JP2000340598A - Ultrasonic horn for bonding - Google Patents

Ultrasonic horn for bonding

Info

Publication number
JP2000340598A
JP2000340598A JP11153249A JP15324999A JP2000340598A JP 2000340598 A JP2000340598 A JP 2000340598A JP 11153249 A JP11153249 A JP 11153249A JP 15324999 A JP15324999 A JP 15324999A JP 2000340598 A JP2000340598 A JP 2000340598A
Authority
JP
Japan
Prior art keywords
horn
bonding
section
ultrasonic
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11153249A
Other languages
Japanese (ja)
Inventor
Junichiro Soejima
潤一郎 副島
Rei Imai
玲 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaijo Corp
Original Assignee
Kaijo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaijo Corp filed Critical Kaijo Corp
Priority to JP11153249A priority Critical patent/JP2000340598A/en
Publication of JP2000340598A publication Critical patent/JP2000340598A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0104Zirconium [Zr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01056Barium [Ba]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic horn, which can be used for an object to be bonded having a three-dimensional bonding process surface such as a package, on which a plurality of electronic components are disposed or the like. SOLUTION: This horn is formed, while being divided into a born driving section 1 for ultrasonic excitation in high frequency and a horn section 2 for forming a λ/2 resonator and a horn linear section 21 in a λ/2 length having a rectangular cross section, and a horn slope section 22 in a λ/2 length having a rectangular cross section whose dimension is gradually reduced, that is, only its height of the bottom surface is made the same as that of the horn linear section 21, and the shape is tapered continuously tapering. A clearance between an ultrasonic born and an object surface to be bonded is increased, while keeping dimensions A, B and C the same so that a three-dimensional bonding process surface can be processed, and that the total length of the horn section 2 can be further reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はボンディング用超音
波ホーン(horn)に関し、特に熱・超音波併用方式によ
るボンディング加工に基づいて、凹凸の多い立体的なボ
ンディング加工面を有するパッケージ等を対象とするボ
ンディング加工を常時可能とするボンディング用超音波
ホーンに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic horn for bonding, and more particularly to a package having a three-dimensional bonding surface with many irregularities based on a bonding process using a combination of heat and ultrasonic waves. The present invention relates to an ultrasonic horn for bonding, which can always perform bonding processing.

【0002】[0002]

【従来の技術】被加工物を室温〜300℃程度に予熱
し、超音波振動をボンディングツール(bonding tool)
としてのキャピラリー(capillarie)に伝えて、2点間
の金(gold)ワイヤによるワイヤボンディングや、既に
一端をボンディングした金ワイヤの他端との超音波振動
エネルギーを利用した圧着加工によるボンディングなど
は電子産業の分野で多用されている。
2. Description of the Related Art A workpiece is preheated to room temperature to about 300 ° C., and ultrasonic vibration is applied to a bonding tool.
The wire bonding by gold wire between two points and the bonding by crimping using the ultrasonic vibration energy with the other end of the gold wire already bonded at one end and the other are electronic It is widely used in the industrial field.

【0003】図6は、ワイヤボンディング加工の主要工
程の説明図である。図示しない動作制御機構によって操
作されるボンディング加工工具(tool,ツール)として
のキャピラリーCは、金ワイヤWを導入し、このワイヤ
Wの先端に図示しない放電機構による放電によって形成
された金のボールBを、被加工物のICチップIの指定
位置に矢印の如く下降させ(a)、これをICチップI
の電極等のボンディング点に超音波振動を利用して、ボ
ンディングする第1のボンディングを行った後(b)、
矢印に示す如く上方並びに右方にキャピラリーCを移動
して外部のリードLに対する第2のボンディングを行っ
て(c)、その後キャピラリーを上昇すると共に切断さ
れたワイヤWの先頭に放電によって次回ボンディングの
ためのボールBを形成して1つのボンディング加工を終
える(d)。
FIG. 6 is an explanatory diagram of main steps of a wire bonding process. A capillary C as a bonding tool (tool) operated by an operation control mechanism (not shown) introduces a gold wire W, and a gold ball B formed at the tip of the wire W by discharge by a discharge mechanism (not shown). Is lowered to the designated position of the IC chip I on the workpiece as shown by the arrow (a), and this is moved to the IC chip I.
After performing the first bonding for bonding using ultrasonic vibration to the bonding points of the electrodes and the like (b),
As shown by the arrow, the capillary C is moved upward and to the right to perform the second bonding to the external lead L (c). Thereafter, the capillary is raised and the top of the cut wire W is discharged by the discharge to perform the next bonding. A ball B is formed and one bonding process is completed (d).

【0004】このようなボンディング加工は、半導体チ
ップの電極を対象とする第1のボンディングと、外部の
リードを対象とする第2のボンディングの2点間ボンデ
ィングとして多用され、また既に完了した第1のボンデ
ィング後に、第2のボンディングを圧着加工に基づいて
実行する、いわゆる1点ボンディングとしても多用され
ている。
[0004] Such a bonding process is frequently used as a two-point bonding between a first bonding for an electrode of a semiconductor chip and a second bonding for an external lead. After the above bonding, the second bonding is performed based on a press-bonding process, that is, a so-called one-point bonding is often used.

【0005】上述したキャピラリーCは、超音波ホーン
と呼ばれる、弾性体としての金属の各種の棒体構造の先
端近傍に、被加工面(ボンディング対象面)に対して垂
直に配設される。
[0005] The above-mentioned capillary C is provided near the tip of various rod structures of metal as an elastic body, which is called an ultrasonic horn, and is perpendicular to the surface to be processed (surface to be bonded).

【0006】図5は、従来のボンディング用超音波ホー
ンの構成を示す斜視図(a)と、超音波ホーンの傾斜部
の各種の形状例を示す図(b)である。図5の(a)に
示すようにボンディング加工に供される超音波ホーン
は、弾性体としての所定の金属部材で構成した各種の棒
状構造のものとして形成され、超音波ホーンに矢印に示
す中心軸方向の振動を生起せしめるホーン駆動部100
0と、ホーン駆動部の前面の放射面に、ロー付け、ネジ
による締め込み等の結合方法で結合されて振動体を形成
する直線部Stと、傾斜部Incとから成るホーン部2
000と、ホーン部2000の直線部Stの中間部分に
配設された超音波ホーン保持、固定用の円形のフランジ
3000と、ホーン部2000の傾斜部Incの先端近
傍に配設されたボンディングツールとしてのキャピラリ
ー4000とを含んで構成される。
FIG. 5A is a perspective view showing the configuration of a conventional ultrasonic horn for bonding, and FIG. 5B is a view showing various examples of the shape of the inclined portion of the ultrasonic horn. As shown in FIG. 5A, the ultrasonic horn used for the bonding process is formed as various rod-shaped structures made of a predetermined metal member as an elastic body. Horn drive unit 100 that generates axial vibration
0, a horn portion 2 comprising a linear portion St that is joined to a radiation surface on the front surface of the horn drive portion by a joining method such as brazing or screwing to form a vibrating body, and an inclined portion Inc.
000, a circular flange 3000 for holding and fixing the ultrasonic horn disposed at an intermediate portion of the straight portion St of the horn 2000, and a bonding tool disposed near the tip of the inclined portion Inc of the horn 2000. And a capillary 4000.

【0007】ホーン駆動部1000は、例えば円柱状の
誘電体磁器(チタン酸ジルコン酸鉛、P(Z
)O)等の振動子1003を、弾性体としての金
属部材(例えばアルミ合金等)を利用する2つの円柱状
部材、いわゆるフロントマス(front mass)1001及
びリアマス(rear mass )1002で前後からボルト締
めして成る、いわゆるボルト締めランジュバン(Langev
in)型式の振動子として形成されるものが一般的に利用
される。
[0007] horn driver unit 1000, for example, a cylindrical dielectric ceramic (lead zirconate titanate, P b (Z r,
T i ) A vibrator 1003 such as O 3 ) is formed by two columnar members using a metal member (for example, aluminum alloy or the like) as an elastic body, a so-called front mass 1001 and a rear mass 1002. The so-called bolted Langevin (Langev)
In general, those formed as a vibrator of the type are generally used.

【0008】このホーン駆動部1000には、振動子1
003に高周波の励振駆動電圧、通常は60kHz程度
の励振駆動電圧が印加されて矢印方向の振動を行い、結
合するホーン部2000と共にλ/2(半波長)共振体
として振る舞う。具体的な数値例としては、例えば、6
0kHzを励振駆動電圧の周波数とした場合、伝搬媒質
のホーン部における音速が仮りに5000m/SECで
あるとすると、伝搬超音波の波長λとしては、約8cm
となる。面積が小さくなると波長が若干大きくなるため
コニカル部の波長は8cm以上になるが、この場合のホ
ーン部2000の寸法は、λ/2+λ/4+λ/4=1
λ で約8cmとなる。
The horn driving unit 1000 includes a vibrator 1
At 003, a high-frequency excitation drive voltage, usually about 60 kHz, is applied to oscillate in the direction of the arrow, and behaves as a λ / 2 (half-wavelength) resonator together with the horn 2000 to be coupled. As a specific numerical example, for example, 6
When the frequency of the excitation drive voltage is 0 kHz, assuming that the sound speed at the horn portion of the propagation medium is 5000 m / SEC, the wavelength λ of the propagation ultrasonic wave is about 8 cm.
Becomes The wavelength of the conical part becomes 8 cm or more because the wavelength becomes slightly larger as the area becomes smaller. In this case, the dimension of the horn part 2000 is λ / 2 + λ / 4 + λ / 4 = 1.
λ is about 8 cm.

【0009】ホーン駆動部1000によって駆動される
ホーン部2000は、λ/2長の直線部Stと、λ/2
長の傾斜部Incから成る金属弾性体で、全長は従って
1λとなり、λ/2長の直線部の中央が振動振幅零の節
(node)となり、ここに全体を保持するためのフランジ
3000が配設される。
The horn section 2000 driven by the horn driving section 1000 has a straight section St having a length of λ / 2,
It is a metal elastic body composed of a long inclined portion Inc. The total length is therefore 1λ, and the center of the straight portion having a length of λ / 2 is a node having zero vibration amplitude, and a flange 3000 for holding the whole is arranged here. Is established.

【0010】傾斜部Incの形状としては、図5(b)
に示す如く、コニカル(conical )型、エキスポーネン
シャル(exponential )型、カテノイダル(catenoida
l)型等の各種の形状のものがあり、運用目的やボンデ
ィングシステムの構成等に基づいて、製造上の難易条件
等も併せ勘案していずれかが選択されるが、いずれにし
ても中心軸対称のホーン部2000の駆動端と、キャピ
ラリー4000を配設した先端部との半径の比で表現す
る変成比の大小に対応して振動振幅が機械的に増幅さ
れ、キャピラリーに所望の振幅の振動を与えると共に、
変成比に対応して増大する超音波振動エネルギーによる
ボンディングを行わせる。
The shape of the inclined portion Inc is shown in FIG.
As shown in the figure, conical type, exponential type, catenoidal (catenoida)
l) There are various shapes such as molds, and one of them is selected based on the operational purpose and the configuration of the bonding system, etc., while also taking into account manufacturing difficult conditions, etc. The vibration amplitude is mechanically amplified in accordance with the magnitude of the transformation ratio expressed by the ratio of the radius of the drive end of the symmetrical horn section 2000 to the tip end where the capillary 4000 is disposed, and the vibration having the desired amplitude is applied to the capillary. Along with
Bonding is performed by ultrasonic vibration energy that increases in accordance with the transformation ratio.

【0011】図4の(a)は、ボンディング加工機の上
下動メカニズムの基本的構成を示す側面図である。キャ
ピラリーTは、超音波ホーンHの先端部にボンディング
対象面に対して垂直下向きに保持される。超音波ホーン
Hは、図5に基づいて既述した如く、全体として、通常
60kHz程度の電気エネルギーを同周波数の機械的振
動に変換するトランスデューサ(transducer)として振
る舞う。
FIG. 4A is a side view showing a basic configuration of a vertical movement mechanism of the bonding machine. The capillary T is held at the tip of the ultrasonic horn H vertically downward with respect to the surface to be bonded. As described above with reference to FIG. 5, the ultrasonic horn H generally acts as a transducer that converts electrical energy of usually about 60 kHz into mechanical vibration of the same frequency.

【0012】ワイヤボンディングの場合を例とすると、
超音波ホーンHを介して、ボンディングワイヤを導入し
たキャピラリーTを上下、左右、前後に移動・保持する
ことにより、所望のボンディング点に対する超音波振動
エネルギー利用のボンディング加工が行われる。
Taking the case of wire bonding as an example,
By moving and holding the capillary T into which the bonding wire has been introduced up and down, left and right, and back and forth via the ultrasonic horn H, bonding processing using ultrasonic vibration energy at a desired bonding point is performed.

【0013】図4の(a)に示す構成は、全体としてボ
ンディングヘッドと呼ばれ、キャピラリーTを取り付け
た超音波ホーンHは、このボンディングヘッドの揺動ア
ームであるボンディングアームBAで上下動を与えら
れ、さらに、図4の(b)に示す2次元移動メカニズム
によって前後、左右に移動する2次元移動が与えられ、
キャピラリーTに所望のボンディング運動を行わせる。
The structure shown in FIG. 4A is generally called a bonding head, and an ultrasonic horn H to which a capillary T is attached is vertically moved by a bonding arm BA which is a swing arm of the bonding head. Further, a two-dimensional movement for moving back and forth, left and right is given by the two-dimensional movement mechanism shown in FIG.
A desired bonding motion is performed on the capillary T.

【0014】図4の(a)に示すボンディングヘッド
は、DCサーボモータSM(A)の回転運動がカムCM
とカムフォロワー(cam follower)CMFとによってボ
ンディングアームBAに対する揺動運動に変換される。
ボンディングアームBAと超音波ホーンHとは、同一の
回転軸Fに支持され、さらに、超音波ホーンHは、ボン
ディングアームBAに対して、加圧用のVCM(ボイス
コイルモータ)で圧着されて保持され、ボンディングア
ームBAとともに揺動せしめられ、かくしてキャピラリ
ーTが円弧状の上下運動を行う。図4の(a)に示すボ
ンディングヘッドは、全体として2次元移動を確保する
ためにXYテーブル上に固定される。
In the bonding head shown in FIG. 4A, the rotation of the DC servo motor SM (A) is controlled by the cam CM.
And a cam follower CMF is converted into a swinging motion with respect to the bonding arm BA.
The bonding arm BA and the ultrasonic horn H are supported on the same rotation axis F, and the ultrasonic horn H is pressed against the bonding arm BA by a VCM (voice coil motor) for pressurization and held. Is swung together with the bonding arm BA, so that the capillary T moves up and down in an arc shape. The bonding head shown in FIG. 4A is fixed on an XY table in order to secure two-dimensional movement as a whole.

【0015】図4の(b)に示す如く、DCサーボモー
タSMの回転運動がカップリングKで結合するボールス
クリュウSで直線運動に変換され、クロスローラガイド
CRGを介して案内されるXYテーブルDは、1次元の
自由度で任意の位置に移動、保持される。図4の(b)
は、説明の都合上、1次元のメカニズムのみを示してい
るが、このようなXYテーブルを他の移動軸と空間的に
直交して重合することによって2次元の移動自由度を付
与した2次元移動を行うXYテーブルが実現でき、これ
によりキャピラリーTに対する上下、前後、左右の3次
元ボンディング加工動作を確保可能としている。
As shown in FIG. 4B, the rotational movement of the DC servo motor SM is converted into a linear movement by a ball screw S connected by a coupling K, and the XY table D guided through a cross roller guide CRG. Is moved and held at an arbitrary position with one-dimensional freedom. FIG. 4 (b)
Shows only a one-dimensional mechanism for the sake of explanation, but a two-dimensional mechanism in which two-dimensional freedom of movement is given by superposing such an XY table spatially orthogonal to other moving axes. An XY table for movement can be realized, thereby making it possible to secure up-down, front-back, left-right three-dimensional bonding operations with respect to the capillary T.

【0016】[0016]

【発明が解決しようとする課題】前述した従来のボンデ
ィング加工に供する超音波ホーンには、ボンディング加
工において次のような問題点がある。即ち、従来の超音
波ホーンは、図5に示す如く、その横断面が中心軸対称
の円形であるホーン部を利用し、且つ、キャピラリーに
所望の振動振幅を与えるための変成比を確保するため、
コニカル型、エキスポーネンシャル型、カテノイダル型
等のλ/2長の傾斜部を有する構造を採っている。
The ultrasonic horn used for the conventional bonding described above has the following problems in the bonding. That is, as shown in FIG. 5, the conventional ultrasonic horn uses a horn part having a circular cross section whose center is symmetric with respect to the central axis, and also secures a transformation ratio for giving a desired vibration amplitude to the capillary. ,
A structure having a λ / 2-length inclined portion such as a conical type, an exponential type, or a catenoidal type is employed.

【0017】この場合、超音波ホーンの機械的入力端に
おける振動変位dと、機械的出力端における振動変位
との比d/dで表現される変成比を大きくとる
ためには、超音波ホーンの機械的出力端の横断面円の半
径を、機械的入力端における横断面円の半径に比して極
力小とすることが必要となる。
In this case, in order to increase the transformation ratio represented by the ratio d 2 / d 1 of the vibration displacement d 1 at the mechanical input end of the ultrasonic horn and the vibration displacement d 2 at the mechanical output end, It is necessary to make the radius of the cross section circle of the mechanical output end of the ultrasonic horn as small as possible compared to the radius of the cross section circle at the mechanical input end.

【0018】この条件は図5の(a)に示す如く、ボン
ディング対象面Sに対する超音波ホーンの機械的出力端
(ホーン部先端)からの距離、つまりキャピラリー40
00のホーン部2000からの突出長(A)と、フラン
ジ3000とボンディング対象面Sとの距離(B)と、
ホーン駆動部1000とボンディング対象面Sとの距離
(C)との間で、(A)と(B)との差、(A)と
(C)との差が変成比d/dに対応して大となって
いくことを意味する。
This condition is, as shown in FIG. 5A, the distance from the mechanical output end (tip of the horn) of the ultrasonic horn to the surface S to be bonded, that is, the capillary 40.
And the distance (B) between the flange 3000 and the surface S to be bonded;
The difference between (A) and (B) and the difference between (A) and (C) between the horn driving unit 1000 and the distance (C) between the bonding target surface S and the transformation ratio d 2 / d 1 . It means that it gets bigger in response.

【0019】ボンディング加工が、チップとさほど段差
の無いリードとの間で行われる場合には、このような
(A)−(B)、(A)−(C)の差は大した問題では
なく、また、段差のある場合でも、超音波ホーンの運動
制御機構の構成で柔軟に対応できることが多い。しか
も、チップそれ自体は著しい薄厚化が進みつつあり、従
って、チップ単位のボンディング加工にあっては、この
ような(A)−(B)、(A)−(C)の量に基づいて
考えられる超音波ホーンとボンディング対象面との間隔
の部分的増大は殆ど問題とはならない。
When the bonding process is performed between the chip and the lead having no step, the difference between (A)-(B) and (A)-(C) is not a serious problem. In addition, even when there is a step, the configuration of the motion control mechanism of the ultrasonic horn can often flexibly cope with it. In addition, the chip itself is being remarkably thinned, and therefore, in the bonding processing in units of a chip, it is considered based on the amounts of (A)-(B) and (A)-(C). The partial increase in the distance between the ultrasonic horn and the surface to be bonded does not cause much problem.

【0020】しかしなから、チップやその他の電子部品
を複数配置して成るパッケージ等を対象としてボンディ
ング加工を実施しようとすると、この場合のボンディン
グ対象面は、チップ単位の場合のボンディング対象面と
は著しく異なって、大きな段差が各所に存在する極めて
立体的な形状のボンディング対象面となり、キャピラリ
ーの運動に対してフランジやホーン駆動部の存在がボン
ディング加工における大きな障害となってしまい、ボン
ディング加工の内容も著しく限定されたものとなってし
まうという問題点がある。
However, if the bonding process is performed on a package or the like in which a plurality of chips and other electronic components are arranged, the bonding surface in this case is different from the bonding surface in a chip unit. The bonding step is extremely different, and the step is a very three-dimensional surface to be bonded in which there are large steps.The presence of the flange and the horn drive unit for the movement of the capillary is a major obstacle to the bonding process. However, there is a problem that the above is also extremely limited.

【0021】また、上述した問題点を解決するために、
ボンディング用超音波ホーンの底面をカットした形状と
してボンディング対象面に対する間隔を同一とする手法
も考えられるが、軸方向に一部を削り落したランジュバ
ン振動子は存在せず、また、上下非対称としただけの削
り落しを施したホーン部では、上下の振動位相が異なる
等の振動の乱れが生じ、たわみ振動等の不要な振動も生
起して正常振動を妨げ、キャピラリーに対する所望の振
動が確保できないという問題点がある。
In order to solve the above-mentioned problems,
It is also conceivable to use a method that cuts the bottom surface of the ultrasonic horn for bonding and makes the distance to the surface to be bonded the same, but there is no Langevin vibrator with a part cut off in the axial direction, and it is made vertically asymmetric. In the horn part that has only been cut off, vibration disturbance such as different vertical vibration phases occurs, unnecessary vibration such as flexural vibration also occurs, preventing normal vibration, and it is not possible to secure the desired vibration for the capillary There is a problem.

【0022】本発明の目的も上述した問題点を解決し、
キャピラリーに対するフランジ及びホーン駆動部からボ
ンディング対象面までの配置間隔差を著しく抑圧し、立
体的なボンディング対象面を有するパッケージに対して
も常時容易にボンディング加工を行うことを可能とする
形状のボンディング用超音波ホーンを提供することにあ
る。
The object of the present invention also solves the above-mentioned problems,
For bonding with a shape that remarkably suppresses the difference in the spacing between the flange and horn drive unit for the capillary and the surface to be bonded, and makes it possible to always easily perform bonding processing even on packages that have a three-dimensional surface to be bonded. To provide an ultrasonic horn.

【0023】[0023]

【課題を解決するための手段】上述した目的を達成する
ため、本発明は次の手段構成を有する。即ち、ボンディ
ング用超音波ホーンに関する本発明の第1の構成は、熱
と超音波とを併用する熱・超音波併用方式に基づいて電
子部品を複数配設して成るパッケージ等の立体的なボン
ディング対象面を有するボンディング加工対象物に対し
ボンディング加工の実施を常時可能としたことを特徴と
するボンディング用超音波ホーンであって、下記に示す
(イ)ないし(ニ)の各構成を有する。 (イ)円形の放射面を有するランジュバン型式の振動子
として形成されるホーン駆動部であって、所定の周波数
の励振駆動電圧の印加の下に中心軸方向を変位方向とす
る超音波振動を行う振動駆動源としてのホーン駆動部 (ロ)前記ホーン駆動部と結合して縦振動を行うλ/2
(λは前記超音波振動による伝搬波長)共振体を形成す
るλ/2長のホーン部であって、このホーン部は、前記
ホーン部と結合する矩形状の同一横断面を有するλ/4
長のホーン直線部と、このホーン直線部の前方に延在
し、その横断面が前記ホーン直線部の横断面を前記ボン
ディング対象面に対する底面からの間隔のみは一定とし
た状態で連続的に縮減せしめた前方傾斜の先細り外形を
与えて成り、且つ先端近傍にボンディング加工工具とし
てのキャピラリーを取り付けるキャピラリー取付部を設
けたλ/4長のホーン傾斜部との金属弾性体による一体
化構造を有し、且つ前記ホーン直線部の矩形状の横断面
は、前記ホーン駆動部の放射面の上部及び下部を内接可
能とするか、もしくは内接可能近傍の上下の寸法を有す
る左右方向を長辺とした形状を付与して形成したもので
あることを特徴とするホーン部 (ハ)前記ホーン駆動部と前記ホーン部とを結合状態で
振動を妨げることなく保持可能とするフランジであっ
て、前記ホーン部のホーン直線部とホーン傾斜部との境
界に生起する振動の節部に、下端面を前記ホーン部の下
端面と同一平面上になるように設定して配設したフラン
ジ部 (ニ)ボンディング加工工具としてのキャピラリーであ
って、前記ホーン部のホーン傾斜部の先端近傍に設けた
キャピラリー取付部に、ボンディング対象面に対する垂
直性を確保して配備したキャピラリー
In order to achieve the above object, the present invention has the following means. That is, the first configuration of the present invention relating to the ultrasonic horn for bonding is a three-dimensional bonding such as a package in which a plurality of electronic components are arranged based on a combined heat / ultrasonic method that uses both heat and ultrasonic waves. An ultrasonic horn for bonding characterized in that it is always possible to perform a bonding process on a bonding target having a target surface, and has the following configurations (a) to (d). (A) A horn drive unit formed as a Langevin type vibrator having a circular radiating surface, which performs ultrasonic vibration having a center axis direction as a displacement direction under application of an excitation drive voltage having a predetermined frequency. Horn drive unit as vibration drive source (b) λ / 2 that performs longitudinal vibration in combination with the horn drive unit
(Λ is a propagation wavelength by the ultrasonic vibration) A horn portion having a length of λ / 2 forming a resonator, and the horn portion has the same rectangular cross section coupled with the horn portion.
A long horn straight section and a front section extending in front of the horn straight section, and the cross section of the horn straight section is continuously reduced in a state in which only the distance from the bottom surface to the bonding target surface is constant. It has an integrated structure made of a metal elastic body with a λ / 4-length horn inclined portion provided with a sloping forward inclined tapered outer shape and having a capillary attachment portion for attaching a capillary as a bonding tool near the tip. And, the rectangular cross section of the horn straight portion, the upper and lower portions of the radiation surface of the horn drive unit can be inscribed, or the left and right direction having the upper and lower dimensions near the inscribeable and long side A horn part characterized in that the horn driving part and the horn part can be held in a coupled state without hindering vibration. In the horn part of the vibration occurring at the boundary between the horn straight part and the horn inclined part of the horn part, the lower end face is set and disposed so as to be flush with the lower end face of the horn part. Flange part (d) Capillary as a bonding tool, which is provided in a capillary mounting part provided near the tip of a horn inclined part of the horn part while ensuring perpendicularity to a surface to be bonded.

【0024】また、本発明の第2の構成は、前記第1の
構成において、前記ホーン駆動部に印加する励振駆動電
圧の所定の周波数を、60kHz〜140kHzに設定
したことを特徴とする構成を有する。
According to a second configuration of the present invention, in the first configuration, a predetermined frequency of an excitation drive voltage applied to the horn drive section is set to 60 kHz to 140 kHz. Have.

【0025】また、本発明の第3の構成は、前記第1ま
たは第2の構成において、前記ホーン駆動部を、ボルト
締めランジュバン型式の振動子として構成したことを特
徴とする構成を有する。
A third structure of the present invention is characterized in that, in the first or second structure, the horn drive section is configured as a bolted Langevin type vibrator.

【0026】[0026]

【発明の実施の形態】ボンディング加工に供するキャピ
ラリー駆動用の従来の超音波ホーンは、ボンディング加
工が2点間のワイヤボンディング加工であれ、キャピラ
リーの圧着による1点ボンディング加工であれ、その多
くは、チップとリードとをボンディングするチップ単位
の加工を主たる加工対象として構成されていた。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A conventional ultrasonic horn for driving a capillary provided for bonding processing is either a wire bonding processing between two points or a one-point bonding processing by crimping of a capillary. The main processing target is processing of a chip unit for bonding a chip and a lead.

【0027】超音波ホーンは、ランジュバン型の振動子
等を利用する振動駆動源と結合せしめた各種形状の円形
横断面を有する縦振動棒状振動体として、弾性体として
の金属により一体化形成され、先細った先端近傍にボン
ディングツールとしてのキャピラリーを垂直に取り付
け、ワイヤボンディングを実施する場合には、キャピラ
リーに金ワイヤを通して2点間のボンディングを行わし
め、また、キャピラリーの圧着のみに依存する1点ボン
ディングも行っていた。
The ultrasonic horn is a longitudinally vibrating rod-like vibrator having a circular cross section of various shapes coupled with a vibration drive source utilizing a Langevin type vibrator or the like, and is integrally formed of metal as an elastic body. When a capillary as a bonding tool is mounted vertically near the tapered tip and wire bonding is performed, bonding between two points is performed by passing a gold wire through the capillary, and one point that depends only on crimping of the capillary Bonding was also done.

【0028】超音波ホーン全体は、振動駆動源と共にキ
ャピラリーに所望のボンディング動作を行わすべく超音
波ホーンの運動を制御する動作制御機構による制御の下
におかれ、キャピラリーにボンディングに必要な上下、
左右、前後の空間的な3次元動作を与える。
The entire ultrasonic horn is controlled by an operation control mechanism for controlling the movement of the ultrasonic horn so as to perform a desired bonding operation on the capillary together with the vibration driving source.
Gives spatial left-right, front-back spatial three-dimensional movement.

【0029】このようにして、ホーン駆動部と、フラン
ジを配設したホーン部と、ホーン部先端に配設されたキ
ャピラリーとを含むボンディング用超音波ホーンは、ボ
ンディング加工を施されるチップやリードを配置したボ
ンディング対象面上にあって、動作制御機構で命令され
るボンディング動作を行ってボンディング加工を次々に
実施していく。
As described above, the ultrasonic horn for bonding including the horn drive section, the horn section provided with the flange, and the capillary provided at the tip of the horn section is used for the bonding of the chip or the lead to be processed. Are placed on the bonding target surface, and the bonding operation is instructed by the operation control mechanism to perform the bonding process one after another.

【0030】ボンディング用超音波ホーンによって行わ
れるボンディング加工での加工対象は、従来、その多く
がチップ単位のボンディング加工であった。従って、超
音波ホーンの構成要素である金属弾性体のホーン部の形
状は、振動における変成比を極力大とする構造と、シス
テム構成や運用目的等を勘案して所望の形状を選択して
いた。
Conventionally, most of the objects to be processed in the bonding process performed by the ultrasonic horn for bonding have been chip-unit bonding processes. Therefore, the shape of the horn portion of the metal elastic body, which is a component of the ultrasonic horn, has been selected to be a desired shape in consideration of the structure that maximizes the transformation ratio in vibration, the system configuration, the operation purpose, and the like. .

【0031】ホーン部の形状は、従来、そのすべてが、
長手方向の中心軸に軸対称な円形の断面を有する形状の
ものが設定されている。この場合、中心軸に軸対称であ
っても、ホーン駆動部との結合側と、キャピラリーを配
設した先端側とでは、選択形状に対応した互いに異なる
半径を有する。
Conventionally, the shape of the horn part is
A shape having a circular cross section that is axisymmetric with respect to the central axis in the longitudinal direction is set. In this case, even if the axis is symmetrical about the central axis, the coupling side with the horn drive unit and the tip end side where the capillary is arranged have different radii corresponding to the selected shape.

【0032】ホーン部は、横断面が同一半径の円柱状の
直線部と、先端にキャピラリーを配設する傾斜部とで構
成され、傾斜部の横断面半径は、それぞれ先端に向かっ
て所定の関数曲線もしくは関数直線に従って漸減してい
く。
The horn portion is composed of a columnar straight portion having a cross section of the same radius and an inclined portion having a capillary disposed at the tip, and the cross section radius of the inclined portion is a predetermined function toward the tip. It gradually decreases according to a curve or function line.

【0033】上述した所定の関数曲線、もしくは関数直
線として、エキスポーネンシャル、カテノイダル曲線等
が利用され、関数直線としてはコニカル直線等が利用さ
れる。このような構造のホーン部が、ランジュバン型振
動子を利用する振動駆動源で駆動されて縦振動し、直線
部の機械的入力端の振動変位が、横断面の面積比、即ち
半径比で機械的に増幅されて機械的出力端、即ちキャピ
ラリー配設端近傍に伝搬する。
An exponential, a catenoidal curve or the like is used as the above-mentioned predetermined function curve or function straight line, and a conical straight line or the like is used as the function straight line. The horn portion having such a structure is driven by a vibration drive source using a Langevin type vibrator to longitudinally vibrate, and the vibration displacement of the mechanical input end of the linear portion is determined by the area ratio of the cross section, that is, the mechanical ratio at the radius ratio. And is propagated to the mechanical output end, that is, the vicinity of the end where the capillary is provided.

【0034】このようなわけで、傾斜部先端の断面半径
と、直線部の断面半径rとの比r/rは、所
望の振動を安定して効率良く確保するものとする前提
で、極力大きくして変成比を大とすることが望ましい。
[0034] This is why the cross-sectional radius r o of the inclined tip, the ratio r i / r o of the cross-sectional radius r i of the straight portion, which shall ensure efficient and stable the desired vibration On the premise, it is desirable to increase the metamorphic ratio by increasing as much as possible.

【0035】しかしながら、従来のホーン部の形状を前
提とする構造を採る限り、ボンディング対象面に対する
ホーン部出力端(先端)からの間隔と、直線部の中心部
分に配設するフランジからの間隔並びにホーン駆動部下
端からの間隔との間には差があり、変成比を大きくする
程、この差は大きくなっていく。
However, as long as the structure based on the shape of the conventional horn portion is adopted, the distance from the output end (tip) of the horn portion to the surface to be bonded, the distance from the flange disposed at the center of the straight portion, and There is a difference from the distance from the lower end of the horn drive unit, and the difference increases as the transformation ratio increases.

【0036】このことは、チップやその他の電子部品を
多数配置したパッケージを対象とする立体的なボンディ
ング対象面におけるボンディング加工にあって、ホーン
部のフランジとホーン駆動部とが、ホーン部の動作に対
する大きな妨げとなることを意味し、このため、パッケ
ージの如き立体的なボンディング対象面でも、チップ単
位のボンディング加工と同様に運用できるボンディング
加工機は存在しなかった。
This is because, in a three-dimensional bonding process on a bonding target surface for a package in which a large number of chips and other electronic components are arranged, the horn flange and the horn drive unit operate the horn unit. Therefore, there is no bonding machine that can be operated in the same manner as the bonding processing in units of chips even on a three-dimensional bonding target surface such as a package.

【0037】また、立体的なボンディング対象面に対応
すべく、超音波ホーンの下部をボンディング対象面に対
して超音波ホーンの全長にわたって同一の間隔を保持す
る構造とすることも、単に超音波ホーン下部の凹凸を排
除するように削り落すような単純な対応では、前述した
如く、キャピラリーに必要な所望の振動を確保できな
い。
Further, in order to cope with the three-dimensional bonding target surface, the lower portion of the ultrasonic horn may have a structure in which the lower portion of the ultrasonic horn is maintained at the same distance from the bonding target surface over the entire length of the ultrasonic horn. As described above, a simple countermeasure such as shaving off the lower unevenness cannot secure a desired vibration required for the capillary.

【0038】本願発明は、図1に示す如く、ホーン部に
おける先端とボンディング対象面との距離、即ち、配設
キャピラリーの長さと、フランジ部及びホーン駆動部そ
れぞれの下端とボンディング対象面の距離とをほぼ同一
とし、且つ、ホーン部の形状を、先端振動に所望の変成
比による縦振動を確保せしめるように選択することによ
り、立体的なボンディング加工面を有するパッケージに
対してもチップ同様なボンディング加工を可能とするボ
ンディング用超音波ホーンを提供しうることを、基本的
な発明の実施の形態としている。
As shown in FIG. 1, the present invention relates to the distance between the tip of the horn portion and the surface to be bonded, that is, the length of the provided capillary, the distance between the lower end of each of the flange portion and the horn driving portion, and the distance between the surface to be bonded. And the shape of the horn is selected so as to ensure longitudinal vibration at the tip vibration with a desired transformation ratio, so that a chip-like bonding can be performed on a package having a three-dimensional bonding surface. An embodiment of the basic invention is to provide an ultrasonic horn for bonding that enables processing.

【0039】[0039]

【実施例】次に、本発明について図面を参照して説明す
る。図1は、本発明のボンディング用超音波ホーンの一
実施例を示す平面図(a)、側面図(b)、及び平面図
(a)のA矢視図(c)である。図1に示す実施例のボ
ンディング用超音波ホーンの構成は、ボルト締めランジ
ュバン振動子として形成する振動駆動源としてのホーン
駆動部1と、ホーン駆動部1と結合して励振されてλ/
2共振体を構成して縦振動を行う金属弾性体のホーン部
2と、ホーン部2の振動変位の零位置、即ち、振動の節
部に設けた全体保持用のフランジ3と、ホーン部2の先
端近傍に配設したボンディング加工ツールとしてのキャ
ピラリー4とを備える。
Next, the present invention will be described with reference to the drawings. FIG. 1 is a plan view (a), a side view (b), and a plan view (a) as viewed in the direction of the arrow A in FIG. 1 showing an embodiment of the ultrasonic horn for bonding of the present invention. The configuration of the ultrasonic horn for bonding of the embodiment shown in FIG. 1 includes a horn driving unit 1 as a vibration driving source formed as a bolted Langevin vibrator, and λ /
A horn part 2 of a metal elastic body that forms a two-resonator and performs longitudinal vibration, a zero position of vibration displacement of the horn part 2, that is, a whole holding flange 3 provided at a node of vibration, and a horn part 2 And a capillary 4 as a bonding tool disposed in the vicinity of the tip of the robot.

【0040】ホーン駆動部1は、1対の金属弾性体の間
にセラミック磁器、例えば各種チタン酸ジルコン酸鉛な
どの誘電体を利用する振動子13を介在させ、この振動
子をジェラルミン等を利用する1対の金属弾性体のフロ
ントマス11とリアマス12とでボルト締めで締結圧着
して成る。
The horn drive unit 1 has a ceramic porcelain, for example, a vibrator 13 using a dielectric such as various kinds of lead zirconate titanate interposed between a pair of metal elastic bodies, and this vibrator uses a duralumin or the like. The front mass 11 and the rear mass 12 of the pair of metal elastic bodies are fastened and crimped with bolts.

【0041】このようなボルト締めランジュバン型振動
子は、簡素な構成ながら電気的入力エネルギー対機械的
振動エネルギーの変換比、従って電気・音響変換比が良
く、また感度も良好であるなどのもろもろの特徴があ
り、各運用分野におけるトランスデューサとして多用さ
れている。
Such a bolted Langevin type vibrator has various conversion ratios of electrical input energy to mechanical vibration energy, that is, a good electrical-to-acoustic conversion ratio and a good sensitivity, with a simple structure. It has characteristics and is widely used as a transducer in each operational field.

【0042】ホーン部2は、ホーン駆動部1により駆動
され、全体としてλ/2共振体として振る舞うが、λ/
4長のホーン直線部21と、同じくλ/4長のホーン傾
斜部とから成り、且つ、ホーン傾斜部22の先端にはキ
ャピラリー取付部221を設けた構造を有する。
The horn unit 2 is driven by the horn driving unit 1 and behaves as a λ / 2 resonator as a whole.
It has a structure in which a horn straight portion 21 having a length of four and a horn inclined portion also having a length of λ / 4 are provided, and a capillary mounting portion 221 is provided at the tip of the horn inclined portion 22.

【0043】フランジ3は、ホーン部2のホーン直線部
21と、ホーン傾斜部22との境界に位置する。キャピ
ラリー4は、ホーン傾斜部22の先端近傍に、垂直に取
り付けられる。ホーン直線部21は、円形のホーン駆動
部1の上部及び下部を内接する上下寸法の左右を長辺と
する矩形か、もしくは、この寸法の矩形に近接した寸法
の矩形かの何れか、本実施例では、ホーン駆動部1の上
部及び下部を内接せしめる上下寸法の矩形の横断面を有
し、図1の(c)にも示す如く、円形のホーン駆動部1
のフロントマス11の前面の上部及び下部を内接せしめ
た状態で、これを、ロー付けその他、振動を妨げない結
合手段で結合させる。
The flange 3 is located at a boundary between the horn straight portion 21 of the horn portion 2 and the horn inclined portion 22. The capillary 4 is vertically mounted near the tip of the horn inclined portion 22. The horn straight portion 21 is either a rectangle having a long side on the left and right sides of the upper and lower dimensions inscribed in the upper and lower parts of the circular horn drive portion 1 or a rectangle having a size close to the rectangle of this size. In the example, the upper and lower parts of the horn drive unit 1 are inscribed in a vertical direction, and have a rectangular cross section. As shown in FIG.
In a state where the upper and lower portions of the front surface of the front mass 11 are inscribed, they are joined by brazing or other joining means that does not hinder vibration.

【0044】図1の(c)からも明らかな如く、ホーン
直線部21は、左右を長手方向としてホーン駆動部1を
内接せしめて結合した矩形の横断面を全長λ/4にわた
って一定とする形状を持つ。一方、ホーン傾斜部22
は、底面の高さのみはホーン直線部21と同じとし、ホ
ーン直線部21を先端に向かって先細りさせつつ漸減的
に連続して減縮させた形状で、その横断面はどの2点間
でも互いに相似な矩形となる。またフランジ3は、ホー
ン部2の底面の左右両側に延在せしめた底面を有する左
右1対の翼状のものとして形成され、左右1対の取付孔
31が配設される。
As is clear from FIG. 1C, the horn straight portion 21 has a rectangular cross section formed by inwardly connecting the horn drive portion 1 with the left and right sides as longitudinal directions, and is constant over the entire length λ / 4. Have a shape. On the other hand, the horn inclined portion 22
Is the same as the horn straight part 21 only in the height of the bottom surface, and the horn straight part 21 is tapered toward the tip and reduced gradually and continuously. It becomes a similar rectangle. The flange 3 is formed as a pair of left and right wings having a bottom surface extending on both left and right sides of the bottom surface of the horn portion 2, and a pair of left and right mounting holes 31 is provided.

【0045】このようなホーン部2の形状設定により、
図1の(b)に示す如く、ホーン部2の先端部分とボン
ディング対象面Sとの間隔Aと、フランジ部3の下端と
ボンディング対象面Sとの間隔Bと、ホーン駆動部1の
下端とボンディング対象面Sとの間隔Cとは、ほぼ同一
となり、これら間隔A,B及びCの差異がもたらすボン
ディング加工でのボンディング対象面に対する凹凸問題
は解消され、立体的なパッケージに対するボンディング
加工もチップ対リードの加工同様、極めて容易且つ安定
して実施することができる。
By setting the shape of the horn part 2 as described above,
As shown in FIG. 1B, the distance A between the tip of the horn 2 and the surface S to be bonded, the distance B between the lower end of the flange 3 and the surface S to be bonded, and the lower end of the horn drive 1 The distance C from the surface S to be bonded is almost the same, and the problem of unevenness on the surface to be bonded in the bonding process caused by the difference between the distances A, B, and C is solved. Like the processing of the lead, it can be performed extremely easily and stably.

【0046】次に、本実施例の動作について説明する。
図示しない動作制御機構の制御の下に、ホーン駆動部1
の振動子13には、所定の周波数の励振駆動電圧が印加
され、ホーン駆動部1は、点線矢印に示す軸方向の縦振
動を行う。本実施例における励振駆動電圧の周波数は、
140kHz近傍のものを言う。従来、この種の超音波
ホーンの励振駆動電圧の周波数には、約60kHzのも
のが多用されていた。
Next, the operation of this embodiment will be described.
The horn drive unit 1 is controlled by an operation control mechanism (not shown).
An excitation drive voltage of a predetermined frequency is applied to the vibrator 13, and the horn drive unit 1 performs longitudinal vibration in the axial direction indicated by the dotted arrow. The frequency of the excitation drive voltage in this embodiment is
The one near 140 kHz. Conventionally, a frequency of about 60 kHz has been frequently used as the frequency of the excitation drive voltage of this kind of ultrasonic horn.

【0047】ところで、ボンディング加工におけるキャ
ピラリーによるボンディング接合のエネルギーは、超音
波振動の加速度に比例して増大する。いま、超音波の振
動振幅をε、周波数をfとすると、振動速度ν及び加速
度αは、それぞれ次の(1)及び(2)式で示される、 ν=ωε (ω=2πf) …………(1) α=ωε …………(2)
By the way, the energy of the bonding by the capillary in the bonding process increases in proportion to the acceleration of the ultrasonic vibration. Now, assuming that the vibration amplitude of the ultrasonic wave is ε and the frequency is f, the vibration velocity ν and the acceleration α are expressed by the following equations (1) and (2), respectively: ν = ωε (ω = 2πf). … (1) α = ω 2 ε ………… (2)

【0048】従って、周波数を60kHzから140k
Hzとすると、振動振幅を一定とすると加速度は約2.
78倍となり、逆に、加速度を一定とすると振動振幅は
約1/2.78ですみ、このことは、60kHzよりも
小さな振動振幅でボンディングが可能であり、また超音
波振動の加速度が大きくなって接合効果も上昇すること
を意味する。本実施例でも上述した点に着目し、周波数
は60kHz〜140kHzに設定している。
Therefore, the frequency is changed from 60 kHz to 140 kHz.
Hz, the acceleration is about 2.
On the other hand, if the acceleration is constant, the vibration amplitude is about 1 / 2.78, which means that bonding can be performed with a vibration amplitude smaller than 60 kHz, and the acceleration of ultrasonic vibration increases. Means that the joining effect also increases. Focusing on the above points also in this embodiment, the frequency is set to 60 kHz to 140 kHz.

【0049】ホーン駆動部1は、60kHz〜140k
Hzの超音波振動を行い、ホーン部2との結合状態で、
全体としてλ/2共振体としての縦振動を行う共振体の
振動駆動源として機能する。ホーン部2は、ホーン駆動
部1で駆動されるホーン直線部21の機械的入力端での
振動振幅、例えば数μm(ミクロン)程度の振動変位を
機械的に増幅し、例えば数10μm程度の振動変位に変
成する構造の金属弾性体として形成される。
The horn driving unit 1 operates at 60 kHz to 140 kHz.
Hz ultrasonic vibration, and in the state of connection with the horn part 2,
As a whole, it functions as a vibration drive source for a resonator that performs longitudinal vibration as a λ / 2 resonator. The horn section 2 mechanically amplifies the vibration amplitude at the mechanical input end of the horn linear section 21 driven by the horn driving section 1, for example, the vibration displacement of about several μm (microns), and for example, the vibration of about several tens μm. It is formed as a metal elastic body having a structure that transforms into displacement.

【0050】ホーン部2は、極力上下方向の対称性と寸
法選択の柔軟性とに留意し、図2の(a)に示すよう
に、全長にわたって等しい矩形横断面を有するホーン直
線部21がλ/4長であり、また、底部の高さのみは同
じとして先端に向かって連続的に減縮して先細っていく
矩形横断面を有するホーン傾斜部22もλ/4長であ
り、全体としてホーン駆動部1と共にλ/2共振体とし
て動作し、図2の(b)に示す特性の振動変位分布を発
生する。
The horn part 2 is designed to have as much vertical symmetry as possible and flexibility in dimension selection. As shown in FIG. 2A, the horn straight part 21 having the same rectangular cross section over the entire length is λ. The horn sloped portion 22 having a rectangular cross section which continuously reduces and tapers toward the tip while maintaining the same height at the bottom is also λ / 4 long, and the horn as a whole is It operates as a λ / 2 resonator together with the drive unit 1 and generates a vibration displacement distribution having characteristics shown in FIG.

【0051】図2の(b)の振動変位分布特性からも明
らか如く、ホーン部2は、ホーン直線部21と、ホーン
傾斜部22との境界部分に振動変位零の振動の節部を有
し、また、両端に振動変位最大の振動の腹部を有する共
振体として動作する。従って、フランジ3は、全体の振
動を妨げずにすむこの振動の節部に配設することとな
る。
As is apparent from the vibration displacement distribution characteristics shown in FIG. 2B, the horn portion 2 has a vibration node with zero vibration displacement at the boundary between the horn linear portion 21 and the horn inclined portion 22. In addition, it operates as a resonator having an antinode of vibration having the largest vibration displacement at both ends. Therefore, the flange 3 is disposed at a node of the vibration without obstructing the whole vibration.

【0052】このように、ホーン部2は、その1/2
が、どこでも同じ矩形の横断面を有するホーン直線部2
1、また、このホーン直線部21の先方に延在する1/
2のホーン傾斜部22も、底面高のみは同じとしてホー
ン直線部21の横断面を連続的に減縮させていく矩形の
横断面を持つ形状を選択することにより、全体として上
部と下部の対称性の相違がさほど極端ではなく、振動観
測の結果でも、局部的には不要なたわみ振動も生起する
ものの、負荷とするキャピラリーに加えられる所望の振
動変位に対する不要振動変位は、1/10以下、例えば
1/12.7程度に抑圧された状態を確保し、安定した
ボンディング加工を可能としている。
As described above, the horn section 2 is 1 /
But the horn straight part 2 having the same rectangular cross section everywhere
1, and 1 / extending ahead of the horn straight portion 21
The horn inclined portion 22 also has a rectangular cross section that continuously reduces the cross section of the horn straight portion 21 while keeping only the bottom height the same. Is not so extreme, and even in the result of vibration observation, although unnecessary flexural vibration occurs locally, the unnecessary vibration displacement with respect to the desired vibration displacement applied to the capillary to be loaded is 1/10 or less, for example, A state suppressed to about 1 / 12.7 is ensured, and stable bonding is enabled.

【0053】従来、一般的には、特に寸法的、形状的に
配慮しない上下非対称な構造の超音波ホーンは、上下で
振動位相が異なり、これに基づく有害な縦振動モードが
寄生発生するので製造されていなかった。本願発明のボ
ンディング用超音波ホーンにあっては、上下の極端な非
対称性を極力排した形状選択により、立体的なボンディ
ング対象面に対するボンディング加工を常時可能とし、
且つ、全体をλ/2共振体として形成することにより、
従来に比して著しく寸法の短縮化と軽少化とを併せ確保
している。
Conventionally, in general, an ultrasonic horn having an asymmetric structure in the upper and lower directions without considering the dimensions and the shape has a different vibration phase between the upper and lower parts, and a harmful longitudinal vibration mode based on the vibration phase is generated. Had not been. In the ultrasonic horn for bonding of the present invention, by selecting a shape that minimizes extreme asymmetry in the upper and lower directions, a three-dimensional bonding target surface can always be bonded,
And by forming the whole as a λ / 2 resonator,
Compared with the prior art, both size reduction and weight reduction are ensured.

【0054】図3は、従来のボンディング用超音波ホー
ンの構成を示す側面図(a)と、その振動変位分布の特
性を示す図(b)である。従来のボンディング用超音波
ホーンは、ボルト締めランジュバン振動子等を利用する
ホーン駆動部100と、このホーン駆動部100と振動
自由に結合されるホーン部200と、ホーン部200に
取り付けるフランジ300と、他に、図示を省略したキ
ャピラリーとを備える。
FIG. 3 is a side view (a) showing the structure of a conventional ultrasonic horn for bonding, and FIG. 3 (b) showing characteristics of its vibration displacement distribution. A conventional ultrasonic horn for bonding includes a horn driving unit 100 using a bolted Langevin vibrator, a horn unit 200 that is freely coupled to the horn driving unit 100, a flange 300 attached to the horn unit 200, In addition, a capillary not shown is provided.

【0055】ホーン部200は、この場合は全長が1λ
であり、ホーン駆動部100と共に1λ共振体を構成す
る。ホーン部200は、その半分のλ/2が直線部20
1であり、残りの半分がコニカル部202として形成さ
れ、全体は中心軸対称な円形の横断面を有する。
The horn 200 has a total length of 1λ in this case.
And forms a 1λ resonator together with the horn drive unit 100. The horn part 200 has a half λ / 2,
1 and the other half is formed as a conical part 202, and the whole has a circular cross section symmetric with respect to the central axis.

【0056】図3の(b)に示す如く、このホーン部2
00の先端とホーン駆動部1との結合部分が振動変位最
大の腹となり、直線部201の中心部分が振動変位零の
節となる。従って、フランジ300はホーン直線部20
1の中心部分に取り付けられる。このホーン部200
も、ホーン駆動部100で励振されるが、その励振周波
数は通常60kHz程度である。
As shown in FIG. 3B, the horn 2
The connecting portion between the tip of 00 and the horn drive unit 1 is the antinode of the maximum vibration displacement, and the central portion of the linear portion 201 is the node of zero vibration displacement. Therefore, the flange 300 is connected to the horn straight portion 20.
1 is attached to the central part. This horn part 200
Is also excited by the horn drive unit 100, and its excitation frequency is usually about 60 kHz.

【0057】図1および図2に示す本実施例の場合、励
振周波数は約100kHzを利用するのでホーン部の全
長はλ/2で3cmですむが、図3の従来例ではλで
8.3cmとなり、寸法においても著しい短縮化が図
れ、重畳の軽減とシステム構成の簡素化が可能となる。
In the case of the present embodiment shown in FIGS. 1 and 2, since the excitation frequency uses about 100 kHz, the total length of the horn part is 3 cm at λ / 2, but in the conventional example of FIG. As a result, the size can be significantly shortened, and the superposition can be reduced and the system configuration can be simplified.

【0058】このようにして、ホーン部の形状を横断面
が矩形とし、底面のみは共通の高さで延伸して全体の寸
法を連続的に漸減しつつ先細りさせて、必要な変成比を
確保する構成を採ることにより、ホーン部先端部分とボ
ンディング対象面の間隔と、フランジ及びホーン駆動部
の下端部分とボンディング対象面との間隔とをほぼ同一
となし得て、ボンディング対称面に対するホーン部のク
リアランスを著しく拡大することができ、多品種の加工
対象物を配置して成る凹凸の多いパッケージ等の立体的
なボンディング加工対象に対しても容易に対応可能な小
型軽少なボンディング用超音波ホーンが実現できる。
In this way, the horn portion has a rectangular cross section, and only the bottom surface is stretched at a common height to taper while continuously reducing the overall dimensions to secure a necessary transformation ratio. By adopting such a configuration, the distance between the front end portion of the horn portion and the surface to be bonded and the distance between the lower end portion of the flange and the horn drive portion and the surface to be bonded can be made substantially the same, and the horn portion with respect to the bonding symmetry plane can be made. A small and small ultrasonic horn for bonding that can significantly increase the clearance and can easily cope with three-dimensional bonding targets such as packages with many irregularities that are arranged with various types of processing objects. realizable.

【0059】[0059]

【発明の効果】以上説明したように本発明によれば、ボ
ンディング加工に供する超音波ホーンにおいて、ホーン
の直線部とホーンの傾斜部とから成るホーン部の形状
を、ホーンの直線部にあっては横断面が一定の所定の寸
法の矩形となし、ホーン部の傾斜部にあっては、ホーン
部の直線部の形状を底部の高さのみは変えることなく連
続的に縮小せしめつつ先細りさせた矩形の横断面を有す
るものとして上下の非対称性を著しく抑圧した形状とし
て形成し、ホーン駆動部と共に全体としてλ/2共振体
として運用することにより、ボンディング対象面に対す
る底部間隔を超音波ホーンの全長にわたってほぼ同一と
為し得て、パッケージを含む凹凸の多い立体的な各種の
ボンディング被加工物に対するボンディング加工を常時
可能とする小型軽少なボンディング用超音波ホーンが実
現できる効果を有する。
As described above, according to the present invention, in the ultrasonic horn provided for the bonding process, the shape of the horn portion composed of the straight portion of the horn and the inclined portion of the horn is set in the straight portion of the horn. The cross section is a rectangle of a fixed predetermined size, and in the inclined part of the horn part, the shape of the straight part of the horn part is tapered while continuously reducing without changing the height of the bottom part only It has a rectangular cross section and is formed as a shape in which the asymmetry in the vertical direction is remarkably suppressed. By operating as a λ / 2 resonator as a whole together with the horn driving unit, the distance between the bottom portion and the bonding target surface can be reduced by the total length of the ultrasonic horn. Small and light, which can be bonded to various three-dimensional bonding workpieces with many irregularities including the package at all times. Bonding ultrasonic horn has an effect that can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の超音波ホーンの構成を拡大
して示す平面図(a)、側面図(b)、及び平面図
(a)のA視正面図(c)である。
FIG. 1 is an enlarged plan view (a), a side view (b), and a front view (c) as viewed in A of a plan view (a) of an ultrasonic horn according to an embodiment of the present invention.

【図2】図1の実施例におけるホーン部2の寸法を併記
して示す側面図(a)、ホーン部2の振動変位分布の特
性を示す図(b)である。
FIGS. 2A and 2B are a side view showing dimensions of the horn portion 2 in the embodiment of FIG. 1 and a diagram showing characteristics of vibration displacement distribution of the horn portion 2;

【図3】従来のボンディング用超音波ホーンの構成を、
寸法を併記して拡大して示す側面図(a)及び振動変位
分布の特性を示す図(b)である。
FIG. 3 shows a configuration of a conventional ultrasonic horn for bonding.
It is a side view (a) showing the dimensions together and enlarged, and a figure (b) showing the characteristics of the vibration displacement distribution.

【図4】ボンディング加工機の上下動メカニズムの基本
的構成を示す側面図(a)及び2次元動メカニズムの基
本的構成を示す側面図(b)である。
4A is a side view showing a basic configuration of a vertical movement mechanism of a bonding machine, and FIG. 4B is a side view showing a basic configuration of a two-dimensional movement mechanism.

【図5】従来のボンディング用超音波ホーンの構成を示
す斜視図(a)、及び斜視図(a)の傾斜部Incの形
状例を示す図(b)である。
FIGS. 5A and 5B are a perspective view showing a configuration of a conventional ultrasonic horn for bonding, and a view showing an example of a shape of an inclined portion Inc in the perspective view of FIG.

【図6】ボンディング加工の主要工程の説明図である。FIG. 6 is an explanatory diagram of main steps of a bonding process.

【符号の説明】[Explanation of symbols]

1 ホーン駆動部 2 ホーン部 3 フランジ 4 キャピラリー 11 フロントマス 12 リアマス 13 振動子 21 ホーン直線部 22 ホーン傾斜部 31 取付孔 221 キャピラリー取付部 DESCRIPTION OF SYMBOLS 1 Horn drive part 2 Horn part 3 Flange 4 Capillary 11 Front mass 12 Rear mass 13 Transducer 21 Horn straight part 22 Horn inclined part 31 Mounting hole 221 Capillary mounting part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 下記に示す(イ)ないし(ニ)の各構成
を備え、熱と超音波とを併用する熱・超音波併用方式に
基づいて電子部品を複数配設して成るパッケージ等の立
体的なボンディング対象面を有するボンディング加工対
象物に対しボンディング加工の実施を常時可能としたこ
とを特徴とするボンディング用超音波ホーン。 (イ)円形の放射面を有するランジュバン型式の振動子
として形成されるホーン駆動部であって、所定の周波数
の励振駆動電圧の印加の下に中心軸方向を変位方向とす
る超音波振動を行う振動駆動源としてのホーン駆動部 (ロ)前記ホーン駆動部と結合して縦振動を行うλ/2
(λは前記超音波振動による伝搬波長)共振体を形成す
るλ/2長のホーン部であって、このホーン部は、前記
ホーン部と結合する矩形状の同一横断面を有するλ/4
長のホーン直線部と、このホーン直線部の前方に延在
し、その横断面が前記ホーン直線部の横断面を前記ボン
ディング対象面に対する底面からの間隔のみは一定とし
た状態で連続的に縮減せしめた前方傾斜の先細り外形を
与えて成り、且つ先端近傍にボンディング加工工具とし
てのキャピラリーを取り付けるキャピラリー取付部を設
けたλ/4長のホーン傾斜部との金属弾性体による一体
化構造を有し、且つ前記ホーン直線部の矩形状の横断面
は、前記ホーン駆動部の放射面の上部及び下部を内接可
能とするか、もしくは内接可能近傍の上下の寸法を有す
る左右方向を長辺とした形状を付与して形成したもので
あることを特徴とするホーン部 (ハ)前記ホーン駆動部と前記ホーン部とを結合状態で
振動を妨げることなく保持可能とするフランジであっ
て、前記ホーン部のホーン直線部とホーン傾斜部との境
界に生起する振動の節部に、下端面を前記ホーン部の下
端面と同一平面上になるように設定して配設したフラン
ジ部 (ニ)ボンディング加工工具としてのキャピラリーであ
って、前記ホーン部のホーン傾斜部の先端近傍に設けた
キャピラリー取付部に、ボンディング対象面に対する垂
直性を確保して配備したキャピラリー
1. A package or the like comprising the following components (a) to (d) and comprising a plurality of electronic components arranged based on a combined heat / ultrasonic method using heat and ultrasonic waves. An ultrasonic horn for bonding, wherein a bonding object having a three-dimensional surface to be bonded can be always bonded. (A) A horn drive unit formed as a Langevin type vibrator having a circular radiating surface, which performs ultrasonic vibration having a center axis direction as a displacement direction under application of an excitation drive voltage having a predetermined frequency. Horn drive unit as vibration drive source (b) λ / 2 that performs longitudinal vibration in combination with the horn drive unit
(Λ is a propagation wavelength by the ultrasonic vibration) A horn portion having a length of λ / 2 forming a resonator, and the horn portion has the same rectangular cross section coupled with the horn portion.
A long horn straight section and a front section extending in front of the horn straight section, and the cross section of the horn straight section is continuously reduced in a state in which only the distance from the bottom surface to the bonding target surface is constant. It has an integrated structure made of a metal elastic body with a λ / 4-length horn inclined portion provided with a sloping forward inclined tapered outer shape and having a capillary attachment portion for attaching a capillary as a bonding tool near the tip. And, the rectangular cross section of the horn straight portion, the upper and lower portions of the radiation surface of the horn drive unit can be inscribed, or the left and right direction having the upper and lower dimensions near the inscribeable and long side A horn part characterized in that the horn driving part and the horn part can be held in a coupled state without hindering vibration. In the horn part of the vibration occurring at the boundary between the horn straight part and the horn inclined part of the horn part, the lower end face is set and disposed so as to be flush with the lower end face of the horn part. Flange part (d) Capillary as a bonding tool, which is provided in a capillary mounting part provided near the tip of a horn inclined part of the horn part while ensuring perpendicularity to a surface to be bonded.
【請求項2】 前記ホーン駆動部に印加する励振駆動電
圧の所定の周波数を60kHz〜140kHzに設定し
たことを特徴とする請求項1記載のボンディング用超音
波ホーン。
2. The ultrasonic horn for bonding according to claim 1, wherein a predetermined frequency of the excitation drive voltage applied to the horn drive section is set to 60 kHz to 140 kHz.
【請求項3】 前記ホーン駆動部を、ボルト締めランジ
ュバン型式の振動子として構成したことを特徴とする請
求項1または2記載のボンディング用超音波ホーン。
3. The ultrasonic horn for bonding according to claim 1, wherein said horn drive section is constituted as a bolt-fastened Langevin type vibrator.
JP11153249A 1999-06-01 1999-06-01 Ultrasonic horn for bonding Pending JP2000340598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11153249A JP2000340598A (en) 1999-06-01 1999-06-01 Ultrasonic horn for bonding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11153249A JP2000340598A (en) 1999-06-01 1999-06-01 Ultrasonic horn for bonding

Publications (1)

Publication Number Publication Date
JP2000340598A true JP2000340598A (en) 2000-12-08

Family

ID=15558337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11153249A Pending JP2000340598A (en) 1999-06-01 1999-06-01 Ultrasonic horn for bonding

Country Status (1)

Country Link
JP (1) JP2000340598A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6575348B2 (en) 2001-06-11 2003-06-10 Nec Electronics Corporation Wire bonding apparatus with spurious vibration suppressing structure
US8056792B2 (en) * 2009-05-05 2011-11-15 Branson Ultrasonics Corporation Scalloped horn

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6575348B2 (en) 2001-06-11 2003-06-10 Nec Electronics Corporation Wire bonding apparatus with spurious vibration suppressing structure
US6779702B2 (en) 2001-06-11 2004-08-24 Nec Electronics Corporation Wire bonding apparatus with spurious vibration suppressing structure
US8056792B2 (en) * 2009-05-05 2011-11-15 Branson Ultrasonics Corporation Scalloped horn
CN102421562A (en) * 2009-05-05 2012-04-18 必能信超声公司 Ergonomic horn

Similar Documents

Publication Publication Date Title
KR101475541B1 (en) Ultrasonic transducer comprising a long horn
JPH05206196A (en) Method for formation of subminiature electronic bond,bond head assembly and ultrasonic transducer
JP3245445B2 (en) Wire bonding equipment
PH12013000084A1 (en) Apparatus for mounting a transducer in a wire bonder
JP2010030028A (en) Ultrasonic cutting tool shank
US7137543B2 (en) Integrated flexure mount scheme for dynamic isolation of ultrasonic transducers
JP2003023031A (en) Resonator for ultrasonic wire bonding
KR0139403B1 (en) Head of ultrasonic wire bohding apparatus and bohding method
JP2000340598A (en) Ultrasonic horn for bonding
KR20030002307A (en) Transducer and bonding apparatus
JPH10303240A (en) Ultrasonic wave horn of wire bonding device
JPH088285B2 (en) Wire bonding method
JP2002210569A (en) Ultrasonic vibrating horn in ultrasonic welding apparatus
JP2002067162A (en) Bonding head, and bonding device equipped with the same
Tsujino et al. Welding characteristics of ultrasonic wire bonding using high-frequency vibration systems
JPH0629357A (en) Ultrasonic welding apparatus
JP3313568B2 (en) Wire bonding apparatus and control method therefor
JP2954093B2 (en) Wire bonding equipment
JPH05347334A (en) Bonding device
JP4626292B2 (en) Ultrasonic horn and bonding device using the same
JP3221191B2 (en) Bonding apparatus and bonding method
JPH1154540A (en) Bonding device
WO2022264225A1 (en) Ultrasonic horn and apparatus for manufacturing semiconductor device
JP2981951B2 (en) Wire bonding equipment
KR102360298B1 (en) Multiple actuator wire bonding apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070724