eardrum 13, and the infrared rays passing through the inside of the probe 11 are condensed by condensing means 12 constituted by a concave mirror. The infrared detector 1 is a thermopile in which a plurality of thermocouples are collected and arranged in a light receiving unit. FIG. 2 is a view of the inside of the infrared detector 1 as viewed from above. In FIG. 2, reference numeral 14 denotes a light receiving section which is a range where the infrared rays are condensed by the condensing means 12 and irradiated. Reference numeral 2 denotes a temperature detector disposed at a place where the temperature does not rise even when infrared rays are irradiated, and detects the temperature of the infrared detector 1 itself. The heat of the light receiving section 14 is thermally insulated so as not to be transmitted to the entire infrared detector 1. In addition, the light receiving unit 14 is configured by collecting a plurality of thermocouples, and detects the intensity of infrared rays when the temperature of the light receiving unit 14 increases.

【0012】図1において温度検出器2が検出した赤外
線検出器1自体の温度信号はAD変換器4に伝達されて
いる。また赤外線検出器1の受光部14からの信号は、
受光部14が熱電対で構成されているため直流信号であ
る。このため赤外線検出器1の受光部14からの信号は
チョッパ手段15により交流信号に変換され帯域通過フ
ィルタ21を通って増幅器3によって増幅された後、乗
算器22に伝達されている。AD変換器4は、伝達され
たアナログ信号をディジタル信号に変換して温度換算手
段5に伝達している。チョッパ手段15は制御手段16
からの制御信号が1またはプラスのときは赤外線検出器
1の受光部14からの信号を後段の帯域通過フィルタ2
1に伝え、制御信号が0またはマイナスのときは赤外線
検出器1の受光部14からの信号を遮断してゼロを後段
の帯域通過フィルタ21に伝える。22は乗算器であり
増幅器3からの信号と参照信号とを掛け算して出力する
ものである。23は参照信号発生部であり増幅器3から
の信号の中で最も多くの温度情報を持っている周波数と
同じ周波数を発生させている。
In FIG. 1, the temperature signal of the infrared detector 1 itself detected by the temperature detector 2 is transmitted to the AD converter 4. The signal from the light receiving section 14 of the infrared detector 1 is
Since the light receiving unit 14 is formed of a thermocouple, it is a DC signal. Therefore, the signal from the light receiving section 14 of the infrared detector 1 is converted into an AC signal by the chopper means 15, amplified by the amplifier 3 through the band-pass filter 21, and transmitted to the multiplier 22. The AD converter 4 converts the transmitted analog signal into a digital signal and transmits the digital signal to the temperature conversion means 5. The chopper means 15 is a control means 16
When the control signal is 1 or plus, the signal from the light receiving section 14 of the infrared detector 1
1, and when the control signal is 0 or minus, the signal from the light receiving section 14 of the infrared detector 1 is cut off and zero is transmitted to the band-pass filter 21 at the subsequent stage. A multiplier 22 multiplies the signal from the amplifier 3 by a reference signal and outputs the result. Reference numeral 23 denotes a reference signal generating unit which generates the same frequency as the frequency having the most temperature information among the signals from the amplifier 3.

【0013】24は低域通過フィルタであり、乗算器2
2の出力の中から直流成分だけを取り出すことを目的と
するものである。低域通過フィルタ24の出力信号はA
D変換器4に入力される。AD変換器4は、伝達された
アナログ信号をディジタル信号に変換して温度換算手段
5に伝達している。温度換算手段5は、赤外線検出器1
から出て乗算器22等によって処理された信号である温
度データと、温度検出器2からの温度データとを所定の
演算式によって演算することによって、鼓膜13の温度
を演算し、測定値表示手段7に伝達して報知と表示とを
行う。
Reference numeral 24 denotes a low-pass filter, which is a multiplier 2
The purpose is to extract only the DC component from the outputs of the second and third outputs. The output signal of the low-pass filter 24 is A
It is input to the D converter 4. The AD converter 4 converts the transmitted analog signal into a digital signal and transmits the digital signal to the temperature conversion means 5. The temperature conversion means 5 includes the infrared detector 1
The temperature of the eardrum 13 is calculated by calculating the temperature data, which is a signal which has been processed by the multiplier 22 and the like, and the temperature data from the temperature detector 2 by a predetermined arithmetic expression, and calculates the measured value display means. 7 for notification and display.

【0014】鼓膜13から放射された赤外線は赤外線検
出器1の受光部14に照射され温度を上昇させ出力電圧
を発生させる。増幅器3で増幅された赤外線検出器1か
らの信号の振幅をある定数で除算した値と、温度検出器
2が検出する赤外線検出器1自体の絶対温度の4乗した
値との和は測定対象である赤外線放射源の絶対温度の4
乗になる。前記温度換算手段5が備えている演算式は、
この関係に基づいて設定しているものである。
The infrared light emitted from the eardrum 13 is irradiated to the light receiving section 14 of the infrared detector 1 to increase the temperature and generate an output voltage. The sum of the value obtained by dividing the amplitude of the signal from the infrared detector 1 amplified by the amplifier 3 by a certain constant and the value obtained by raising the absolute temperature of the infrared detector 1 itself detected by the temperature detector 2 to the fourth power is the measurement object. Is the absolute temperature of the infrared radiation source
To the power. The arithmetic expression provided in the temperature conversion means 5 is as follows:
It is set based on this relationship.

【0015】以下本実施例の動作について説明する。プ
ローブ11を耳孔に挿入し、図示していないスイッチを
オンすると、制御手段16が作動して赤外線検出器1の
受光部14からの信号を周期的に遮断して交流信号に変
換する。鼓膜13から放射される赤外線は、プローブ1
1から集光手段12を介して赤外線検出器1の受光部1
4に照射される。赤外線検出器1の受光部14は照射さ
れた赤外線の強度をアナログ信号としてチョッパ手段1
5に伝達し、帯域通過フィルタ21を通り増幅器3で増
幅された後、乗算器22に伝達される。乗算器22は参
照信号発生部23からの交流信号と増幅器3を通過して
きた赤外線検出器1からの信号を掛け算し出力する。制
御手段16が10Hzすなわち100msの周期で赤外
線検出器1の受光部14からの信号を遮断するとチョッ
パ手段15の出力信号には図3(a)のような10Hz
の高調波を多く含んだ交流信号が得られる。この交流信
号の振幅Aは鼓膜13の温度を算出する基のデータとな
る。
The operation of this embodiment will be described below. When the probe 11 is inserted into the ear canal and a switch (not shown) is turned on, the control means 16 operates to periodically cut off the signal from the light receiving section 14 of the infrared detector 1 and convert it into an AC signal. The infrared radiation emitted from the eardrum 13
1 to the light receiving section 1 of the infrared detector 1
4 is irradiated. The light receiving section 14 of the infrared detector 1 uses the intensity of the irradiated infrared light as an analog signal as an analog signal.
5, the signal passes through the band-pass filter 21, is amplified by the amplifier 3, and is transmitted to the multiplier 22. The multiplier 22 multiplies the AC signal from the reference signal generator 23 by the signal from the infrared detector 1 that has passed through the amplifier 3 and outputs the result. When the control means 16 cuts off the signal from the light receiving section 14 of the infrared detector 1 at a frequency of 10 Hz, that is, 100 ms, the output signal of the chopper means 15 becomes 10 Hz as shown in FIG.
An AC signal containing a large number of harmonics is obtained. The amplitude A of the AC signal is data on which the temperature of the eardrum 13 is calculated.

【0016】一方乗算器22の他の入力には参照信号発
生部23からの図3(b)のような同じく10Hzの方
形波信号が加えられている。これにより、乗算器22の
出力信号は図3(a)の波形と図3(b)の波形の掛け
算により図3(c)のような波形になる。図3(a)、
図3(b)、図3(c)では参照信号発生部23から来
る図3(b)の方形波の位相がチョッパ手段15から来
る図3(a)の正弦波の位相よりもわずかに進んでいる
状態を示している。参照信号発生部23から来るの方形
波の位相がチョッパ手段15から来る正弦波の位相とま
ったく同じならば乗算器22の出力信号波形は図3
(d)のようになり、また、参照信号発生部23から来
るの方形波の位相がチョッパ手段15から来る正弦波の
位相よりも90度進んでいるときは乗算器22の出力信
号波形は図3(e)のようになり、さらに、参照信号発
生部23から来る方形波の位相がチョッパ手段15から
来る正弦波の位相とまったく逆ならば乗算器22の出力
信号波形は図3(f)のようになる。
On the other hand, the other input of the multiplier 22 is supplied with the same 10 Hz square wave signal as shown in FIG. Thus, the output signal of the multiplier 22 becomes a waveform as shown in FIG. 3C by multiplying the waveform of FIG. 3A and the waveform of FIG. 3B. FIG. 3 (a),
3 (b) and 3 (c), the phase of the square wave of FIG. 3 (b) coming from the reference signal generator 23 slightly advances from the phase of the sine wave of FIG. 3 (a) coming from the chopper means 15. Is shown. If the phase of the square wave coming from the reference signal generator 23 is exactly the same as the phase of the sine wave coming from the chopper means 15, the output signal waveform of the multiplier 22 will be as shown in FIG.
(D), and when the phase of the square wave coming from the reference signal generator 23 is ahead of the phase of the sine wave coming from the chopper means 15 by 90 degrees, the output signal waveform of the multiplier 22 is shown in FIG. 3 (e), and if the phase of the square wave coming from the reference signal generator 23 is completely opposite to the phase of the sine wave coming from the chopper means 15, the output signal waveform of the multiplier 22 will be as shown in FIG. become that way.

【0017】乗算器22の出力信号を数式で示すと次の
ようになる。
The output signal of the multiplier 22 is expressed by the following equation.

【0018】[0018]

【数1】 (Equation 1)

【0019】(数1)は一般的な振幅が1の方形波をフ
ーリエ級数展開で表したもので、基本波と奇数次の高調
波の和から成り立っている。ここにωは角周波数、tは
時間である。(数1)に振幅をB、基本波の周波数を1
0Hzを代入したものが(数2)である。
(Equation 1) expresses a general square wave having an amplitude of 1 by Fourier series expansion, and is composed of a sum of a fundamental wave and odd-order harmonics. Here, ω is an angular frequency, and t is time. In Equation 1, the amplitude is B and the frequency of the fundamental wave is 1.
(Expression 2) is obtained by substituting 0 Hz.

【0020】[0020]

【数2】 (Equation 2)

【0021】さらに、位相差φを考慮すると(数3)の
ように表現できる。
Further, when the phase difference φ is considered, it can be expressed as (Equation 3).

【0022】[0022]

【数3】 (Equation 3)

【0023】チョッパ手段15からの正弦波信号は(数
4)のように表現できる。
The sine wave signal from the chopper means 15 can be expressed as (Equation 4).

【0024】[0024]

【数4】 (Equation 4)

【0025】この(数4)の右辺と参照信号発生部23
から来る方形波を表す(数3)の右辺とを掛けると(数
5)のようになる。
The right side of (Equation 4) and the reference signal generator 23
When multiplied by the right side of (Equation 3) representing a square wave coming from, (Equation 5) is obtained.

【0026】[0026]

【数5】 (Equation 5)

【0027】つまり、周波数成分で40Hzと80Hz
と120Hzなどの高調波成分と直流成分とからなる信
号になるが直流成分だけに着目すると(数6)のように
なり、
That is, the frequency components are 40 Hz and 80 Hz.
And a signal consisting of a harmonic component such as 120 Hz and a DC component, but focusing only on the DC component, it becomes as shown in (Equation 6),

【0028】[0028]

【数6】 (Equation 6)

【0029】位相差φがゼロのときにはCosφが1に
なり、入力された2つの信号振幅の積を円周率で割った
値になることが判る。また、位相差φがゼロでなくても
時間的に変化せずに一定であれば、定数項になり、入力
された2つの信号振幅の積をある定数で割った値にな
る。
It can be seen that when the phase difference φ is zero, Cos φ becomes 1, which is a value obtained by dividing the product of the inputted two signal amplitudes by the pi. If the phase difference φ is not zero and is constant without changing over time, it becomes a constant term, which is a value obtained by dividing the product of two inputted signal amplitudes by a certain constant.

【0030】したがって、図1において乗算器22の出
力信号は低域通過フィルタ24を通過しているため、高
調波成分は切り落とされ、(数6)で示したような直流
成分のみ取り出すことができる。このため、参照信号の
振幅Bや位相差が一定で既知であれば低域通過フィルタ
24の出力電圧から温度情報を持つチョッパ手段15と
帯域通過フィルタ21を通過してきた赤外線検出器1の
信号振幅Aを算出することができる。このように本発明
によれば赤外線検出器1からの信号にノイズが多く含ま
れていても、それらは乗算器により分離しやすい交流信
号のままのこり、温度換算に必要な10Hz信号成分は
直流成分となって容易に低域通過フィルタで取り出すこ
とができ非常に精度良く10Hz信号の振幅を検出する
ことができる。
Therefore, in FIG. 1, since the output signal of the multiplier 22 has passed through the low-pass filter 24, the harmonic component is cut off, and only the DC component as shown in (Equation 6) can be extracted. . Therefore, if the amplitude B and the phase difference of the reference signal are constant and known, the signal amplitude of the infrared detector 1 passing through the chopper means 15 having the temperature information and the band-pass filter 21 from the output voltage of the low-pass filter 24 is obtained. A can be calculated. As described above, according to the present invention, even if the signal from the infrared detector 1 contains much noise, it remains as an AC signal which is easily separated by the multiplier, and the 10 Hz signal component necessary for temperature conversion is a DC component. Thus, the amplitude of the 10 Hz signal can be detected very accurately with a low-pass filter.

【0031】この低域通過フィルタ24の出力はAD変
換器4に伝達され、AD変換器4はこの信号と、赤外線
検出器1自体の温度を検出する温度検出器2の信号とを
ディジタル信号に変換して、温度換算手段5に伝達して
いる。温度換算手段5は例えばマイコンを使用してお
り、この二つの信号から鼓膜温度を演算し、この信号を
測定値表示手段7に伝達している。
The output of the low-pass filter 24 is transmitted to the AD converter 4, which converts this signal and the signal of the temperature detector 2 for detecting the temperature of the infrared detector 1 itself into a digital signal. It is converted and transmitted to the temperature conversion means 5. The temperature conversion means 5 uses, for example, a microcomputer, calculates the eardrum temperature from these two signals, and transmits this signal to the measured value display means 7.

【0032】以上のように本実施例によれば、鼓膜から
放射される赤外線を捉え、赤外線検出器1からの信号が
微弱でノイズが多く含まれていても、それらは乗算器に
より分離しやすい交流信号のままのこり、温度換算に必
要な微弱な10Hz信号成分は直流成分となるので、容
易に低域通過フィルタでこの直流成分を取り出すことが
でき、非常に精度良く10Hz信号の振幅を検出するこ
とができる。これにより赤外線検出器1の信号振幅と温
度検出器2の信号とから鼓膜温度を算出する温度換算手
段5によって鼓膜温度が得られるため、瞬時に鼓膜の温
度を簡単に精度良く知ることができるものである。
As described above, according to the present embodiment, infrared rays radiated from the eardrum are captured, and even if the signal from the infrared detector 1 is weak and contains a lot of noise, they are easily separated by the multiplier. Since the weak 10 Hz signal component necessary for temperature conversion becomes a direct current component, the direct current component can be easily extracted with a low-pass filter, and the amplitude of the 10 Hz signal can be detected with high accuracy. be able to. Since the temperature of the eardrum is obtained by the temperature conversion means 5 for calculating the eardrum temperature from the signal amplitude of the infrared detector 1 and the signal of the temperature detector 2, the temperature of the eardrum can be instantaneously and accurately known. It is.

【0033】(実施例2)次に本発明の第2の実施例に
ついて説明する。図4は本実施例の構成を示す耳孔式体
温計の構成図である。本発明の第1の実施例と重複する
ところは説明を省略する。図4において参照信号発生部
23の出力は直接乗算器22には入らず一旦、位相制御
部30に入って位相をずらされた後、乗算器22に伝達
される。位相制御部30がどれくらい位相をずらすか
は、低域通過フィルタ24の出力を常にモニタしながら
決定している。つまり、低域通過フィルタ24の出力が
常に最大になるように、位相制御部30は位相をずらす
量を調整している。図5は位相制御部30が参照信号の
位相をずらしたときの低域通過フィルタ24の出力の変
化を示している。図5(a)は帯域通過フィルタ21を
通過してきた赤外線検出器1からの信号波形、図5
(b)は位相制御部30で位相を調整されてきた参照信
号波形、図5(c)は乗算器22の出力波形であり、図
5(c)における点線で示されたものは低域通過フィル
タ24の出力波形である。最初参照信号はチョッパ手段
15を通過してきた赤外線検出器1からの信号よりも位
相が進んでいたが、時間t1において位相制御部30が
参照信号の位相を遅らせたため両者の位相が合い、乗算
器の出力は図5(c)の時間t1以降は直流成分の値が
大きくなっている。
(Embodiment 2) Next, a second embodiment of the present invention will be described. FIG. 4 is a configuration diagram of an ear canal thermometer showing the configuration of the present embodiment. The description overlapping with the first embodiment of the present invention will be omitted. In FIG. 4, the output of the reference signal generation unit 23 does not directly enter the multiplier 22, but once enters the phase control unit 30 to be shifted in phase, and then transmitted to the multiplier 22. How much the phase controller 30 shifts the phase is determined by constantly monitoring the output of the low-pass filter 24. That is, the phase control unit 30 adjusts the amount by which the phase is shifted so that the output of the low-pass filter 24 is always maximized. FIG. 5 shows a change in the output of the low-pass filter 24 when the phase control unit 30 shifts the phase of the reference signal. FIG. 5A shows a signal waveform from the infrared detector 1 passing through the band-pass filter 21.
FIG. 5B shows a reference signal waveform whose phase has been adjusted by the phase control unit 30, and FIG. 5C shows an output waveform of the multiplier 22, and a dotted line in FIG. 6 is an output waveform of the filter 24. At first, the phase of the reference signal has advanced from that of the signal from the infrared detector 1 which has passed through the chopper means 15. However, at time t1, the phase of the reference signal is delayed by the phase control unit 30 so that the two signals are in phase with each other. Has a large DC component value after time t1 in FIG. 5 (c).

【0034】以上のように本実施例によれば、乗算器2
2の2つの入力信号の位相差をゼロにでき、第1の実施
例の(数6)で示したCosφを1にすることができる
ため、常に最高の感度で非常に精度良く10Hz信号の
振幅を検出することができるものである。
As described above, according to the present embodiment, the multiplier 2
2, the phase difference between the two input signals can be made zero, and Cos φ shown in (Equation 6) of the first embodiment can be made one, so that the amplitude of the 10 Hz signal is always very accurate with the highest sensitivity. Can be detected.

【0035】(実施例3)次に本発明の第3の実施例に
ついて説明する。図6は本実施例の構成を示すブロック
図である。図6において本発明の第1の実施例と重複す
るところは説明を省略する。図6において制御手段16
の出力は乗算器22の参照信号入力としても伝達されて
いる。図7は動作を説明するための信号波形図である。
図7(a)は赤外線検出器1の出力信号をチョッパ手段
15で交流に変換し帯域通過フィルタ21で余分な周波
数成分を除去してから増幅器3で増幅した後の波形であ
る。図7(b)は乗算器22に入力される参照信号とな
る制御手段16からの信号波形である。図7(c)は乗
算器22の出力波形である。したがって、赤外線検出器
1からの交流に変換された信号は帯域通過フィルタ21
を通り増幅器3で増幅されるが、この信号波形と乗算器
22の参照信号となる制御手段16の信号波形の位相は
常に一定でゼロに近く最大感度で10Hz信号の振幅を
検出することができるものである。また、チョッパ手段
15の周期を変えた場合、たとえば10Hzから20H
zに高くした場合でも、交流化された赤外線検出器1の
信号波形と乗算器22の参照信号となる制御手段16の
信号波形の位相は常に一定でゼロに近く乗算器22の出
力は影響を受けずに最大感度でこの20Hzの信号振幅
を検出できるものである。
(Embodiment 3) Next, a third embodiment of the present invention will be described. FIG. 6 is a block diagram showing the configuration of the present embodiment. In FIG. 6, the description overlapping with the first embodiment of the present invention will be omitted. In FIG. 6, the control means 16
Is also transmitted as a reference signal input of the multiplier 22. FIG. 7 is a signal waveform diagram for explaining the operation.
FIG. 7A shows a waveform after an output signal of the infrared detector 1 is converted into an alternating current by the chopper means 15, an extra frequency component is removed by the band pass filter 21, and then amplified by the amplifier 3. FIG. 7B shows a signal waveform from the control unit 16 serving as a reference signal input to the multiplier 22. FIG. 7C shows an output waveform of the multiplier 22. Therefore, the signal converted into alternating current from the infrared detector 1 is applied to the band-pass filter 21.
The phase of this signal waveform and the signal waveform of the control means 16 serving as a reference signal of the multiplier 22 are always constant and close to zero, and the amplitude of the 10 Hz signal can be detected with maximum sensitivity. Things. When the cycle of the chopper means 15 is changed, for example, 10 Hz to 20 H
Even when z is increased, the phase of the signal waveform of the converted infrared detector 1 and the signal waveform of the control means 16 serving as the reference signal of the multiplier 22 are always constant and close to zero, and the output of the multiplier 22 has no influence. The signal amplitude of 20 Hz can be detected with maximum sensitivity without receiving the signal.

【0036】以上のように本実施例によれば、交流化さ
れた赤外線検出器1の出力信号波形とこれと掛け算する
参照信号の位相を正確に一致させることができ常に最大
の検出感度で鼓膜温度を計測することができるものであ
る。
As described above, according to the present embodiment, the phase of the AC output signal of the infrared detector 1 and the phase of the reference signal to be multiplied with the output signal waveform can be accurately matched, and the eardrum always has the maximum detection sensitivity. It can measure temperature.

【0037】(実施例4)次に本発明の第4の実施例に
ついて説明する。図8は本実施例の構成を示すブロック
図である。図7において本発明の第1の実施例と重複す
るところは説明を省略する。31はフィルタ制御手段で
あり、低域通過フィルタ24の遮断周波数を帯域通過フ
ィルタ21の出力信号のレベルにより制御するものであ
り、また参照信号発生部23に対して動作停止信号も出
す。
(Embodiment 4) Next, a fourth embodiment of the present invention will be described. FIG. 8 is a block diagram showing the configuration of this embodiment. In FIG. 7, the description overlapping with the first embodiment of the present invention is omitted. Reference numeral 31 denotes a filter control unit that controls the cutoff frequency of the low-pass filter 24 based on the level of the output signal of the band-pass filter 21, and also outputs an operation stop signal to the reference signal generation unit 23.

【0038】次に動作について説明する。フィルタ制御
手段31はまず、参照信号発生部23に対して信号の発
生を停止させる。これにより乗算器22に交流信号が入
らない状態になる。このときの帯域通過フィルタ21の
出力信号はすべてノイズであり、このノイズレベルが低
いときには外部からの電磁波等によるノイズが少ないと
いえる。ノイズレベルが低いときには低域通過フィルタ
24の遮断周波数を高くしても差し支えがなく、かえっ
て低域通過フィルタ24の反応時間が早くなり計測時間
が早くなるという利点が生まれる。逆にノイズレベルが
高いときには、低域通過フィルタ24の遮断周波数を低
くし、すなわち時定数を大きくして、計測時間は長くな
るがノイズを遮断して高精度に計測するということがで
きる。
Next, the operation will be described. First, the filter control unit 31 causes the reference signal generation unit 23 to stop generating a signal. As a result, a state in which an AC signal does not enter the multiplier 22 is established. The output signals of the band-pass filter 21 at this time are all noise, and when this noise level is low, it can be said that noise due to external electromagnetic waves or the like is small. When the noise level is low, there is no problem even if the cutoff frequency of the low-pass filter 24 is increased, and there is an advantage that the reaction time of the low-pass filter 24 is shortened and the measurement time is shortened. Conversely, when the noise level is high, the cut-off frequency of the low-pass filter 24 is lowered, that is, the time constant is increased, and the measurement time becomes longer, but the noise is cut off and the measurement can be performed with high accuracy.

【0039】以上のように本実施例によれば、ノイズが
多い環境下では時定数の大きい低域通過フィルタで時間
をかけてノイズを遮断して正確に精度良く鼓膜温度を計
測でき、また、ノイズが少ない環境下では時間をかけず
に瞬時に精度良く鼓膜温度を計測することができるもの
である。
As described above, according to the present embodiment, in an environment with a lot of noise, it is possible to measure the eardrum temperature accurately and accurately by taking a long time to cut off the noise with a low-pass filter having a large time constant. In an environment with little noise, the eardrum temperature can be instantaneously and accurately measured without taking much time.

【0040】(実施例5)次に本発明の第5の実施例に
ついて説明する。図9は本実施例の構成を示すブロック
図である。図9において本発明の第1の実施例と重複す
るところは説明を省略する。33は90度移相部であり
参照信号発生部23の信号の位相を90度ずらしてい
る。34は第2の乗算器であり、帯域通過フィルタ21
及び増幅器3を通過してきた赤外線検出器1からの信号
と第1の乗算器22に入っている参照信号とは90度位
相が遅れた第2の参照信号を掛け算するものである。3
5は第2の低域通過フィルタであり、第2の乗算器34
の出力信号の直流成分を取り出して第2の増幅器36で
増幅した後、二乗和演算部37へ伝達している。また、
第1の増幅器25の出力もAD変換器4に入らず二乗和
演算部37に伝達される。
(Embodiment 5) Next, a fifth embodiment of the present invention will be described. FIG. 9 is a block diagram showing the configuration of this embodiment. In FIG. 9, the description overlapping with the first embodiment of the present invention is omitted. Reference numeral 33 denotes a 90-degree phase shift unit which shifts the phase of the signal of the reference signal generation unit 23 by 90 degrees. 34 is a second multiplier, which is a band-pass filter 21
The signal from the infrared detector 1 passing through the amplifier 3 and the reference signal in the first multiplier 22 are multiplied by a second reference signal delayed by 90 degrees in phase. 3
5 is a second low-pass filter, and a second multiplier 34
The DC component of the output signal is taken out, amplified by the second amplifier 36, and transmitted to the sum of squares operation section 37. Also,
The output of the first amplifier 25 does not enter the AD converter 4 but is transmitted to the sum-of-squares operation unit 37.

【0041】次に動作について説明する。(数7)は第
2の乗算器34に入る第1の乗算器22に入っている参
照信号とは90度位相が遅れた第2の参照信号をフーリ
エ級数展開で表したものである。
Next, the operation will be described. (Equation 7) is a Fourier series expansion of the second reference signal, which is delayed by 90 degrees from the reference signal input to the first multiplier 22 in the second multiplier 34.

【0042】[0042]

【数7】 (Equation 7)

【0043】(数3)に示した第1の参照信号とは90
度すなわちπ/2ラジアン位相が遅れている。この第2
の参照信号に(数4)の帯域通過フィルタ21及び増幅
器3を通過してきた正弦波信号を掛けると(数8)のよ
うになる。
The first reference signal shown in (Equation 3) is 90
Degrees, or π / 2 radians phase. This second
Is multiplied by the sine wave signal that has passed through the band-pass filter 21 and the amplifier 3 in (Equation 4) to obtain (Equation 8).

【0044】[0044]

【数8】 (Equation 8)

【0045】つまり、周波数成分で40Hzと80Hz
と120Hzなどの高調波成分と直流成分とからなる信
号になるが直流成分だけに着目すると(数9)のように
なり、
That is, the frequency components of 40 Hz and 80 Hz
And a signal consisting of a harmonic component such as 120 Hz and a DC component, but focusing only on the DC component, it becomes as shown in (Equation 9),

【0046】[0046]

【数9】 (Equation 9)

【0047】入力された2つの信号振幅の積にSinφ
を掛けたものを円周率で割った値になることが判る。こ
れは(数6)と比べるとCosφがSinφになっただ
けで他は同じである。二乗和演算部37では第1の低域
通過フィルタ24で得られ第1の増幅器25で増幅され
たCosφ成分を二乗したものと第2の低域通過フィル
タ35で得られ第2の増幅器36で増幅されたSinφ
成分を二乗したものを加算し平方根をとったものをAD
変換器4へ伝達する。(数10)は二乗和演算部37の
処理内容を数式で示したものであり、
The product of the two input signal amplitudes is Sin φ
It can be seen that the value obtained by multiplying by is divided by the pi. This is the same as (Equation 6) except that Cos φ becomes Sin φ. The sum-of-squares unit 37 squares the Cosφ component obtained by the first low-pass filter 24 and amplified by the first amplifier 25 and the second amplifier 36 obtained by the second low-pass filter 35. Amplified Sinφ
AD is obtained by adding the squared components and taking the square root
The signal is transmitted to the converter 4. (Equation 10) shows the processing content of the sum-of-squares operation unit 37 by a mathematical expression.

【0048】[0048]

【数10】 (Equation 10)

【0049】(数10)に示すとおりCos成分とSi
n成分のそれぞれの二乗したものを加算したものは1に
なるということから結局、二乗和演算部37の出力は位
相差φに全く関係のないA・B/πという帯域通過フィ
ルタ21及び増幅器3を通過してきた信号振幅Aと参照
信号振幅Bの積を円周率で割った値が得られることにな
る。このため、参照信号の振幅Bが既知であれば二乗和
演算部37の出力電圧から温度情報を持つ帯域通過フィ
ルタ21及び増幅器3を通過してきた赤外線検出器1の
信号振幅Aを算出することができる。
As shown in (Equation 10), the Cos component and Si
Since the sum of the squares of the n components becomes 1, the output of the sum-of-squares operation unit 37 is, after all, the band-pass filter 21 and the amplifier 3 of A / B / π which are completely unrelated to the phase difference φ. Is obtained by dividing the product of the signal amplitude A passing through and the reference signal amplitude B by the pi. For this reason, if the amplitude B of the reference signal is known, it is possible to calculate the signal amplitude A of the infrared detector 1 that has passed through the band-pass filter 21 and the amplifier 3 having the temperature information from the output voltage of the square-sum operation unit 37. it can.

【0050】以上のように本発明によれば赤外線検出器
1からの信号にノイズが多く含まれていても、それらは
乗算器により分離しやすい交流信号のままのこり、温度
換算に必要な10Hz信号成分は直流成分となって容易
に低域通過フィルタで取り出すことができ、さらに、赤
外線検出器1の出力信号波形とこれと掛け算する参照信
号の位相を一致させなくても、常に最大の検出感度で非
常に精度良く鼓膜温度を計測することができるものであ
る。
As described above, according to the present invention, even if the signal from the infrared detector 1 contains much noise, it remains as an AC signal which is easily separated by the multiplier, and a 10 Hz signal necessary for temperature conversion. The component becomes a DC component and can be easily extracted by a low-pass filter. Further, even if the phase of the output signal waveform of the infrared detector 1 and the phase of the reference signal to be multiplied with the waveform are not matched, the maximum detection sensitivity is always obtained. Thus, the eardrum temperature can be measured very accurately.

【0051】(実施例6)次に本発明の第6の実施例に
ついて説明する。図10は本実施例の構成を示すブロッ
ク図である。図10において本発明の第1の実施例およ
び第3の実施例と重複するところは説明を省略する。4
0はチョッパ手段15の周波数を決定する周波数決定手
段であり、低域通過フィルタ24のノイズの大きさによ
り周波数を変え、その周波数通りに制御手段16が動作
するように制御信号を制御手段16に伝えるるものであ
る。
(Embodiment 6) Next, a sixth embodiment of the present invention will be described. FIG. 10 is a block diagram showing the configuration of this embodiment. In FIG. 10, the description of the same parts as those of the first and third embodiments of the present invention will be omitted. 4
Numeral 0 denotes frequency determining means for determining the frequency of the chopper means 15, which changes the frequency in accordance with the magnitude of the noise of the low-pass filter 24 and sends a control signal to the control means 16 so that the control means 16 operates according to the frequency. To convey.

【0052】次に動作について説明する。周波数決定部
40はまず、制御手段16に対して信号出力を停止させ
る。これにより乗算器22に交流信号が入らない状態に
なる。このときの低域通過フィルタ24の出力に大きな
信号が出れば、チョッパ手段15を動かす周波数に近い
外来ノイズが回路に飛び込んで来ていると考えられ、逆
に低域通過フィルタ24の出力レベルが低いときには外
部からの電磁波等によるノイズが少ないといえる。外来
ノイズが大きいときはチョッパ手段5を動かす周波数を
変えて最も外来ノイズが低くなる周波数でチョッパ手段
15を動かすことにより最良のS/Nの条件下で赤外線
検出器1からの信号振幅を計測することができる。
Next, the operation will be described. First, the frequency determination unit 40 causes the control unit 16 to stop signal output. As a result, a state in which an AC signal does not enter the multiplier 22 is established. If a large signal appears at the output of the low-pass filter 24 at this time, it is considered that extraneous noise close to the frequency at which the chopper means 15 is moving into the circuit, and conversely, the output level of the low-pass filter 24 decreases. When it is low, it can be said that noise due to external electromagnetic waves and the like is small. When the external noise is large, the signal amplitude from the infrared detector 1 is measured under the best S / N condition by changing the frequency at which the chopper means 5 is moved and moving the chopper means 15 at the frequency at which the external noise is the lowest. be able to.

【0053】以上のように本実施例によれば、チョッパ
手段15の信号遮断周期に近い周波数のノイズが多い環
境下ではチョッパ手段15の信号遮断周期を変えてS/
Nが良い周波数で正確に精度良く鼓膜温度を計測するこ
とができるものである。
As described above, according to this embodiment, in an environment where there is much noise at a frequency close to the signal cutoff cycle of the chopper means 15, the signal cutoff cycle of the chopper means 15 is changed to
The eardrum temperature can be measured accurately and accurately at a frequency where N is good.

【0054】[0054]

【発明の効果】請求項1に記載した発明は、鼓膜から放
射される赤外線を捉え、赤外線検出器からの信号が微弱
でノイズが多く含まれていても、それらは乗算器により
分離しやすい交流信号のままのこり、温度換算に必要な
微弱な信号成分は直流成分となるので、容易に低域通過
フィルタでこの直流成分を取り出すことができ、非常に
精度良く温度情報を持つ信号の振幅を検出することがで
きる。これにより赤外線検出器の信号振幅と温度検出器
の信号とから鼓膜温度を算出する温度換算手段によって
鼓膜温度が得られるため、瞬時に鼓膜の温度を簡単に精
度良く知ることができるものである。
According to the first aspect of the present invention, the infrared rays radiated from the eardrum are captured, and even if the signal from the infrared detector is weak and contains a lot of noise, they are easily separated by the multiplier. Since the signal remains as it is and the weak signal component required for temperature conversion becomes a DC component, this DC component can be easily extracted with a low-pass filter, and the amplitude of the signal with temperature information can be detected with high accuracy. can do. Thus, the temperature of the eardrum can be obtained by the temperature conversion means for calculating the eardrum temperature from the signal amplitude of the infrared detector and the signal of the temperature detector, so that the temperature of the eardrum can be instantaneously and accurately known.

【0055】請求項2に記載した発明は、乗算器の2つ
の入力信号の位相差をゼロにできるため、常に最高の感
度で非常に精度良く信号の振幅を検出することができる
ものである。
According to the second aspect of the present invention, since the phase difference between two input signals of the multiplier can be made zero, the amplitude of the signal can always be detected with the highest sensitivity and with high accuracy.

【0056】請求項3に記載した発明は、赤外線検出器
の出力信号波形とこれと掛け算する参照信号の位相を正
確に一致させることができ常に最大の検出感度で鼓膜温
度を計測することができるものである。
According to the third aspect of the present invention, the phase of the output signal waveform of the infrared detector and the phase of the reference signal to be multiplied with the waveform can be accurately matched, and the eardrum temperature can always be measured with the maximum detection sensitivity. Things.

【0057】請求項4に記載した発明は、ノイズが多い
環境下では時定数の大きい低域通過フィルタで時間をか
けてノイズを遮断して正確に精度良く鼓膜温度を計測で
き、また、ノイズが少ない環境下では時間をかけずに瞬
時に精度良く鼓膜温度を計測することができるものであ
る。
According to the fourth aspect of the present invention, in an environment where there is a lot of noise, the noise is cut off by taking a long time with a low-pass filter having a large time constant so that the eardrum temperature can be measured accurately and accurately. In a small environment, the tympanic membrane temperature can be instantaneously and accurately measured without taking much time.

【0058】請求項5に記載した発明は、赤外線検出器
からの信号にノイズが多く含まれていても、それらは乗
算器により分離しやすい交流信号のままのこり、温度換
算に必要な信号成分は直流成分となって容易に低域通過
フィルタで取り出すことができ、さらに、赤外線検出器
の出力信号波形とこれと掛け算する参照信号の位相を一
致させなくても、常に最大の検出感度で非常に精度良く
鼓膜温度を計測することができるものである。
According to the fifth aspect of the present invention, even if the signal from the infrared detector contains a lot of noise, it remains as an AC signal which is easily separated by the multiplier, and the signal component necessary for temperature conversion is It becomes a DC component and can be easily extracted with a low-pass filter.Furthermore, even if the output signal waveform of the infrared detector does not match the phase of the reference signal to be multiplied with the output signal waveform, it is always very sensitive with the maximum detection sensitivity. The tympanic membrane temperature can be accurately measured.

【0059】請求項6に記載した発明は、チョッパ手段
の信号遮断周期の周波数に近い周波数のノイズが多い環
境下ではチョッパ手段の信号遮断周期を変えてS/Nが
良い周波数で正確に精度良く鼓膜温度を計測することが
ことができるものである。
According to a sixth aspect of the present invention, in an environment where there is a lot of noise having a frequency close to the frequency of the signal cutoff cycle of the chopper means, the signal cutoff cycle of the chopper means is changed to accurately and accurately at a frequency having a good S / N. It can measure eardrum temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例である耳孔式体温計の構
成を示すブロック図
FIG. 1 is a block diagram showing a configuration of an ear canal thermometer according to a first embodiment of the present invention.

【図2】本発明の第1の実施例である赤外線検出器の構
成図
FIG. 2 is a configuration diagram of an infrared detector according to a first embodiment of the present invention;

【図3】(a)〜(f)本発明の第1の実施例である耳
孔式体温計の動作説明図
FIGS. 3 (a) to 3 (f) are explanatory diagrams of the operation of an ear canal thermometer according to a first embodiment of the present invention.

【図4】本発明の第2の実施例である耳孔式体温計の構
成を示すブロック図
FIG. 4 is a block diagram showing a configuration of an ear canal thermometer according to a second embodiment of the present invention.

【図5】(a)〜(c)本発明の第2の実施例である実
施例である耳孔式体温計の動作説明図
FIGS. 5 (a) to 5 (c) are explanatory diagrams of the operation of an ear canal thermometer according to a second embodiment of the present invention.

【図6】本発明の第3の実施例である耳孔式体温計の構
成を示すブロック図
FIG. 6 is a block diagram showing a configuration of an ear canal thermometer according to a third embodiment of the present invention.

【図7】(a)〜(c)本発明の第3の実施例である実
施例である耳孔式体温計の動作説明図
FIGS. 7A to 7C are explanatory diagrams of the operation of an ear canal thermometer according to a third embodiment of the present invention.

【図8】本発明の第4の実施例である耳孔式体温計の構
成を示すブロック図
FIG. 8 is a block diagram showing the configuration of an ear canal thermometer according to a fourth embodiment of the present invention.

【図9】本発明の第5の実施例である耳孔式体温計の構
成を示すブロック図
FIG. 9 is a block diagram showing a configuration of an ear canal thermometer according to a fifth embodiment of the present invention.

【図10】本発明の第6の実施例である耳孔式体温計の
構成を示すブロック図
FIG. 10 is a block diagram showing a configuration of an ear canal thermometer according to a sixth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 赤外線検出器 2 温度検出器 3 増幅器 4 AD変換器 5 温度換算手段 11 プローブ 15 チョッパ手段 16 制御手段 21 帯域通過フィルタ 22,34 乗算器 23 参照信号発生部 24,35 低域通過フィルタ 30 位相制御部 31 フィルタ制御部 33 90度移相部 37 二乗和演算部 DESCRIPTION OF SYMBOLS 1 Infrared detector 2 Temperature detector 3 Amplifier 4 A / D converter 5 Temperature conversion means 11 Probe 15 Chopper means 16 Control means 21 Band pass filter 22, 34 Multiplier 23 Reference signal generation part 24, 35 Low pass filter 30 Phase control Unit 31 filter control unit 33 90-degree phase shift unit 37 sum of squares operation unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 乾 弘文 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 2G066 AC13 BA08 BA34 BB11 BC07 BC30 CA15 CA20  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hirofumi Inui 1006 Kazuma Kadoma, Kadoma-shi, Osaka Matsushita Electric Industrial Co., Ltd. F-term (reference) 2G066 AC13 BA08 BA34 BB11 BC07 BC30 CA15 CA20

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 プローブ内を通過してきた赤外線を集光
する集光手段と、集光された赤外線が照射されることに
より温度が上昇する受光部と赤外線が照射されず温度が
上昇しない部分の温度を検出する温度検出部とを内部に
有する赤外線検出器と、赤外線検出器の出力信号が後段
の回路に伝達されるのを周期的に遮るチョッパ手段と、
チョッパ手段の出力信号を増幅する増幅器と、ある周波
数の交流信号を出力する参照信号発生部と、前記増幅器
の出力信号と参照信号発生部の出力信号とを掛け算して
出力する乗算器と、乗算器の出力信号から低域周波数成
分だけを取り出す低域通過フィルタと、前記赤外線検出
器の温度検出部の出力信号と前記低域通過フィルタの出
力信号をAD変換するAD変換器と、AD変換器の信号
を受けて測定対象の温度に応じた信号を出力する温度換
算手段と温度換算手段の温度換算結果と動作状態を表示
する測定値表示手段を備えた耳孔式体温計。
1. A light condensing means for condensing infrared light that has passed through a probe, a light-receiving part whose temperature rises by irradiation of the condensed infrared light, and a light-receiving part whose infrared light is not irradiated and whose temperature does not increase. An infrared detector having a temperature detection unit for detecting a temperature therein, and chopper means for periodically blocking an output signal of the infrared detector from being transmitted to a subsequent circuit,
An amplifier for amplifying the output signal of the chopper means, a reference signal generating unit for outputting an AC signal of a certain frequency, a multiplier for multiplying the output signal of the amplifier by the output signal of the reference signal generating unit and outputting the result; A low-pass filter that extracts only low-frequency components from the output signal of the detector, an AD converter that performs AD conversion of an output signal of the temperature detection unit of the infrared detector and an output signal of the low-pass filter, and an AD converter. The ear-hole type thermometer provided with a temperature conversion means for receiving a signal of the above and outputting a signal corresponding to the temperature of the measurement object, and a measured value display means for displaying a temperature conversion result and an operation state of the temperature conversion means.
【請求項2】 参照信号発生部は外部からの制御信号に
より出力する信号の位相を変化させることを可能とした
請求項1に記載の耳孔式体温計。
2. The ear canal thermometer according to claim 1, wherein the reference signal generator is capable of changing the phase of a signal output by an external control signal.
【請求項3】 参照信号発生部はチョッパ手段のチョッ
パ駆動信号をもとに参照信号を発生させる請求項1に記
載の耳孔式体温計。
3. The ear hole thermometer according to claim 1, wherein the reference signal generator generates a reference signal based on a chopper drive signal of the chopper means.
【請求項4】 低域通過フィルタの遮断周波数は外部か
らの制御信号により変化させることを可能とした請求項
1に記載の耳孔式体温計。
4. The ear canal thermometer according to claim 1, wherein the cut-off frequency of the low-pass filter can be changed by an external control signal.
【請求項5】 増幅器の出力信号の位相を参照信号発生
部の出力信号により反転して出力する第2の乗算器と、
第2の乗算器の出力信号から低域周波数成分だけを取り
出す第2の低域通過フィルタとを備え、参照信号発生部
は第1の乗算器に与える交流信号と周波数は同じで位相
が90度遅れた2つ目の交流信号を第2の乗算器に与
え、AD変換器はさらに第2の低域通過フィルタからの
信号もAD変換し温度換算手段へ送るようにした請求項
1に記載の耳孔式体温計。
5. A second multiplier for inverting a phase of an output signal of the amplifier by an output signal of a reference signal generation unit and outputting the inverted signal,
A second low-pass filter for extracting only low-frequency components from the output signal of the second multiplier, wherein the reference signal generator has the same frequency as the AC signal applied to the first multiplier and a phase of 90 degrees. 2. The apparatus according to claim 1, wherein the second delayed AC signal is supplied to a second multiplier, and the AD converter further AD-converts a signal from the second low-pass filter and sends the signal to a temperature conversion unit. Ear hole thermometer.
【請求項6】 チョッパ手段の駆動周波数は外部からの
制御信号により変化させることを可能とした請求項1に
記載の耳孔式体温計。
6. The ear canal thermometer according to claim 1, wherein the drive frequency of the chopper means can be changed by an external control signal.
JP15905499A 1999-06-07 1999-06-07 Ear hole thermometer Expired - Fee Related JP4126806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15905499A JP4126806B2 (en) 1999-06-07 1999-06-07 Ear hole thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15905499A JP4126806B2 (en) 1999-06-07 1999-06-07 Ear hole thermometer

Publications (2)

Publication Number Publication Date
JP2000342541A true JP2000342541A (en) 2000-12-12
JP4126806B2 JP4126806B2 (en) 2008-07-30

Family

ID=15685226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15905499A Expired - Fee Related JP4126806B2 (en) 1999-06-07 1999-06-07 Ear hole thermometer

Country Status (1)

Country Link
JP (1) JP4126806B2 (en)

Also Published As

Publication number Publication date
JP4126806B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
CN105676008B (en) Digital electric field sensor
EP1645854B1 (en) Method and apparatus for measurement of optical detector linearity
US8035816B2 (en) Method and apparatus for measuring the optical absorption of samples
CN106932093B (en) Auto frequency locking photoelectricity active balance system
JP2000342541A (en) Ear hole type clinical thermometer
JPS61155804A (en) Optical water film thickness gauge
JPS61194332A (en) Method and device for measuring gas concentration
JP2010169487A (en) Apparatus and method for measuring concentration
JP4790330B2 (en) Gas concentration measuring device
JP2000254102A (en) Earhole type thermometer
JP4929920B2 (en) Cooker and program
JPH1169583A (en) Device for diagnosing abnormality of equipment
JP2604596B2 (en) Differential AC specific heat measurement method and apparatus
JP2008151676A (en) Esr device
JPS5910485B2 (en) 2 channel photometry device
JPH0961526A (en) Optical distance-measuring apparatus
RU2636256C2 (en) Method for measuring power and frequency of laser radiation pulses and device for its implementation
JPH11128179A (en) Radiation thermometer
KR100985341B1 (en) A Temperature Measurement Apparatus for Steel using Laser Diode
US4628196A (en) Temperature measuring apparatus
JPH02201165A (en) Laser doppler speed meter
RU1568683C (en) Radiant energy meter
JPH0642189Y2 (en) Infrared thermometer
JP2006314462A (en) Biological photometric apparatus
JPH10293143A (en) Fft lock-in amplifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060523

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080505

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees