JP2000341709A - Image pickup device - Google Patents

Image pickup device

Info

Publication number
JP2000341709A
JP2000341709A JP11152199A JP15219999A JP2000341709A JP 2000341709 A JP2000341709 A JP 2000341709A JP 11152199 A JP11152199 A JP 11152199A JP 15219999 A JP15219999 A JP 15219999A JP 2000341709 A JP2000341709 A JP 2000341709A
Authority
JP
Japan
Prior art keywords
signal
solid
imaging device
state imaging
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11152199A
Other languages
Japanese (ja)
Other versions
JP3613071B2 (en
Inventor
Seiji Yoshida
政二 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP15219999A priority Critical patent/JP3613071B2/en
Publication of JP2000341709A publication Critical patent/JP2000341709A/en
Application granted granted Critical
Publication of JP3613071B2 publication Critical patent/JP3613071B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To pick up and output a highly accurate signal and to pickup and output sequentially scanned dynamic images suited to display on a liquid crystal display or the like by providing the image pickup device with a generation means for generating a high-definition video signal from an output signals of 1st to 3rd sold state image pickup elements and the output signals from 1st and 2nd signal processing parts or the like. SOLUTION: Beams of respective colors R, G and B decomposed by a prism 2 are photoelectrically converted by respective image pickup elements 3 to 5 and inputted to an analog processing part 6 as R, G and B signals. In the processing part 6, respective CDS circuits 301, 401, 501 improve the S/N ratios of the R, G and B signals by correlation double sampling processing, respective AGC circuits 302, 402, 502 adjust the levels of the R, G and B signals to prescribed levels and input the level adjusted signals to respective A/D converters 303, 403, 503, which convert the input signals into digital signals and input these digital signals to a digital signal processing part 7. Thus a highly accurate video signal is generated by a luminance signal processor part (Y processing part) 702, a color difference signal processing part 704 or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はNTSC、PAL等
の従来の標準テレビジョン方式、あるいは、コンピュー
タのビデオフォーマットであるVGA等に対応した通常
画素数の固体撮像素子を3枚あるいは4枚使用して、固
体撮像素子の画素数の4倍の画素数に相当する高精細度
の画像信号を出力することができる撮像装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses three or four solid-state image pickup devices having a normal number of pixels corresponding to a conventional standard television system such as NTSC or PAL, or a computer video format such as VGA. Further, the present invention relates to an imaging device capable of outputting a high-definition image signal corresponding to four times the number of pixels of a solid-state imaging device.

【0002】[0002]

【従来の技術】近年、デジタルスチルカメラとして10
0万画素を越える有効画素数を持つデジタルスチルカメ
ラが商品化されている。このような高精細度の画像信号
の撮影が容易になり、その利用も急速に進んでいる。3
板式の撮像装置において、緑用の固体撮像素子の空間位
置に対して斜めにずらした赤用および青用固体撮像素子
を配置し、これらの固体撮像素子からの出力信号を補間
した信号に基づいて低域輝度信号および高域輝度信号を
生成し、この低域輝度信号と高域輝度信号とから輝度信
号を合成することにより、固体撮像素子の解像度を2倍
以上にすることができる撮像装置が提案されている。
(特開平6−217330号公報、特開平6−3151
15号公報)このような撮像装置では汎用の固体撮像素
子を利用して高解像度の映像信号を得ることができる。
2. Description of the Related Art In recent years, 10 digital still cameras have been developed.
A digital still camera having an effective pixel number exceeding 10,000 pixels has been commercialized. Such high-definition image signals can be easily photographed, and their use is rapidly increasing. 3
In a plate-type image pickup device, red and blue solid-state image sensors arranged obliquely with respect to the spatial position of the solid-state image sensor for green are arranged, and based on signals obtained by interpolating output signals from these solid-state image sensors. By generating a low-frequency luminance signal and a high-frequency luminance signal, and synthesizing a luminance signal from the low-frequency luminance signal and the high-frequency luminance signal, an imaging device capable of doubling the resolution of the solid-state imaging device can be provided. Proposed.
(JP-A-6-217330, JP-A-6-3151)
No. 15) In such an imaging apparatus, a high-resolution video signal can be obtained by using a general-purpose solid-state imaging device.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、特に、
パソコン(PC)用の高精細度ディスプレィモニタへの
表示に適した高精細度プログレッシブスキャン(順次走
査)方式の撮像装置を実現する場合は、上述した100
万画素を越える固体撮像素子は静止画撮影用であり、最
大でも1秒あたり15フレーム以下の出力であり、動画
の出力は不可能であった。また、有効画素数が100万
画素以上の動画撮影装置としてはHDTV(ハイビジョ
ン)方式の撮像装置が実用化されているが、HDTVの
場合は、出力信号がインターレース(飛び越し走査)で
あり、垂直高周波成分が存在する画像の場合はラインフ
リッカーによるちらつきが見えるたり、パソコン(P
C)用ディスプレィモニターとして普及してきている液
晶ディスプレィモニターへの表示には適さないという問
題点を有していた。さらに、特開平6−217330号
公報、特開平6−315115号公報に開示されている
撮像装置は低域輝度信号の各画素の通過帯域特性が大き
く異なっていることと、高域輝度信号に低域輝度信号成
分が含まれているため、低域輝度信号と高域輝度信号と
から広帯域輝度信号を生成する際に、図6に示されるよ
うに低域輝度信号および高域輝度信号をさらに各ローパ
スフィルター(LPF)を通過させ、前記高域輝度信号
から前記高域輝度信号を前記LPFを通過させた信号を
減算して信号に、前記低域信号を前記LPFを通過させ
た信号を加算させるという複雑な信号処理が必要にな
り、回路規模のコスト増大の要因となるという問題点も
有していた。
However, in particular,
In order to realize a high-definition progressive scan (sequential scanning) type imaging apparatus suitable for display on a high-definition display monitor for a personal computer (PC), the above-described 100 is used.
A solid-state image sensor having more than 10,000 pixels is for photographing a still image, and has a maximum output of 15 frames or less per second, and cannot output a moving image. Also, as a moving image photographing apparatus having an effective pixel number of 1,000,000 pixels or more, an HDTV (high definition) image pickup apparatus has been put into practical use. However, in the case of HDTV, an output signal is interlaced (interlaced scanning) and a vertical high frequency In the case of an image containing components, flicker due to line flicker can be seen, or a computer (P
C) has a problem that it is not suitable for display on a liquid crystal display monitor which has become widespread as a display monitor for C). Further, the imaging devices disclosed in JP-A-6-217330 and JP-A-6-315115 show that the passband characteristics of each pixel of the low-frequency luminance signal are significantly different and that Since a broadband luminance signal component is included, when a broadband luminance signal is generated from the lowband luminance signal and the highband luminance signal, the lowband luminance signal and the highband luminance signal are further divided as shown in FIG. A signal obtained by passing the low-pass signal through the LPF is subtracted from the high-pass luminance signal by subtracting a signal obtained by passing the high-pass luminance signal through the LPF from the high-pass luminance signal. Such complicated signal processing is required, which causes an increase in the cost of the circuit scale.

【0004】本発明はこの点に着目してなされたもので
あり、現在安価に入手可能な汎用のVGA対応の全画素
読み出し方式の固体撮像素子を3枚あるいは4枚使用す
ることにより、VGAの4倍の画素数に相当する高精細
度なプログレッシブスキャン(順次走査)方式のパソコ
ン(PC)用の液晶ディスプレィへの表示に適した動画
の撮像ができる撮像装置を提供することを目的とする。
The present invention has been made in view of this point. By using three or four solid-state image pickup devices of general-purpose VGA compatible all-pixel readout type which are available at a low cost at present, the VGA is realized. It is an object of the present invention to provide an imaging apparatus capable of capturing a moving image suitable for display on a liquid crystal display for a personal computer (PC) of a high-definition progressive scan (sequential scanning) system corresponding to four times the number of pixels.

【0005】[0005]

【課題を解決するための手段】以上の課題を解決するた
めに、本発明にかかる撮像装置は、入射光を色分解して
緑(G)、赤(R)、青(B)の各色光を得る色分解光
学系と、全画素読み出し方式の前記緑(G)光を受光し
光電変換してG信号を出力する第1の固体撮像素子と、
全画素読み出し方式の前記赤(R)光を受光し光電変換
してR信号を出力する第2の固体撮像素子と、全画素読
み出し方式の前記青(B)画像を受光し光電変換してB
信号を出力する第3の固体撮像素子とを備え、前記第1
の固体撮像素子の空間位置に対して前記第2の固体撮像
素子および第3の固体撮像素子の少なくとも一方、もし
くは両方を水平方向および垂直方向に関して、それぞれ
前記固体撮像素子の画素ピッチの1/2倍の距離だけず
らした位置に配置し、前記第1の固体撮像素子、前記第
2の固体撮像素子、および前記第3の固体撮像素子から
それぞれ出力された各色の信号より生成した低周波信号
と、前記各色の信号を補間して生成した補間低周波信号
とを合成して前記第1の固体撮像素子、前記第2の固体
撮像素子、および前記第3の固体撮像素子のそれぞれの
有効画素の4倍の各色の低周波信号を生成する第1の信
号処理部と、前記第1の固体撮像素子、前記第2の固体
撮像素子、および前記第3の固体撮像素子からそれぞれ
出力された各色の信号より生成した高周波信号と、前記
高周波信号を補間して生成した補間高周波信号とを合成
して前記第1の固体撮像素子、前記第2の固体撮像素
子、および前記第3の固体撮像素子のそれぞれの有効画
素の4倍の高周波輝度信号を生成する第2の信号処理部
と、前記第1の固体撮像素子、前記第2の固体撮像素
子、および前記第3の固体撮像素子のそれぞれの出力信
号と、前記第1の信号処理部の出力信号と、前記第2の
信号処理部の出力信号とから高精細度映像信号を生成す
る生成手段とを有するように構成したことを特徴とす
る。
In order to solve the above-mentioned problems, an image pickup apparatus according to the present invention separates incident light into color light of green (G), red (R), and blue (B). A first solid-state imaging device that receives the green (G) light of the all-pixel readout method, performs photoelectric conversion, and outputs a G signal;
A second solid-state imaging device that receives the red (R) light of the all-pixel readout method and photoelectrically converts the red (R) light to output an R signal;
A third solid-state imaging device for outputting a signal;
With respect to the spatial position of the solid-state imaging device, at least one or both of the second solid-state imaging device and the third solid-state imaging device are の of the pixel pitch of the solid-state imaging device in the horizontal and vertical directions. A low-frequency signal generated from a signal of each color output from each of the first solid-state imaging device, the second solid-state imaging device, and the third solid-state imaging device. And synthesizing an interpolated low-frequency signal generated by interpolating the signals of the respective colors to form an effective pixel of each of the first solid-state imaging device, the second solid-state imaging device, and the third solid-state imaging device. A first signal processing unit that generates a low-frequency signal of four times each color, and a first signal processing unit that generates a low-frequency signal of each color, and outputs the first solid-state imaging device, the second solid-state imaging device, and the third solid-state imaging device. The first solid-state image sensor, the second solid-state image sensor, and the third solid-state image sensor are combined by combining a high-frequency signal generated from a signal and an interpolated high-frequency signal generated by interpolating the high-frequency signal. A second signal processing unit for generating a high-frequency luminance signal four times higher than each effective pixel, and respective outputs of the first solid-state imaging device, the second solid-state imaging device, and the third solid-state imaging device It is characterized by comprising a generating means for generating a high definition video signal from a signal, an output signal of the first signal processing unit, and an output signal of the second signal processing unit.

【0006】[0006]

【発明の実施の形態】図1は本発明の撮像装置の第1の
実施例を示す図である。図1において、1はレンズ、2
は入射光をRGB各色に色分解するプリズム、3、4、
5はそれぞれR用の固体撮像素子、G用の固体撮像素
子、B用の固体撮像素子、6はアナログ信号処理回路
部、301、401、501は相関二重サンプリング部
(CDS)、302、402、502はCDS301、
401、501の出力信号のレベルを調整するAGC回
路、303、403、503はAD変換器、7はデジタ
ル信号処理部、304、404、504はガンマ(γ)
補正部、305、405、505は各色の低周波信号生
成部(RL生成部、GL生成部、BL生成部)、701
は高周波輝度信号生成部(YH生成部)、702は輝度
信号処理部(Y処理部)、306、406、506はD
A変換器、703は低周波輝度信号生成部(YL生成
部)、704は色差信号処理部、8は出力回路部、30
7、407、507はローパスフィルタ(LPF)、3
08、408、508は75Ωドライバ部、509は輝
度信号出力端子(Y)、309、409はコンポーネン
ト形式の色信号出力端子(PR、PB)である。
FIG. 1 is a diagram showing a first embodiment of an imaging apparatus according to the present invention. In FIG. 1, 1 is a lens, 2
Are prisms for separating the incident light into RGB colors, 3, 4,
5 is a solid-state image sensor for R, a solid-state image sensor for G, a solid-state image sensor for B, 6 is an analog signal processing circuit unit, 301, 401, 501 are correlated double sampling units (CDS), 302, 402. , 502 are the CDS 301,
AGC circuits for adjusting the levels of the output signals of 401 and 501, AD converters 303, 403 and 503, digital signal processing units 7, gamma (γ) 304, 404 and 504
Correction units 305, 405, and 505 are low-frequency signal generation units (RL generation unit, GL generation unit, and BL generation unit) for each color;
Denotes a high-frequency luminance signal generation unit (YH generation unit), 702 denotes a luminance signal processing unit (Y processing unit), and 306, 406, and 506 denote D.
A converter, 703 is a low frequency luminance signal generation unit (YL generation unit), 704 is a color difference signal processing unit, 8 is an output circuit unit, 30
7, 407 and 507 are low-pass filters (LPF), 3
08, 408 and 508 are 75Ω driver units, 509 is a luminance signal output terminal (Y), and 309 and 409 are component format color signal output terminals (PR, PB).

【0007】入射光はレンズ1を通過した後、プリズム
2にてRGBの3色に分離され、撮像素子3、4、5に
入射する。固体撮像素子3、4、5は、例えば、全画素
をそのままノンインターレース走査で読み出す、全画素
独立読み出しが可能な、例えば、VGA対応(水平有効
画素数640画素、垂直有効画素数480画素)のもの
である。
After passing through the lens 1, the incident light is separated into three colors of RGB by the prism 2 and enters the image pickup devices 3, 4 and 5. The solid-state imaging devices 3, 4, and 5, for example, read all pixels as they are by non-interlace scanning and can read all pixels independently. For example, VGA compatible (640 effective horizontal pixels, 480 vertical effective pixels) Things.

【0008】VGA対応の固体撮像素子は安価であるが
画素数が少ないため、3つの固体撮像素子3、4、5を
空間斜めずらしに配置して解像度を向上させる。具体的
には、図2(a)(b)に示すように各色の固体撮像素
子の画素ピッチをPx、垂直方向の画素ピッチをPyと
した場合に、G用の固体撮像素子4の各画素に対してR
用の固体撮像素子3の各画素およびB用の固体撮像素子
5の各画素を、水平方向に1/2Px(図2(a))、
垂直方向に1/2Py(図2(b))だけずらして配置
する。
A VGA-compatible solid-state image pickup device is inexpensive but has a small number of pixels. Therefore, the three solid-state image pickup devices 3, 4, and 5 are arranged in a spatially oblique manner to improve the resolution. Specifically, as shown in FIGS. 2A and 2B, when the pixel pitch of the solid-state imaging device of each color is Px and the pixel pitch in the vertical direction is Py, each pixel of the solid-state imaging device 4 for G is used. R for
Each pixel of the solid-state imaging device 3 for B and each pixel of the solid-state imaging device 5 for B are 1 / Px (FIG. 2A) in the horizontal direction,
It is displaced in the vertical direction by P Py (FIG. 2B).

【0009】G用の固体撮像素子4の各画素に対してR
用の固体撮像素子3の各画素およびB用の固体撮像素子
5の各画素をずらすのは、輝度信号を生成する際におけ
るG信号の寄与する比率(例えば、NTSC方式では
0.59)と、R信号の寄与する比率(例えば、NTS
C方式では0.30)およびB信号の寄与する比率(例
えば、NTSC方式では0.11)とが同程度であるた
めであり、さらに、上述したように3枚の固体撮像素子
を画素ずらして配置して、さらに、後述するような補間
処理、つまり、に各色の映像信号の画素数を水平方向お
よび垂直方向にそれぞれ2倍に拡大して全体として4倍
の画素数となるような補間処理を行うことで解像度の向
上を実現できる。
For each pixel of the solid-state image sensor 4 for G, R
The pixels of the solid-state imaging device 3 for B and the pixels of the solid-state imaging device 5 for B are shifted from each other because the contribution ratio of the G signal when generating the luminance signal (for example, 0.59 in the NTSC system) R signal contribution ratio (eg, NTS
This is because the ratio of the contribution of the B signal (for example, 0.11 in the NTSC system) is substantially the same as the ratio of 0.30 in the C system, and the three solid-state imaging devices are shifted by pixels as described above. In addition, an interpolation process described later, that is, an interpolation process in which the number of pixels of the video signal of each color is enlarged twice in the horizontal direction and the vertical direction so that the number of pixels becomes four times as a whole , The resolution can be improved.

【0010】上述したそれぞれの固体撮像素子の画素数
の4倍の画素数に当てはめた場合、RGBそれぞれの色
の画素が実際に存在するそれぞれの画素を示したのが図
3(a)(b)(c)で、これらを合成した画素を示し
たのが、図3(d)である。図3(d)に示すようにR
用の実在する画素とB用の実在する画素とは空間的に同
一な位置に別個に存在している。
FIGS. 3 (a) and 3 (b) show the case where the number of pixels is four times the number of pixels of each of the above-mentioned solid-state image sensors, and pixels of each color of RGB actually exist. FIG. 3D shows a pixel obtained by synthesizing these in () and (c). As shown in FIG.
The actual pixel for B and the actual pixel for B exist separately at the same spatial position.

【0011】以下に、実在する画素を用いての補間につ
いて説明する。プリズム2で色分解されたRGB各色の
光線は撮像素子3、4、5にてそれぞれ光電変換されR
GB信号としてアナログ信号処理部6にそれぞれ入力さ
れる。アナログ信号処理部6ではRGB信号はそれぞれ
CDS301、401、501にて相関二重サンプリン
グ処理によりS/Nが改善され、その後AGC回路30
2、402、502にて所定のレベルに調整され、図示
せぬホワイトバランス処理部にてホワイトバランスに関
する処理が施された後、AD変換器303、403、5
03に入力されてそれぞれデジタル信号に変換されたR
GB信号はそれぞれデジタル信号処理部7に入力され
る。
Hereinafter, interpolation using existing pixels will be described. The light beams of the respective colors RGB separated by the prism 2 are photoelectrically converted by the image pickup devices 3, 4, and 5, respectively.
The signals are input to the analog signal processing unit 6 as GB signals. In the analog signal processing unit 6, the S / N of the RGB signals is improved by the correlated double sampling processing in the CDSs 301, 401 and 501, respectively.
After being adjusted to a predetermined level in 2, 402 and 502 and subjected to white balance processing by a white balance processing unit (not shown), the AD converters 303, 403 and 5
03 and converted into digital signals respectively.
Each of the GB signals is input to the digital signal processing unit 7.

【0012】上述したホワイトバランスに関する信号処
理については、後述するデジタル信号処理部にて行うこ
とも可能である。
The above-described signal processing relating to white balance can be performed by a digital signal processing unit described later.

【0013】デジタル信号処理部7ではガンマ(γ)補
正部304、404、504にて、固体撮像素子3、
4、5の光電変換特性による階調(色調)の非直線性を
改善するための係数を各色信号に乗算するガンマ補正を
施された後、垂直有効画素数480画素(実際の画素数
は494画素程度)の各色信号はそれぞれ、RL生成部
305、GL生成部405、BL生成部505にそれぞ
れ入力されて、以下に示す式(1)〜(12)に従っ
て、Rの低周波信号RL、Gの低周波信号GL、および
Bの低周波信号BLが生成される。 GL(2,2)=(G(0,2)+2G(2,2)+G(4,2)+G(2,0)+2G(2,2)+G(2,4))/8 (1) GL(3,2)=(G(2,0)+2G(2,2)+G(2,4)+G(4,0)+2G(4,2)+G(4,4))/8 (2) GL(2,3)=(G(0,2)+2G(2,2)+G(4,2)+G(0,4)+2G(2,4)+G(4,4))/8 (3) GL(3,3)=(G(2,2)+G(4,2)+G(2,4)+G(4,4))/4 (4) RL(2,2)=(R(1,1)+R(3,1)+R(1,3)+R(3,3))/4 (5) RL(3,2)=(R(1,1)+2R(3,1)+R(5,1)+R(1,3)+2R(3,3)+R(5,3))/8 (6) RL(2,3)=(R(1,1)+2R(1,3)+R(1,5)+R(3,1)+2R(3,3)+R(3,5))/8 (7) RL(3,3)=(R(1,3)+2R(3,3)+R(5,3)+R(3,1)+2R(3,3)+R(3,5))/8 (8) BL(2,2)=(B(1,1)+B(3,1)+B(1,3)+B(3,3))/4 (9) BL(3,2)=(B(1,1)+2B(3,1)+B(5,1)+B(1,3)+2B(3,3)+B(5,3))/8 (10) BL(2,3)=(B(1,1)+2B(1,3)+B(1,5)+B(3,1)+2B(3,3)+B(3,5))/8 (11) BL(3,3)=(B(1,3)+2B(3,3)+B(5,3)+B(3,1)+2B(3,3)+B(3,5))/8 (12)
In the digital signal processing section 7, the gamma (γ) correction sections 304, 404, and 504 cause the solid-state imaging device 3,
After performing gamma correction for multiplying each color signal by a coefficient for improving non-linearity of gradation (color tone) due to photoelectric conversion characteristics of 4 and 5, 480 vertical effective pixels (the actual number of pixels is 494) (About pixels) are respectively input to the RL generation unit 305, the GL generation unit 405, and the BL generation unit 505, and according to the following equations (1) to (12), the R low-frequency signals RL, G , And the low-frequency signal BL of B are generated. GL (2,2) = (G (0,2) + 2G (2,2) + G (4,2) + G (2,0) + 2G (2,2) + G (2,4)) / 8 (1) GL (3,2) = (G (2,0) + 2G (2,2) + G (2,4) + G (4,0) + 2G (4,2) + G ( (4,4)) / 8 (2) GL (2,3) = (G (0,2) + 2G (2,2) + G (4,2) + G (0,4) + 2G (2, 4) + G (4,4)) / 8 (3) GL (3,3) = (G (2,2) + G (4,2) + G (2,4) + G (4,4) ) / 4 (4) RL (2,2) = (R (1,1) + R (3,1) + R (1,3) + R (3,3)) / 4 (5) RL (3 , 2) = (R (1,1) + 2R (3,1) + R (5,1) + R (1,3) + 2R (3,3) + R (5,3)) / 8 ( 6) RL (2,3) = (R (1,1) + 2R (1,3) + R (1,5) + R (3,1) + 2R (3,3) + R (3,5 )) / 8 (7) RL (3,3) = (R (1,3) + 2R (3,3) + R (5,3) + R (3,1) + 2R (3,3) + R (3,5)) / 8 (8) BL (2,2) = (B (1,1) + B (3,1) + B (1,3) + B (3,3)) / 4 (9) BL (3,2) = (B (1,1) + 2B (3,1) + B (5,1) + B (1,3) + 2B (3,3) + B (5, 3)) / 8 (10) BL (2,3) = (B (1,1) + 2B (1,3) + B (1,5) + B (3,1) + 2B (3,3) + B (3,5)) / 8 (11) BL (3,3) = (B (1,3) + 2B (3,3) + B (5,3) + B (3,1) + 2B (3,3) + B (3,5)) / 8 (12)

【0014】ここで式(1)(8)(12)は画像が実
在する位置での低周波信号の生成を示しており、残りの
式は画素が実在しない位置での低周波信号の生成、つま
り、実在する周囲の画素を用いた補間による生成を示し
ている。式(1)〜(12)に従って、低周波信号を生
成することにより画素が実在する位置と画素が実在しな
い位置において、ほぼ等しい周波数の低周波数信号が生
成される。
Equations (1), (8) and (12) show the generation of a low-frequency signal at a position where an image actually exists, and the remaining equations show the generation of a low-frequency signal at a position where no pixel exists. That is, generation by interpolation using existing surrounding pixels is shown. By generating a low-frequency signal according to Equations (1) to (12), a low-frequency signal having substantially the same frequency is generated at a position where a pixel actually exists and a position where a pixel does not actually exist.

【0015】次に、色差信号について説明する。まず、
RL生成部305、GL生成部405、BL生成部50
5より出力される各信号は低周波輝度信号生成部(YL
生成部)703に入力され、式(13)に従って輝度低
周波信号(YL)信号が生成される。式(13)はHD
TVスタジオ規格のITU−R勧告709に示されてい
る輝度・色差信号方程式である。 YL=0.7154GL+0.0721BL+0.2125RL (13)
Next, the color difference signal will be described. First,
RL generator 305, GL generator 405, BL generator 50
5 is a low-frequency luminance signal generator (YL).
The signal is input to a generating unit 703, and a low-luminance signal (YL) signal is generated according to Expression (13). Equation (13) is HD
This is a luminance / color difference signal equation shown in ITU-R recommendation 709 of the TV studio standard. YL = 0.7154GL + 0.0721BL + 0.2125RL (13)

【0016】γ補正部304、404、504にてγ補
正されたRGB信号は高周波輝度信号生成部(YH生成
部)701にそれぞれ入力されて、以下に示す式(1
4)〜(22)に従って高周波輝度信号YHが生成され
る。YHHは水平高周波輝度信号を示し、YVHは垂直
高周波輝度信号を示し、高周波輝度信号YHは式(1
4)に示されるようにYHHとYVHとの加算により求
められる。式(15)〜(18)は画素が実在する位置
での高周波輝度信号生成式であり、(19)〜(22)
は画素が実在しない位置での高周波輝度信号生成式であ
り、式(15)〜(18)で求めた高周波輝度信号より
補間処理することで生成される。 YH(x,y)=(YHH(x,y)+YVH(x,y))/2 (14) YHH(2,2)=(2G(2,2)-G(0,2)-G(4,2))/4 (15) YVH(2,2)=(2G(2,2)-G(2,0)-G(2,4))/4 (16) YHH(3,3)=(2R(3,3)-R(1,3)-R(5,3)+2B(3,3)-B(1,3)-B(5,3))/8 (17) YVH(3,3)=(2R(3,3)-R(3,1)-R(3,5)+2B(3,3)-B(3,1)-B(3,5))/8 (18) YHH(3,2)=YHH(3,1)/2+YHH(3,3)/2 (19) YVH(3,2)=YVH(2,2)/2+YVH(4,2)/2 (20) YHH(2,3)=YHH(2,2)/2+YHH(2,4)/2 (21) YVH(2,3)=YVH(1,3)/2+YVH(3,3)/2 (22)
The RGB signals that have been γ-corrected by the γ correction units 304, 404, and 504 are input to a high-frequency luminance signal generation unit (YH generation unit) 701, respectively, and the following equation (1) is used.
4) to (22), a high-frequency luminance signal YH is generated. YHH indicates a horizontal high-frequency luminance signal, YVH indicates a vertical high-frequency luminance signal, and the high-frequency luminance signal YH is expressed by the formula (1).
As shown in 4), it is obtained by adding YHH and YVH. Expressions (15) to (18) are high-frequency luminance signal generation expressions at positions where pixels actually exist.
Is a high-frequency luminance signal generation formula at a position where a pixel does not actually exist, and is generated by performing an interpolation process on the high-frequency luminance signal obtained by Expressions (15) to (18). YH (x, y) = (YHH (x, y) + YVH (x, y)) / 2 (14) YHH (2,2) = (2G (2,2) -G (0,2) -G (4,2)) / 4 (15) YVH (2,2) = (2G (2,2) -G (2,0) -G (2,4)) / 4 (16) YHH (3,3 ) = (2R (3,3) -R (1,3) -R (5,3) + 2B (3,3) -B (1,3) -B (5,3)) / 8 (17) YVH (3,3) = (2R (3,3) -R (3,1) -R (3,5) + 2B (3,3) -B (3,1) -B (3,5)) / 8 (18) YHH (3,2) = YHH (3,1) / 2 + YHH (3,3) / 2 (19) YVH (3,2) = YVH (2,2) / 2 + YVH ( 4,2) / 2 (20) YHH (2,3) = YHH (2,2) / 2 + YHH (2,4) / 2 (21) YVH (2,3) = YVH (1,3) / 2 + YVH (3,3) / 2 (22)

【0017】次に高周波輝度信号生成部(YH生成部)
701の出力信号と低周波輝度信号生成部(YL生成
部)703の出力信号とが輝度信号処理部(Y処理部)
702に供給され、輝度信号処理部(Y処理部)702
では式(23)に従って広帯域(高精細)輝度信号YW
を生成する。Y処理部702の一例を図5に示す。 YW=YL+k1YH (23) 式(23)の係数k1は通常1以上の数値であり、k1
が大きいほど高周波成分が強調されシャープな画像が得
られる。但しk1を大きくしすぎると高周波のノイズも
強調されることになるので、ユーザの好みに応じて可変
できるように構成することも可能である。また、ノイズ
は信号レベルが小さいほど目立つ特徴を有しているの
で、k1を信号のレベルに応じて可変できるように構成
してもよい。
Next, a high-frequency luminance signal generator (YH generator)
The output signal of the low frequency luminance signal generation unit (YL generation unit) 703 and the output signal of the low frequency luminance signal generation unit (YL generation unit) 703 are a luminance signal processing unit (Y processing unit).
702, a luminance signal processing unit (Y processing unit) 702
In accordance with equation (23), the broadband (high definition) luminance signal YW
Generate An example of the Y processing unit 702 is shown in FIG. YW = YL + k1YH (23) The coefficient k1 in the equation (23) is usually a numerical value of 1 or more, and k1
The larger the value is, the more the high-frequency component is emphasized and a sharper image is obtained. However, if k1 is too large, high-frequency noise will also be emphasized, so that it is possible to make it variable according to the user's preference. In addition, since noise has a feature that becomes more noticeable as the signal level is smaller, k1 may be configured to be variable according to the signal level.

【0018】次に、低周波輝度信号生成部(YL生成
部)703より出力される低周波輝度信号YLは、RL
生成部305より出力されるRの低周波信号RL、およ
びBL生成部505より出力されるBの低周波信号BL
と共に色差信号処理部704にも供給される。色差信号
処理部704では BL−YL、 RL−YL、 の演算により色差信号BL−YLおよびRL−YLが生
成される。
Next, the low frequency luminance signal YL output from the low frequency luminance signal generation unit (YL generation unit) 703 is RL
R low-frequency signal RL output from generation unit 305 and B low-frequency signal BL output from BL generation unit 505
Is also supplied to the color difference signal processing unit 704. The color difference signal processing unit 704 generates color difference signals BL-YL and RL-YL by calculating BL-YL and RL-YL.

【0019】上述した広帯域(高精細)輝度信号(YW
信号)、色差信号(BL−YL信号、RL−YL信号)
はD/Aコンバータ506、406、306にそれぞれ
入力され、それぞれアナログ信号にデジタル/アナログ
変換された後に、出力回路部8に供給される。
The above-mentioned broadband (high definition) luminance signal (YW
Signal), color difference signal (BL-YL signal, RL-YL signal)
Are input to D / A converters 506, 406, and 306, respectively, and are converted into analog signals, respectively, and then supplied to the output circuit unit 8.

【0020】出力回路部8では、ローパスフィルタ(L
PF)307、407、507により信号帯域外の高周
波ノイズを除去した後、75Ωドライバ308、40
8、508にて出力インピーダンスの整合やレベル調整
を行った後、出力端子309、409、509より図示
しない表示装置や記録装置に出力される。
In the output circuit section 8, a low-pass filter (L
After removing high frequency noise outside the signal band by PF) 307, 407, 507, 75Ω drivers 308, 40
After the output impedances are matched and the levels are adjusted in steps 8 and 508, the signals are output from output terminals 309, 409 and 509 to a display device or a recording device (not shown).

【0021】通常、出力回路部8に入力されるBL−Y
L信号、RL−YL信号は図示しないレベル調整回路に
おいて、式(24)(25)に従って、PB信号、PR
信号に変換される。 PB=0.5389(BL−YL) (24) PR=0.6349(RL−YL) (25)
Normally, BL-Y input to the output circuit 8
The L signal and the RL-YL signal are supplied to a PB signal and a PR signal in a level adjustment circuit (not shown) in accordance with equations (24) and (25).
Converted to a signal. PB = 0.5389 (BL-YL) (24) PR = 0.6349 (RL-YL) (25)

【0022】なお、BL−YL信号、RL−YL信号よ
りPB信号、PR信号への変換は、必ずしも出力回路部
8にて行う必要はなく、例えば、デジタル信号処理部7
において変換処理を実行してもよい。
The conversion from the BL-YL signal and the RL-YL signal to the PB signal and the PR signal does not necessarily need to be performed by the output circuit section 8.
May perform the conversion process.

【0023】また通常、出力回路部8の出力端子50
9、409、309より出力されるY信号、PB信号、
PR信号には図示しない同期信号発生回路において生成
された同期信号が画像信号のブランキング期間に付加さ
れて出力される。この際に付加される同期信号は順次走
査に対応したものである。
Normally, the output terminal 50 of the output circuit 8
9, 409, 309 output Y signal, PB signal,
A synchronization signal generated by a synchronization signal generation circuit (not shown) is added to the PR signal during the blanking period of the image signal and output. The synchronization signal added at this time corresponds to the sequential scanning.

【0024】結果としてγ補正部304、404、50
4からそれぞれ読み出された水平有効画素数640画
素、垂直有効画素数480画素のそれぞれ水平方向2倍
の画素数、垂直方向2倍の画素数である水平有効画素数
1280画素、垂直有効画素数960画素の信号の映像
信号が出力される。
As a result, the gamma correction units 304, 404, 50
The horizontal effective pixel number is 640 pixels, the vertical effective pixel number is 480 pixels. The horizontal effective pixel number is 1280 pixels, and the vertical effective pixel number is 480 pixels. A video signal of a signal of 960 pixels is output.

【0025】図1に示した撮像装置では、各色の広帯域
信号RW、GW、BWがアナログ信号の形式で出力され
るように構成された例を説明したが、デジタル信号携帯
で適当なデジタルインターフェース規格に準じた形態の
信号に変換して出力することも可能である。
In the imaging apparatus shown in FIG. 1, an example has been described in which the wideband signals RW, GW, and BW of each color are output in the form of analog signals. It is also possible to convert the signal into a signal conforming to the above and output the converted signal.

【0026】図4は本発明になる撮像装置の他の実施例
を示す図で、図4に示した撮像装置はG信号、R信号、
B信号を出力信号として出力する場合のブロック図であ
る。図4において、デジタル信号処理部71への入力ま
での構成や動作については図1と同一であるので、その
説明を省略する。また、図4において図1との部分につ
いては同一の符号を付してその説明を省略する。
FIG. 4 is a view showing another embodiment of the image pickup apparatus according to the present invention. The image pickup apparatus shown in FIG.
It is a block diagram in the case of outputting a B signal as an output signal. In FIG. 4, the configuration and operation up to the input to the digital signal processing unit 71 are the same as those in FIG. In FIG. 4, the same reference numerals are given to the same parts as in FIG. 1, and description thereof will be omitted.

【0027】図4においてデジタル信号処理部71に入
力されたRGB信号は、γ補正部304、404、50
4にてガンマ補正された垂直有効画素480(通常は4
94画素程度)の信号はRL生成部305、GL生成部
405、BL生成部505および高周波輝度信号生成部
(YH生成部)701にそれぞれ入力される。この際に
は図1で説明した場合と同様に生成式(1)から(1
2)および式(14)から(22)に従ってYH生成部
701より高周波輝度信号、およびGL生成部405、
RL生成部305、BL生成部505よりそれぞれRの
低周波信号RL、Gの低周波信号GL、およびBの低周
波信号BLが出力される。高周波輝度信号と各色の低周
波信号とは、それぞれ図4に示すようにRの広帯域(高
精細)信号生成部(RW生成部)310、Gの広帯域
(高精細)信号生成部(GW生成部)410、Bの広帯
域(高精細)信号生成部(BW生成部)510にそれぞ
れ供給されて式(26)から(28)に従って各色の広
帯域(高精細)色信号GW、BW、RWが生成される。 GW=GL+k2YH (26) BW=BL+k2YH (27) RW=RL+k2YH (28) 上式のk2に関しては式(23)のk1と同様に決定さ
れる。
In FIG. 4, the RGB signals input to the digital signal processing section 71 are converted into γ correction sections 304, 404, and 50.
The vertical effective pixel 480 gamma-corrected at 4 (usually 4
The signal of about 94 pixels) is input to the RL generator 305, the GL generator 405, the BL generator 505, and the high-frequency luminance signal generator (YH generator) 701, respectively. In this case, as in the case described with reference to FIG.
2) and a high-frequency luminance signal from the YH generator 701 and the GL generator 405 according to the equations (14) to (22).
The RL generation unit 305 and the BL generation unit 505 output an R low frequency signal RL, a G low frequency signal GL, and a B low frequency signal BL, respectively. As shown in FIG. 4, the high-frequency luminance signal and the low-frequency signal of each color are divided into an R wideband (high definition) signal generation unit (RW generation unit) 310 and a G wideband (high definition) signal generation unit (GW generation unit). ) 410, B are supplied to the wideband (high definition) signal generation unit (BW generation unit) 510, respectively, and the wideband (high definition) color signals GW, BW, RW of each color are generated according to the equations (26) to (28). You. GW = GL + k2YH (26) BW = BL + k2YH (27) RW = RL + k2YH (28) k2 in the above equation is determined in the same manner as k1 in equation (23).

【0028】このようにして生成されたGW、RW、B
W信号はDA変換器306、406、506それぞれに
おいてデジタル・アナログ変換された後、出力回路部8
を介して図示しない図示しない表示装置や記録装置等に
出力される。また、図示していない同期信号発生回路部
にて生成された同期信号(HD、VD)も同時に出力さ
れる。
The GW, RW, B thus generated
The W signal is subjected to digital-to-analog conversion in each of the D / A converters 306, 406, and 506, and then the output circuit unit 8
Are output to a not-shown display device or recording device (not shown) via the. In addition, synchronization signals (HD, VD) generated by a synchronization signal generation circuit (not shown) are output at the same time.

【0029】図4に示した撮像装置では、各色の広帯域
信号RW、GW、BWがアナログ信号の形式で出力され
るように構成された例を説明したが、デジタル信号形態
で適当なデジタルインターフェース規格に準じた形態の
信号に変換して出力することも可能である。
In the imaging apparatus shown in FIG. 4, an example has been described in which the wideband signals RW, GW, and BW of each color are output in the form of analog signals. It is also possible to convert the signal into a signal conforming to the above and output the converted signal.

【0030】動画出力を実現するためには映画が毎秒2
4コマであることから、通常は毎秒24コマ以上に対応
するフレーム数が必要とされる。一方、上述したように
現在安価に入手可能な動画撮像用の全画素読み出し固体
撮像素子は、水平有効画素数640、垂直有効画素数4
80のVGA対応の固体撮像素子であり、このVGA対
応の固体撮像素子は通常余裕を持つように設計されてお
り、水平659,垂直494位の画素を有している。従
って、通常のVGA対応の固体撮像素子を使用して本発
明になる撮像装置のを構成すると、最大水平有効画素数
1318、最大有効垂直画素数988となる。この画素
数をパソコン(PC)のビデオ仕様と対比した場合、最
も近い画素数のものとしては水平有効画素数1280、
垂直有効画素数1024のSXGAがある。
In order to realize moving image output, a movie must be played at 2
Since there are four frames, the number of frames corresponding to 24 frames or more per second is usually required. On the other hand, as described above, the all-pixel readout solid-state image pickup device for moving image pickup which is currently available at a low cost has a horizontal effective pixel number of 640 and a vertical effective pixel number of 4
80 VGA-compatible solid-state imaging devices. The VGA-compatible solid-state imaging device is usually designed to have a margin, and has 659 horizontal pixels and 494 vertical pixels. Therefore, when the imaging apparatus according to the present invention is configured using a normal VGA-compatible solid-state imaging device, the maximum number of effective horizontal pixels is 1318 and the maximum number of effective vertical pixels is 988. When this number of pixels is compared with the video specification of a personal computer (PC), the closest pixel number is 1280 horizontal effective pixels.
There is an SXGA with 1024 vertical effective pixels.

【0031】SXGAには数種類のバリエーションがあ
るので、このうちから適当なものを選択してその同期信
号に基づいて撮像した画像信号を出力するように構成す
ることで、SXGA対応の液晶ディスプレィモニターに
最適な動画の画質を得ることができる。SXGAの有効
垂直画素数に対して表示信号の画素数が足りない場合
は、画面上部あるいは下部に日付、時間。コメント等の
各種情報を出力表示するように構成することも可能であ
る。
Since there are several types of SXGA variations, an appropriate one is selected from these and an image signal is output based on the synchronization signal, so that an SXGA-compatible liquid crystal display monitor can be provided. It is possible to obtain the optimum moving image quality. If the number of pixels of the display signal is not enough for the number of effective vertical pixels of the SXGA, the date and time are displayed at the top or bottom of the screen. It is also possible to output and display various information such as comments.

【0032】[0032]

【発明の効果】以上詳述したように本発明になる撮像装
置は、現在安価に入手可能な汎用の解像度の全画素読み
出し方式の固体撮像素子を3枚使用して、汎用の解像度
の固体撮像素子の4倍の画素数に相当する高精細度な信
号を撮像して出力可能であり、液晶ディスプレィ等への
表示に適した順次走査の動画像を撮像出力できるという
利点を有する。
As described above in detail, the imaging apparatus according to the present invention uses three general-purpose all-pixel readout solid-state imaging elements which are available at a low cost at present and can be used for general-purpose solid-state imaging. It is possible to image and output a high-definition signal corresponding to four times the number of pixels of the element, and has the advantage of being able to image and output a progressive scanning moving image suitable for display on a liquid crystal display or the like.

【0033】[0033]

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の撮像装置の実施例を示す図であ
る。
FIG. 1 is a diagram showing an embodiment of an imaging apparatus according to the present invention.

【図2】図2は図1に示した撮像装置に使用される固体
撮像素子の画素ずらし配置の一例を示す図である。
FIG. 2 is a diagram illustrating an example of a pixel shift arrangement of a solid-state imaging device used in the imaging device illustrated in FIG. 1;

【図3】図3は図1に示した撮像装置に使用される固体
撮像素子の画素配置の一例を示す図である。
FIG. 3 is a diagram illustrating an example of a pixel arrangement of a solid-state imaging device used in the imaging device illustrated in FIG. 1;

【図4】図4は本発明の撮像装置の他の実施例を示す図
である。
FIG. 4 is a diagram showing another embodiment of the imaging apparatus of the present invention.

【図5】図5は本発明の撮像装置の輝度信号処理部(Y
処理部)の一例を示す図である。
FIG. 5 is a diagram illustrating a luminance signal processing unit (Y) of the imaging apparatus according to the present invention.
FIG. 3 is a diagram illustrating an example of a (processing unit).

【図6】図6は従来の撮像装置の輝度信号処理部を示す
図である。
FIG. 6 is a diagram illustrating a luminance signal processing unit of a conventional imaging device.

【符号の説明】[Explanation of symbols]

1…レンズ、 2…プリズム、 3、4、5…固体撮像素子 6…アナログ信号処理部、 7、71…デジタル信号処理部、 8…出力回路部 301、401、501…CDS(相関二重サンプリン
グ部)、 302、402、502…AGC回路、 303、403、503…AD変換器、 304、404、504…γ補正部、 305、405、505…低周波信号生成部(RL生成
部、GL生成部、BL生成部)、 306、406、506…DA変換器、 307、407、507、311、411…ローパスフ
ィルタ(LPF)、 308、408、508…75オームドライバ部、 309、409…色差信号出力端子 509…輝度信号出力端子、 310,410,510…広帯域(高精細)信号生成部
(RW生成部、GW生成部、BW生成部)、 701…高周波輝度信号生成部(YH生成部)、 702…輝度信号処理部(Y処理部)、 703…低周波輝度信号生成部(YL生成部)、 704…色差信号処理部、
DESCRIPTION OF SYMBOLS 1 ... Lens, 2 ... Prism, 3, 4, 5 ... Solid-state image sensor 6 ... Analog signal processing unit, 7, 71 ... Digital signal processing unit, 8 ... Output circuit unit 301, 401, 501 ... CDS (correlated double sampling) ), 302, 402, 502 AGC circuit, 303, 403, 503 AD converter, 304, 404, 504 γ correction unit, 305, 405, 505 Low frequency signal generation unit (RL generation unit, GL generation 306, 406, 506... DA converter, 307, 407, 507, 311, 411... Low-pass filter (LPF), 308, 408, 508... 75 ohm driver unit, 309, 409. Output terminal 509: luminance signal output terminal, 310, 410, 510: wide band (high definition) signal generation unit (RW generation unit, GW generation unit, BW generation unit) , 701 ... RF luminance signal generation unit (YH generator), 702 ... luminance signal processing unit (Y unit), 703 ... low-frequency luminance signal generation unit (YL generator), 704 ... color difference signal processing unit,

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】入射光を色分解して緑(G)、赤(R)、
青(B)の各色光を得る色分解光学系と、 全画素読み出し方式の前記緑(G)光を受光し光電変換
してG信号を出力する第1の固体撮像素子と、 全画素読み出し方式の前記赤(R)光を受光し光電変換
してR信号を出力する第2の固体撮像素子と、 全画素読み出し方式の前記青(B)画像を受光し光電変
換してB信号を出力する第3の固体撮像素子とを備え、 前記第1の固体撮像素子の空間位置に対して前記第2の
固体撮像素子および第3の固体撮像素子の少なくとも一
方、もしくは両方を水平方向および垂直方向に関して、
それぞれ前記固体撮像素子の画素ピッチの1/2倍の距
離だけずらした位置に配置し、 前記第1の固体撮像素子、前記第2の固体撮像素子、お
よび前記第3の固体撮像素子からそれぞれ出力された各
色の信号より生成した低周波信号と、前記各色の信号を
補間して生成した補間低周波信号とを合成して前記第1
の固体撮像素子、前記第2の固体撮像素子、および前記
第3の固体撮像素子のそれぞれの有効画素の4倍の各色
の低周波信号を生成する第1の信号処理部と、 前記第1の固体撮像素子、前記第2の固体撮像素子、お
よび前記第3の固体撮像素子からそれぞれ出力された各
色の信号より生成した高周波信号と、前記高周波信号を
補間して生成した補間高周波信号とを合成して前記第1
の固体撮像素子、前記第2の固体撮像素子、および前記
第3の固体撮像素子のそれぞれの有効画素の4倍の高周
波輝度信号を生成する第2の信号処理部と前記第1の固
体撮像素子、前記第2の固体撮像素子、および前記第3
の固体撮像素子のそれぞれの出力信号と、前記第1の信
号処理部の出力信号と、前記第2の信号処理部の出力信
号とから高精細度映像信号を生成する生成手段とを有す
る撮像装置。
1. An incident light is color-separated into green (G), red (R),
A color separation optical system that obtains each color light of blue (B), a first solid-state imaging device that receives the green (G) light of the all-pixel readout method, performs photoelectric conversion and outputs a G signal, and an all-pixel readout method A second solid-state imaging device that receives the red (R) light and photoelectrically converts the red (R) light to output an R signal; and receives and photoelectrically converts the blue (B) image of the all-pixel readout method and outputs a B signal. A third solid-state imaging device, and at least one or both of the second solid-state imaging device and the third solid-state imaging device with respect to a spatial position of the first solid-state imaging device with respect to a horizontal direction and a vertical direction. ,
Each of them is arranged at a position shifted by a distance of 倍 times the pixel pitch of the solid-state imaging device, and output from the first solid-state imaging device, the second solid-state imaging device, and the third solid-state imaging device, respectively. The low-frequency signal generated from the signals of the respective colors and the interpolated low-frequency signal generated by interpolating the signals of the respective colors are combined to form the first signal.
A first signal processing unit that generates a low-frequency signal of each color four times the effective pixel of each of the solid-state imaging device, the second solid-state imaging device, and the third solid-state imaging device; A high-frequency signal generated from a signal of each color output from each of the solid-state imaging device, the second solid-state imaging device, and the third solid-state imaging device is combined with an interpolated high-frequency signal generated by interpolating the high-frequency signal. And the first
Signal processing unit that generates a high-frequency luminance signal four times as large as an effective pixel of each of the solid-state imaging device, the second solid-state imaging device, and the third solid-state imaging device, and the first solid-state imaging device , The second solid-state imaging device, and the third
An image pickup apparatus comprising: a generating unit configured to generate a high-definition video signal from each output signal of the solid-state imaging device, the output signal of the first signal processing unit, and the output signal of the second signal processing unit. .
【請求項2】前記生成手段は前記第1の信号生成部より
出力される前記各色の低周波信号を所定の比率で加算し
て低周波輝度信号を生成し、前記第2の信号生成部から
出力される前記高周波輝度信号と前記低周波輝度信号と
を加算して広帯域輝度信号を生成する請求項1項記載の
撮像装置。
2. The method according to claim 1, wherein said generating means adds a low-frequency signal of each color output from said first signal generating unit at a predetermined ratio to generate a low-frequency luminance signal, and outputs said low-frequency luminance signal from said second signal generating unit. The imaging device according to claim 1, wherein the output high-frequency luminance signal and the low-frequency luminance signal are added to generate a broadband luminance signal.
【請求項3】前記生成手段は前記第1の信号生成部から
出力される前記各色の低周波信号に前記第2の信号生成
部から出力される前記高周波輝度信号加算して広帯域色
信号を生成する請求項1項記載の撮像装置。
3. The wide-band color signal is generated by adding the high-frequency luminance signal output from the second signal generation unit to the low-frequency signal of each color output from the first signal generation unit. The imaging device according to claim 1, wherein:
JP15219999A 1999-05-31 1999-05-31 Imaging device Expired - Fee Related JP3613071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15219999A JP3613071B2 (en) 1999-05-31 1999-05-31 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15219999A JP3613071B2 (en) 1999-05-31 1999-05-31 Imaging device

Publications (2)

Publication Number Publication Date
JP2000341709A true JP2000341709A (en) 2000-12-08
JP3613071B2 JP3613071B2 (en) 2005-01-26

Family

ID=15535233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15219999A Expired - Fee Related JP3613071B2 (en) 1999-05-31 1999-05-31 Imaging device

Country Status (1)

Country Link
JP (1) JP3613071B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006041071A1 (en) * 2004-10-13 2006-04-20 Matsushita Electric Industrial Co., Ltd. Image pickup device
JP2006253827A (en) * 2005-03-08 2006-09-21 Casio Comput Co Ltd Imaging device and pixel interpolating method
WO2012073668A1 (en) * 2010-12-01 2012-06-07 Canon Kabushiki Kaisha Image processing apparatus and image processing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006041071A1 (en) * 2004-10-13 2006-04-20 Matsushita Electric Industrial Co., Ltd. Image pickup device
JP2006253827A (en) * 2005-03-08 2006-09-21 Casio Comput Co Ltd Imaging device and pixel interpolating method
JP4517896B2 (en) * 2005-03-08 2010-08-04 カシオ計算機株式会社 Imaging apparatus and pixel interpolation method thereof
WO2012073668A1 (en) * 2010-12-01 2012-06-07 Canon Kabushiki Kaisha Image processing apparatus and image processing method
JP2012119992A (en) * 2010-12-01 2012-06-21 Canon Inc Image processing apparatus, control method for image processing apparatus, and program
US9147266B2 (en) 2010-12-01 2015-09-29 Canon Kabushiki Kaisha Image processing apparatus and image processing method

Also Published As

Publication number Publication date
JP3613071B2 (en) 2005-01-26

Similar Documents

Publication Publication Date Title
JP4641675B2 (en) Image signal processing device
JPH0823543A (en) Image pickup device
US5978023A (en) Color video camera system and method for generating color video signals at increased line and/or frame rates
WO2011067850A1 (en) Image processing device
JP4077161B2 (en) Imaging apparatus, luminance correction method, and program for executing the method on a computer
JP3613071B2 (en) Imaging device
JPH07203318A (en) Image pickup device
JP2000341710A (en) Image pickup device
JPH07135599A (en) Image pickup device and its picture processing method
JPH10155158A (en) Image pickup device and processing method for color image signal
JPS60194889A (en) Color solid-state image pickup device
JP7022544B2 (en) Image processing equipment and methods, and imaging equipment
JP2006279389A (en) Solid-state imaging apparatus and signal processing method thereof
JP2000341708A (en) Image pickup device
JP3651477B2 (en) Image signal processing device
JP3064721B2 (en) Imaging device with frame image creation function
JP3734104B2 (en) Image signal processing device
JP2846317B2 (en) Color imaging device
JPH06350904A (en) Camera
JP3406674B2 (en) Two-chip imaging device
JP3256988B2 (en) Image quality correction circuit and image display system
JP3770062B2 (en) Image signal processing device
JP3515585B2 (en) Two-chip imaging device
JP3666350B2 (en) Image signal processing device
JPH0583598A (en) Non-linear processing circuit

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041018

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees