JP2000338215A - Precise measurement method of receiving azimuth in narrow band signal detection processing - Google Patents

Precise measurement method of receiving azimuth in narrow band signal detection processing

Info

Publication number
JP2000338215A
JP2000338215A JP11144989A JP14498999A JP2000338215A JP 2000338215 A JP2000338215 A JP 2000338215A JP 11144989 A JP11144989 A JP 11144989A JP 14498999 A JP14498999 A JP 14498999A JP 2000338215 A JP2000338215 A JP 2000338215A
Authority
JP
Japan
Prior art keywords
signal
peak
frequency
sector
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11144989A
Other languages
Japanese (ja)
Inventor
Masahiro Nagakura
将弘 長倉
Masato Yamashita
正人 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP11144989A priority Critical patent/JP2000338215A/en
Publication of JP2000338215A publication Critical patent/JP2000338215A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of precisely measuring receiving azimuth in narrow-band signal detection processing, without weighing hardwear and increasing the amount of data and operation. SOLUTION: An input signal (S1) from each receiving wave beam in a sector is subjected to FFT processing (S2). A peak of the signal intensity is detected (S3). When the peak position (S4) is not a sector end (S5), the beam number of the receiving wave beam in which the peak is detected is made B. The numbers of three points whose center is B are made (B-1), B and (B+1), and the signal intensities are made A, A0 and A+, respectively. Precise measurement beam number Bfinc of the receiving azimuth is made Bfinc=B+p/2q (where p=A+-A, q=2A0-A+-A) and calculated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、信号源からの狭帯
域信号を受信・検出し、その受信方位を測定する際の精
測方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a precision measuring method for receiving and detecting a narrow band signal from a signal source and measuring the receiving direction.

【0002】[0002]

【従来の技術】一般に信号源からの音響波や電磁波等の
狭帯域信号を受信・検出し、その受信方位の測定や追尾
処理を行う際には、方位対周波数の2次元空間上でデー
タを細かく収集して解析を行う必要があるため、方位デ
ータは、ビーム幅が狭く、十分に間隔の詰った多数のビ
ームを用いて収集することが望ましい。
2. Description of the Related Art Generally, when a narrow band signal such as an acoustic wave or an electromagnetic wave from a signal source is received and detected, and the receiving direction is measured or tracked, data is obtained in a two-dimensional space of direction versus frequency. Since it is necessary to collect and analyze the data in detail, it is desirable to collect the azimuth data using a large number of beams with a narrow beam width and a sufficiently small interval.

【0003】かかる技術の公知文献としては、例えば特
開平8−15402号公報に示された「信号追尾方法」
がある。上記公知文献の実施例における信号追尾装置
は、方位θ1、周波数f1の未知の音源1からの狭帯域
信号を少しずつ異なる方位を指向する複数個の受波ビー
ムB1,B2,…,Bnによって受波する音響アレイセ
ンサ2を有する。音響アレイセンサ2の出力側には、各
受波ビームBi(i=1,2,…,n)の受波信号のフ
ーリエ変換を行い周波数空間上の信号強度分布を各サン
プル時刻ごとに求める周波数分析器3−iが接続されて
いる。また各周波数分析器3−iの出力側には、サンプ
ル時刻毎の周波数空間上の信号強度分布を記憶する記憶
装置4−i及び信号強度分布における信号のピークを検
出することにより未知の音源1からの狭帯域信号の方位
θ1及び周波数f1を検出するピーク検出器6が接続さ
れている。即ち信号源の受信方位については、少しずつ
異なる方位を指向する複数個の受波ビームB1,B2,
…Bnによって受波していることが示されている。
[0003] As a known document of this technology, for example, a "signal tracking method" disclosed in Japanese Patent Application Laid-Open No. 8-15402 is disclosed.
There is. The signal tracking device according to the embodiment of the above-mentioned known document receives a narrow band signal from an unknown sound source 1 having an azimuth θ1 and a frequency f1 by a plurality of reception beams B1, B2,. It has a wavy acoustic array sensor 2. On the output side of the acoustic array sensor 2, a frequency for performing a Fourier transform of a received signal of each received beam Bi (i = 1, 2,..., N) to obtain a signal intensity distribution in a frequency space at each sample time The analyzer 3-i is connected. The output side of each frequency analyzer 3-i has a storage device 4-i for storing a signal intensity distribution in a frequency space at each sampling time and an unknown sound source 1 by detecting a signal peak in the signal intensity distribution. A peak detector 6 for detecting the azimuth θ1 and the frequency f1 of the narrowband signal from is connected. That is, regarding the receiving direction of the signal source, a plurality of receiving beams B1, B2, pointing in directions slightly different from each other.
.. Bn indicate that the wave is being received.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来の方法では、少しずつ異なる方位毎に狭帯域信号を分
けて受信・解析するので、受波センサアレイ、周波数分
析器、記憶装置及びピーク検出器等が増加し、データ量
の増加に伴い、ハードウェア資源の問題等が生じてく
る。また何らかの理由で、多数のビームを密に取れない
場合や、ある周波数以下では3つ以上のビームで方位デ
ータを検出できない場合等が有り得るが、上記従来技術
では、このような場合を考慮せずに、信号の受信方位を
算出している。従ってこの場合、方位の算出結果にはか
なりの誤差が含まれ、精度的に満足するような方位が得
られていない。
However, according to the above-mentioned conventional method, a narrow band signal is received and analyzed separately for each direction slightly different from each other, so that a wave receiving sensor array, a frequency analyzer, a storage device, and a peak detector are used. And the like, and with the increase in the amount of data, problems such as hardware resources arise. Also, for some reason, there may be cases where a large number of beams cannot be densely collected, or cases where azimuth data cannot be detected with three or more beams below a certain frequency. However, the above-described conventional technique does not consider such a case. Next, the receiving direction of the signal is calculated. Therefore, in this case, the azimuth calculation result includes a considerable error, and a azimuth satisfying the accuracy is not obtained.

【0005】[0005]

【課題を解決するための手段】本発明に係る狭帯域信号
検出処理における受信方位精測方法は、所定のセクタの
範囲内で互に異なる方位を指向する複数の受波ビームを
用いて狭帯域信号を受信し、前記各受波ビーム毎の受信
信号を周波数分析して得られるビーム対周波数の2次元
空間上の信号強度分布により、各周波数毎に、前記信号
強度分布の極大点で且つ所定の閾値を越えるピーク値を
検出することで前記狭帯域信号の存在を検知し、その受
信方位を精測する方法において、前記信号強度のピーク
が前記セクタの端でない場合には、前記ピークが検出さ
れた受波ビームのビーム番号をB、このBを中心とする
3点のビーム番号を(B−1),B,(B+1)、その
信号強度をそれぞれA- ,A0 ,A+ とすると、受信方
位の精測ビーム番号Bfineを、 Bfine=B+p/2q (但し、p=A+ −A- ,q=2A0 −A+ −A- とす
る)として算出するものである。
According to the present invention, there is provided a method for measuring a receiving direction in a narrow band signal detecting process, wherein a narrow band is detected by using a plurality of receiving beams pointing in different directions within a predetermined sector. A signal is received, and a signal intensity distribution in a two-dimensional space of a beam-to-frequency obtained by frequency-analyzing a reception signal of each of the reception beams is used for each frequency at a maximum point of the signal intensity distribution and at a predetermined point. In the method of detecting the presence of the narrow-band signal by detecting a peak value exceeding the threshold value and precisely measuring the reception direction, when the peak of the signal strength is not at the end of the sector, the peak is detected. B-beam numbers of receive beam, the beam number three points centered on the B (B-1), B , (B + 1), a the signal strength respectively -, a 0, a + to the , Precise beam number of receiving direction The B fine, B fine = B + p / 2q ( where, p = A + -A - to -, q = 2A 0 -A + -A) and calculates a.

【0006】その結果、従来のようにハードウェアを重
くして受信信号のデータ量や演算量を増加させなくと
も、また受波ビームを密に取れない場合においても、セ
クタ内の大部分の範囲において高精度で信号の到来方位
を算出することができる。
As a result, even if it is not necessary to increase the data amount and the amount of calculation of the received signal by making the hardware heavy as in the conventional case, and even if the reception beam cannot be densely provided, most of the area within the sector can be obtained. , The direction of arrival of the signal can be calculated with high accuracy.

【0007】[0007]

【発明の実施の形態】図2は本発明の実施形態に係るセ
ンサアレイ、ビーム番号及びセクタの説明図である。図
2において、センサアレイは、センサ1〜センサmが直
線上に配列されて構成される。なおこの配列間隔は、シ
ステムによって等間隔の場合も不等間隔の場合も有る。
また本実施形態では、各センサはそれぞれ音響波を受波
する音響センサとする。
FIG. 2 is an explanatory view of a sensor array, beam numbers and sectors according to an embodiment of the present invention. 2, the sensor array includes sensors 1 to m arranged in a straight line. The arrangement interval may be equal or unequal depending on the system.
In the present embodiment, each sensor is an acoustic sensor that receives an acoustic wave.

【0008】このセンサアレイは、ある方位範囲(これ
をセクタ、sectorという。図2ではビーム1からビーム
nまでの方位範囲)内で、互に少しずつ異なる方位に指
向特性をもたせた複数のビーム(ビーム1,ビーム2,
…,ビームn)を形成し、連続する方位範囲の音響波を
受波できる。また図2に矢印で示される各ビームは、各
受波ビーム(ビーム幅がある)の中心方位を示すもので
ある。このように本実施形態においては、各ビームの中
心方位を、各ビーム番号の方位又は位置として示してい
る。従ってビーム幅は方位差(角度)の意味を持つ。ま
た図2で、ビーム1とビームnはセクタの端のビーム番
号となる。
This sensor array has a plurality of beams having directional characteristics in directions slightly different from each other within a certain azimuth range (this is referred to as a sector; in FIG. 2, azimuth range from beam 1 to beam n). (Beam 1, Beam 2,
.., Beam n) can be formed and acoustic waves in a continuous azimuth range can be received. Each beam indicated by an arrow in FIG. 2 indicates the center direction of each received beam (having a beam width). As described above, in the present embodiment, the center direction of each beam is indicated as the direction or position of each beam number. Therefore, the beam width has the meaning of the azimuth difference (angle). In FIG. 2, beam 1 and beam n are the beam numbers at the ends of the sector.

【0009】図1は本発明の実施形態に係る狭帯域信号
検出処理における方位精測方法の流れ図であり、図のS
に続く数値はステップ番号を示す。まず図2のセンサア
レイにより各方位のビーム番号毎に受信した狭帯域信号
をFFT(高速フーリエ変換)分析する(図1のS1,
S2)。図3は本発明の実施形態に係るビーム対周波数
空間上のFFT結果の説明図であり、図の横軸はビーム
番号、縦軸は周波数、各格子内のデータは受信信号強度
を示す。
FIG. 1 is a flowchart of an azimuth accurate measurement method in a narrow band signal detection process according to an embodiment of the present invention.
The numerical value following "" indicates a step number. First, an FFT (Fast Fourier Transform) analysis is performed on a narrow band signal received for each beam number in each direction by the sensor array of FIG.
S2). FIG. 3 is an explanatory diagram of the FFT result on the beam versus frequency space according to the embodiment of the present invention. The horizontal axis of the figure indicates the beam number, the vertical axis indicates the frequency, and the data in each lattice indicates the received signal strength.

【0010】次にこのビーム(方位)と周波数の成分か
らなる信号よりピーク値を検出する(S1のS3)。こ
のピークの検出は、各周波数に対する出力のうちで極大
点となっており、且つ出力値が所定の閾値を超えている
点を探すことにより行われる(図1のS4)。図3の格
子内の○印は、ピークが検出された位置を示しており、
○印内の数字の1,2,3は後述するパターン1,パタ
ーン2,パターン3における各ピーク検出位置を示して
いる。
Next, a peak value is detected from the signal composed of the beam (azimuth) and the frequency component (S3 in S1). This peak is detected by searching for a point that is the maximum point in the output for each frequency and whose output value exceeds a predetermined threshold (S4 in FIG. 1). The circles in the grid in FIG. 3 indicate the positions where the peaks were detected.
Numbers 1, 2, and 3 in the circles indicate the peak detection positions in Pattern 1, Pattern 2, and Pattern 3 described later.

【0011】更にピークの得られたビームを含むピーク
周辺の3ビームを用い、放物線補間により精度の高いピ
ーク位置を、後述する3つのパターンのうちのいずれか
を用いて算出する(図1のS4)。即ちピークの得られ
たビームがセクタの端でない場合には、図5で説明する
パターン1の方法を用い(図1のS5)、またセクタの
端の場合には、ピーク周波数の値が、後述するある周波
数f0 より小さいか大きいかを判別し(図1のS6)、
0 未満の場合には図6で説明するパターン2の方法を
用い(図1のS7)、f0 以上の場合には図7で説明す
るパターン3の方法を用いる(図1のS8)。
Further, using three beams around the peak including the beam from which the peak is obtained, a highly accurate peak position is calculated by parabolic interpolation using one of the three patterns described later (S4 in FIG. 1). ). That is, when the beam at which the peak is obtained is not at the end of the sector, the method of pattern 1 described with reference to FIG. 5 is used (S5 in FIG. 1). It is determined whether a certain frequency f 0 is smaller or larger (S6 in FIG. 1),
If it is less than f 0 is (S7 in FIG. 1) pattern using two of the methods described in FIG. 6, in the case of f 0 above using the method of pattern 3 as described in FIG. 7 (S8 of Fig. 1).

【0012】狭帯域信号の受信方位を精測するには、以
下に述べるパターン1,パターン2,パターン3の3つ
の場合に分けて方位算出を行う。最初に、パターン2と
パターン3とを使い分ける場合に用いるある周波数f0
について説明する。図4は本発明の実施形態に係る放物
線の半減半幅ビーム幅W1 の説明図である。いまビーム
番号のビーム1がセクタの端方向を指向しており、音源
がこのセクタの端方向に存在するときに、信号強度は、
ピーク1で最大値Smax となり、ビーム2ではSmax 以
下の値となり、ビーム3では零となることが多い。この
場合、図4のように信号強度がビーム1のSmax とビー
ム3の零を通る放物線を描き、この放物線上で半減半幅
となるビーム幅W1 を求める。ビーム幅W1 は、次式
(3)のように中心方位(以下単にビーム3という)と
ビーム1の中心方位(以下単にビーム1という)との差
(物理的には方位差Δθであるが、ここではビーム番号
の差として取扱う)を、2の平方根で除算した商として
求める。
In order to precisely measure the receiving direction of the narrow band signal, the direction is calculated in three cases of pattern 1, pattern 2 and pattern 3 described below. First, a certain frequency f 0 used when pattern 2 and pattern 3 are properly used.
Will be described. Figure 4 is an explanatory view of a half-width at half maximum beam width W 1 of the parabola according to the embodiment of the present invention. Now, when the beam 1 of the beam number is directed toward the end of the sector and the sound source exists in the end of this sector, the signal strength becomes
The maximum value is Smax at the peak 1, the value is less than Smax for the beam 2, and is often zero for the beam 3. In this case, the signal intensity as shown in FIG. 4 can draw a parabola passing through zero of Smax and the beam 3 of the beam 1, obtaining the beam width W 1 which is a half width at half maximum on the parabola. The beam width W 1 is a difference (physical direction difference Δθ) between the center direction (hereinafter simply referred to as beam 3) and the center direction of beam 1 (hereinafter simply referred to as beam 1) as shown in the following equation (3). , Which is treated here as the difference between beam numbers) as a quotient obtained by dividing by the square root of 2.

【0013】[0013]

【数2】 (Equation 2)

【0014】この半減半幅ビーム幅W1 の物理的意味
は、図4に示すように、信号強度のピーク値Smax のビ
ーム1から放物線に沿って半減値Smax /2のビーム番
号に至るまでのビーム幅を意味する。なお放物線の両側
位置間で求める一般のビーム幅の半分なので半幅とい
う。
The physical meaning of the half-width half-width beam width W 1 is, as shown in FIG. 4, a beam from a beam 1 having a peak value Smax of signal intensity to a beam number having a half-value Smax / 2 along a parabola. Means width. Note that it is called a half width because it is half of a general beam width obtained between both sides of the parabola.

【0015】次にアレイセンサの受信システムにより決
定される要素で(ビーム幅)×(周波数)のディメンシ
ョンを持つ定数Kを設定する。そしてこのKをある周波
数f 0 で除算した商が前記W1 となるようなf0 を次式
(4),(5)より求める。 W1 =K/f0 …(4) f0 =K/W1 …(5) 図3においては、受信周波数1,2,…のうちで、周波
数4がf0 となった例が示されている。そしてセクタの
端(図2のビーム1,またはビームn)にピークが存在
する場合、このピークの周波数がf0 より小さいか、大
きいかによって、後述するパターン2またはパターン3
の方位算出処理を行う。図3の例では、丸印内の数字2
のピーク周波数2はf0 未満で、丸印内の数字3のピー
ク周波数8はf0 以上であることを示している。
Next, a decision is made by the receiving system of the array sensor.
(Beam width) x (frequency) dimension
Set a constant K with options. And this K is a certain frequency
Number f 0The quotient divided by W1F0Is
Determined from (4) and (5). W1= K / f0 … (4) f0= K / W1 (5) In FIG. 3, among the reception frequencies 1, 2,.
Equation 4 is f0Is shown. And of the sector
There is a peak at the end (beam 1 or beam n in FIG. 2)
The frequency of this peak is f0Smaller or larger
Pattern 2 or pattern 3 to be described later
Is performed. In the example of FIG.
Peak frequency 2 of f0Less than the number 3 peak in the circle
Frequency 8 is f0This indicates that this is the case.

【0016】パターン1(セクタの端以外の場合(図3
の丸印内の数字1のピーク)) 図5は本発明の実施形態に係るセクタ端以外の場合の信
号強度分布の説明図である。図5において、ピークが検
出された受波ビームのビーム番号をBとする。このBを
中心とした3点のビーム番号を(B−1),B,(B+
1)とし、その信号強度をそれぞれA- ,A0 ,A+
ると、精測ビーム番号Bfineは次式(6)となる。 Bfine=B+p/2q …(6) ただし、p=A+ −A- q=2A0 −A+ −A- である。もし、q=0のときはBをそのままBfineとす
る。
Pattern 1 (case other than end of sector (FIG. 3
FIG. 5 is an explanatory diagram of a signal intensity distribution in a case other than the sector end according to the embodiment of the present invention. In FIG. 5, the beam number of the received beam at which the peak is detected is B. The beam numbers of three points centered on B are (B-1), B, (B +
1) and, A the signal strength respectively - and A 0, A + take, Seihaka beam number B fine is represented by the following formula (6). B fine = B + p / 2q ... (6) However, p = A + -A - q = 2A 0 -A + -A - it is. If q = 0, B is set to B fine as it is.

【0017】パターン2(セクタの端でピークの周波数
がある周波数f0 未満の場合(図3の丸印内の数字2の
ピーク)) 図6は本発明の実施形態に係るセクタの端でピークの周
波数がf0 未満の場合の信号強度分布の説明図である。
図6において、ピークが検出されたセクタ端のビーム番
号をBとする。この端から3点のビーム番号をB,(B
+1),(B+2)とし、その信号強度を順にA0 ,A
1 ,A2 とすると、精測ビーム番号Bfineは、次式
(7),(8)となる。 セクタ左端の場合:Bfine=B+1−p/2q …(7) セクタ右端の場合:Bfine=B−1+p/2q …(8) ただし、p=A0 −A2 q=2A1 −A0 −A2 である。もし、p≦0またはq≦0のときは、ピークを
削除する。
Pattern 2 (when the frequency of the peak at the end of the sector is lower than a certain frequency f 0 (peak of numeral 2 in the circle in FIG. 3)) FIG. 6 shows the peak at the end of the sector according to the embodiment of the present invention. FIG. 4 is an explanatory diagram of a signal intensity distribution when the frequency of the signal is less than f 0 .
In FIG. 6, the beam number at the sector end where the peak is detected is B. The beam numbers at three points from this end are B, (B
+1) and (B + 2), and their signal intensities are A 0 , A
Assuming that 1 , A 2 , the precise measurement beam number B fine is given by the following equations (7) and (8). At the left end of the sector: B fine = B + 1−p / 2q (7) At the right end of the sector: B fine = B−1 + p / 2q (8) where p = A 0 −A 2 q = 2A 1 −A 0 it is -A 2. If p ≦ 0 or q ≦ 0, the peak is deleted.

【0018】パターン3(セクタの端でピークの周波数
がある周波数f0 以上の場合(図3の丸印内の数字3の
ピーク)) まず、周波数とビーム幅の関係について説明する。ビー
ム幅はセンサの(アレイ長)×(周波数)に反比例す
る。つまり、同じ長さのアレイを使ってビームを形成し
た場合、ビーム幅は、高い周波数については小さくな
り、低い周波数については大きくなる性質がある。従っ
て、図4で説明したある周波数f0 以上では、ピークの
あるビーム番号から2つ以上離れたビーム番号では、同
一音源からの有効な信号検出が困難となる。
Pattern 3 (In the case where the frequency of the peak at the end of the sector is equal to or higher than a certain frequency f 0 (peak of numeral 3 in a circle in FIG. 3)) First, the relationship between the frequency and the beam width will be described. The beam width is inversely proportional to (array length) × (frequency) of the sensor. That is, when a beam is formed using an array of the same length, the beam width tends to be small at high frequencies and large at low frequencies. Therefore, at a certain frequency f 0 or more described with reference to FIG. 4, it is difficult to detect an effective signal from the same sound source at a beam number two or more away from a peak beam number.

【0019】図7は本発明の実施形態に係るセクタの端
でピークの周波数がf0 以上の場合の信号強度分布の説
明図である。まずピークの周波数をfとすると、このピ
ークの周波数(図3の例では周波数8)におけるビーム
番号対信号強度空間上の半減半幅ビーム幅Wb を、次式
(9)により算出する。 Wb =K/f …(9) ここでKは定数で、式(4)においてW1 算出に用いた
定数Kと同一のものである。図7において、ピークが検
出された最端ビームのビーム番号をBとする。この端か
ら3点のビーム番号をB,(B+1),(B+2)と
し、その信号強度を順にA0 ,A1 ,A2 (A0 >A1
>A2 )とする。
FIG. 7 is an explanatory diagram of the signal intensity distribution when the peak frequency at the end of the sector is f 0 or more according to the embodiment of the present invention. First, the frequency of the peaks is f, the half-width at half maximum beam width W b of the beam number to signal strength space at the frequency of the peak (frequency 8 in the example of FIG. 3), is calculated by the following equation (9). In W b = K / f ... ( 9) where K is a constant, it is identical and a constant K used in the W 1 calculated in equation (4). In FIG. 7, the beam number of the end beam at which the peak is detected is B. The beam numbers at three points from this end are B, (B + 1), (B + 2), and the signal intensities are A 0 , A 1 , A 2 (A 0 > A 1 ) in that order.
> A 2 ).

【0020】まず、安全のため、次式(10)が成立す
るか否かを判別し、 A0 −A2 >1000×(A0 −A1 ) …(10) 式(10)が成立する場合、精測ビーム場番号B
fineは、次式(11),(12)とする。 セクタ左端の場合:Bfine=B+0.5 …(11) セクタ右端の場合:Bfine=B−0.5 …(12) また式(10)が成立しない場合、精測ビーム番号B
fineは、pを次式(13)とする式(14),(15)
となる。 p=(A0 −A2 )/(A0 −A1 ) …(13)
First, for safety, it is determined whether or not the following equation (10) holds. A 0 −A 2 > 1000 × (A 0 −A 1 ) (10) Equation (10) holds. In the case, precise beam field number B
fine is expressed by the following equations (11) and (12). In the case of the left end of the sector: B fine = B + 0.5 (11) In the case of the right end of the sector: B fine = B−0.5 (12) In addition, when Expression (10) is not satisfied, the precise measurement beam number B
fine is the expression (14), (15) where p is the following expression (13)
Becomes p = (A 0 −A 2 ) / (A 0 −A 1 ) (13)

【0021】[0021]

【数3】 (Equation 3)

【0022】なお、式(10)の判別を省略して、直接
式(14),(15)の処理をしてもよい。これは式
(10)が成立する場合が少く、成立しない場合が多い
からである。
It is also possible to omit the determination of Expression (10) and directly perform the processing of Expressions (14) and (15). This is because Expression (10) is rarely satisfied and is often not satisfied.

【0023】以上のように本実施形態によれば、従来の
ように受信信号のデータ量や演算量を増加させなくと
も、また受波ビームを密に取れない場合においても、セ
クタ内での受信信号の存在するビームの位置と受信周波
数の値に応じ、3種類のパターンに基づく算出処理を行
うことにより、高精度で信号の到来方向を求めることが
できる。
As described above, according to the present embodiment, even if the data amount and calculation amount of the received signal are not increased as in the related art, and even if the reception beam cannot be densely provided, the reception within the sector can be performed. By performing calculation processing based on three types of patterns according to the position of the beam where the signal exists and the value of the reception frequency, the arrival direction of the signal can be obtained with high accuracy.

【0024】また上記実施形態では受信信号を音響信号
としたが、例えば電磁波など、信号の受信方位、受信周
波数及び受信信号強度を求め得るものであれば、どのよ
うな入力信号でもよい。
In the above embodiment, the received signal is an acoustic signal. However, any input signal such as an electromagnetic wave can be used as long as it can determine the signal receiving direction, the received frequency, and the received signal strength.

【0025】[0025]

【発明の効果】以上のように本発明によれば、所定のセ
クタの範囲内で互に異なる方位を指向する複数の受波ビ
ームを用いて狭帯域信号を受信し、前記各受波ビーム毎
の受信信号を周波数分析して得られるビーム対周波数の
2次元空間上の信号強度分布により、各周波数毎に、前
記信号強度分布の極大点で且つ所定の閾値を越えるピー
ク値を検出することで前記狭帯域信号の存在を検知し、
その受信方位を精測する方法において、前記信号強度の
ピークが前記セクタの端でない場合には、前記ピークが
検出された受波ビームのビーム番号をB、このBを中心
とする3点のビーム番号を(B−1),B,(B+
1)、その信号強度をそれぞれA- ,A0 ,A + とする
と、受信方位の精測ビーム番号Bfineを、 Bfine=B+p/2q (但し、p=A+ −A- ,q=2A0 −A+ −A- とす
る)として算出するようにしたので、その結果、従来の
ようにハードウェアを重くして受信信号のデータ量や演
算量を増加させなくとも、また受波ビームを密に取れな
い場合においても、セクタ内の大部分の範囲において高
精度で信号の到来方位を算出することができる。
As described above, according to the present invention, a predetermined security
Multiple receivers pointing in different directions within the
The narrowband signal using the
Of the beam versus frequency obtained by frequency analysis of the received signal
According to the signal intensity distribution in the two-dimensional space,
Peak at the maximum point of the signal intensity distribution and exceeding a predetermined threshold
Detecting the presence of the narrowband signal by detecting the peak value,
In the method for precisely measuring the receiving direction, the signal strength
If the peak is not at the end of the sector,
The beam number of the detected receiving beam is B, and this B is the center
(B-1), B, (B +
1) The signal strength is A-, A0, A +To be
And the measurement beam number B of the receiving directionfineAnd Bfine= B + p / 2q (where p = A+-A-, Q = 2A0-A+-A-Toss
), So that as a result
The weight of the hardware, and
Without increasing the complexity, it is not possible to obtain
High in most areas within a sector
The arrival direction of the signal can be calculated with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る狭帯域信号検出処理に
おける方位精測方法の流れ図である。
FIG. 1 is a flowchart of an azimuth accurate measurement method in a narrowband signal detection process according to an embodiment of the present invention.

【図2】本発明の実施形態に係るセンサアレイ、ビーム
番号及びセクタの説明図である。
FIG. 2 is an explanatory diagram of a sensor array, a beam number, and a sector according to the embodiment of the present invention.

【図3】本発明の実施形態に係るビーム対周波数空間上
のFFT結果の説明図である。
FIG. 3 is an explanatory diagram of an FFT result on a beam versus frequency space according to the embodiment of the present invention.

【図4】本発明の実施形態に係る放物線の半減半幅ビー
ム幅W1 の説明図である。
It is an explanatory view of a half-width at half maximum beam width W 1 of the parabola according to the embodiment of the present invention; FIG.

【図5】本発明の実施形態に係るセクタの端以外の場合
の信号強度分布の説明図である。
FIG. 5 is an explanatory diagram of a signal intensity distribution in a case other than the end of a sector according to the embodiment of the present invention.

【図6】本発明の実施形態に係るセクタ端でピークの周
波数がf0 未満の場合の信号強度分布の説明図である。
FIG. 6 is an explanatory diagram of a signal intensity distribution when a peak frequency is less than f 0 at a sector end according to the embodiment of the present invention.

【図7】本発明の実施形態に係るセクタ端でピークの周
波数がf0 以上の場合の信号強度分布の説明図である。
FIG. 7 is an explanatory diagram of a signal intensity distribution when a peak frequency at a sector end is equal to or more than f 0 according to the embodiment of the present invention.

フロントページの続き Fターム(参考) 5J070 AA02 AC13 AD06 AD08 AH14 AH19 AH35 5J083 AA05 AC17 AD02 AD17 BE12 BE19 BE43 CA07 CA12 Continued on the front page F term (reference) 5J070 AA02 AC13 AD06 AD08 AH14 AH19 AH35 5J083 AA05 AC17 AD02 AD17 BE12 BE19 BE43 CA07 CA12

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 所定のセクタの範囲内で互に異なる方位
を指向する複数の受波ビームを用いて狭帯域信号を受信
し、前記各受波ビーム毎の受信信号を周波数分析して得
られるビーム対周波数の2次元空間上の信号強度分布に
より、各周波数毎に、前記信号強度分布の極大点で且つ
所定の閾値を越えるピーク値を検出することで前記狭帯
域信号の存在を検知し、その受信方位を精測する方法に
おいて、 前記信号強度のピークが前記セクタの端でない場合に
は、 前記ピークが検出された受波ビームのビーム番号をB、
このBを中心とする3点のビーム番号を(B−1),
B,(B+1)、その信号強度をそれぞれA- ,A0
+ とすると、受信方位の精測ビーム番号Bfineを、 Bfine=B+p/2q (但し、p=A+ −A- ,q=2A0 −A+ −A- とす
る)として算出することを特徴とする狭帯域信号検出処
理における受信方位精測方法。
1. A narrowband signal is received using a plurality of receiving beams pointing in mutually different directions within a predetermined sector, and the reception signal of each receiving beam is obtained by frequency analysis. By the signal intensity distribution on the two-dimensional space of beam versus frequency, for each frequency, the presence of the narrow band signal is detected by detecting a peak value exceeding a predetermined threshold at a maximum point of the signal intensity distribution, In the method for precisely measuring the reception direction, when the peak of the signal intensity is not at the end of the sector, the beam number of the reception beam at which the peak is detected is B,
The beam numbers of the three points around B are (B-1),
B, (B + 1), the signal intensity respectively A -, A 0,
When A +, the Seihaka beam number B fine reception orientations, B fine = B + p / 2q ( where, p = A + -A -, q = 2A 0 -A + -A - to) be calculated as A receiving direction precise measurement method in a narrow band signal detection process, characterized by the following.
【請求項2】 所定のセクタの範囲内で互に異なる方位
を指向する複数の受波ビームを形成するアレイセンサを
用いて狭帯域信号を受信し、前記各受波ビーム毎の受信
信号を周波数分析して得られるビーム対周波数の2次元
空間上の信号強度分布により、各周波数毎に、前記信号
強度分布の極大点で且つ所定の閾値を越えるピーク値を
検出することで前記狭帯域信号の存在を検知し、その受
信方位を精測する方法において、 前記信号強度のピークが前記セクタの端で、このピーク
の周波数が前記アレイセンサの受信システムにより決定
される所定周波数未満の場合には、 前記ピークが検出されたセクタ端のビーム番号をB、こ
の端から3点のビーム番号をB,(B+1),(B+
2)、その信号強度をそれぞれA0 ,A1 ,A2とする
と、受信方位の精測ビーム番号Bfineを、 セクタ左端のときには、Bfine=B+1−p/2q セクタ右端のときには、Bfine=B−1+p/2q (但し、p=A0 −A2 ,q=2A1 −A0 −A2 とす
る)として算出することを特徴とする狭帯域信号検出処
理における受信方位精測方法。
2. A narrow-band signal is received by using an array sensor that forms a plurality of reception beams pointing in different directions within a predetermined sector, and the reception signal for each reception beam is frequency-converted. According to the signal intensity distribution in the two-dimensional space of the beam versus frequency obtained by the analysis, the peak value exceeding the predetermined threshold value at the maximum point of the signal intensity distribution for each frequency is detected, so that the narrow band signal is detected. In the method of detecting the presence and precisely measuring the receiving direction, when the peak of the signal strength is at the end of the sector and the frequency of the peak is lower than a predetermined frequency determined by the receiving system of the array sensor, The beam number at the end of the sector where the peak is detected is B, and the beam numbers at three points from this end are B, (B + 1), (B +
2), when the signal strength respectively A 0, A 1, A 2, the Seihaka beam number B fine reception direction, when the sector left end, when B fine = B + 1-p / 2q sector right end, B fine = B−1 + p / 2q (where p = A 0 −A 2 and q = 2A 1 −A 0 −A 2 ).
【請求項3】 所定のセクタの範囲内で互に異なる方位
を指向する複数の受波ビームを形成するアレイセンサを
用いて狭帯域信号を受信し、前記各受波ビーム毎の受信
信号を周波数分析して得られるビーム対周波数の2次元
空間上の信号強度分布により、各周波数毎に、前記信号
強度分布の極大点で且つ所定の閾値を越えるピーク値を
検出することで前記狭帯域信号の存在を検知し、その受
信方位を精測する方法において、 前記信号強度のピークが前記セクタの端で、このピーク
の周波数が前記アレイセンサの受信システムにより決定
される所定周波数以上の場合には、まず前記アレイセン
サの受信システムにより決定される定数を前記ピークの
周波数で除算した商として、ビーム番号空間上の半減半
幅ビーム幅Wb を求め、 次に前記ピークが検出されたセクタ端のビーム番号を
B、この端から3点のビーム番号をB,(B+1),
(B+2)、その信号強度をそれぞれA0 ,A1 ,A2
とすると、受信方位の精測ビーム番号Bfineを、次式
(1),(2)により算出することを特徴とする狭帯域
信号検出処理における受信方位精測方法。 【数1】
3. A narrow band signal is received by using an array sensor that forms a plurality of reception beams pointing in different directions within a predetermined sector, and the reception signal for each of the reception beams is frequency-converted. According to the signal intensity distribution in the two-dimensional space of the beam versus frequency obtained by the analysis, the peak value exceeding the predetermined threshold value at the maximum point of the signal intensity distribution for each frequency is detected, so that the narrow band signal is detected. In the method of detecting the presence and precisely measuring the receiving direction, when the peak of the signal strength is at the end of the sector and the frequency of this peak is equal to or higher than a predetermined frequency determined by the receiving system of the array sensor, first, as a quotient of the constant determined by the receiving system of the array sensor is divided by the frequency of the peak, determine the half-width at half maximum beam width W b of the beam number space, then the peak B The beam number of the detected sector edge, the beam number three points from the end B, (B + 1),
(B + 2), and their signal intensities are A 0 , A 1 , and A 2 respectively.
Then, an accurate measurement beam number B fine of the reception azimuth is calculated by the following equations (1) and (2). (Equation 1)
【請求項4】 前記狭帯域信号は音響波または電磁波の
信号とすることを特徴とする請求項1から3までのいず
れかの請求項に記載の狭帯域信号検出処理における受信
方位精測方法。
4. The method according to claim 1, wherein the narrow band signal is an acoustic wave or an electromagnetic wave signal.
JP11144989A 1999-05-25 1999-05-25 Precise measurement method of receiving azimuth in narrow band signal detection processing Pending JP2000338215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11144989A JP2000338215A (en) 1999-05-25 1999-05-25 Precise measurement method of receiving azimuth in narrow band signal detection processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11144989A JP2000338215A (en) 1999-05-25 1999-05-25 Precise measurement method of receiving azimuth in narrow band signal detection processing

Publications (1)

Publication Number Publication Date
JP2000338215A true JP2000338215A (en) 2000-12-08

Family

ID=15374901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11144989A Pending JP2000338215A (en) 1999-05-25 1999-05-25 Precise measurement method of receiving azimuth in narrow band signal detection processing

Country Status (1)

Country Link
JP (1) JP2000338215A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178372A (en) * 2005-12-28 2007-07-12 Denso It Laboratory Inc Device for deducing direction of arrival
CN115378473A (en) * 2022-07-27 2022-11-22 中国船舶重工集团公司第七二四研究所 Phased array communication broadband beam alignment method based on narrowband simultaneous multi-beam coverage

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178372A (en) * 2005-12-28 2007-07-12 Denso It Laboratory Inc Device for deducing direction of arrival
US7843388B2 (en) 2005-12-28 2010-11-30 Denso Corporation Arrival direction estimation apparatus
CN115378473A (en) * 2022-07-27 2022-11-22 中国船舶重工集团公司第七二四研究所 Phased array communication broadband beam alignment method based on narrowband simultaneous multi-beam coverage
CN115378473B (en) * 2022-07-27 2024-04-30 中国船舶集团有限公司第七二四研究所 Phased array communication broadband beam alignment method based on narrowband simultaneous multi-beam coverage

Similar Documents

Publication Publication Date Title
US8274432B2 (en) Method and system for detecting signal sources in a surveillance space
US7268728B1 (en) Moving transmitter correlation interferometer geolocation
CN107064861A (en) For estimating the equipment of angle of arrival and equipment for beam forming
CN110837079B (en) Target detection method and device based on radar
CN112782685B (en) Multi-sound-source positioning and sound reconstruction method and system based on MIMO radar
CN112578345A (en) Radar blocking detection method, device, equipment and storage medium
EP0811856A2 (en) Improvements to dipole detection and localization processing
US6714481B1 (en) System and method for active sonar signal detection and classification
JP2000338215A (en) Precise measurement method of receiving azimuth in narrow band signal detection processing
Kaburagi et al. Calibration methods of voltage-to-distance function for an electromagnetic articulometer (EMA) system
Gupta Stray signal source location in far-field antenna/RCS ranges
CN113567916B (en) Correlation interferometer direction finding method, system, equipment and storage medium
KR100980670B1 (en) Method and apparatus for calculating representative azimuth
CN115546526A (en) Three-dimensional point cloud clustering method and device and storage medium
CN111505391B (en) Method for detecting mismatched antenna unit in array antenna
JP2607854B2 (en) Signal tracking method
JPH0882664A (en) Estimation method of signal arrival direction
CN117452342B (en) Foil strip interference detection method based on polarization characteristics
JP2008008781A (en) Device of detecting the number of incoming waves
Szwoch et al. Detection of the incoming sound direction employing MEMS microphones and the DSP
JP2003194919A (en) Super-resolution antenna
JPS5827874B2 (en) Measurement processing method for sonar equipment
US6879543B1 (en) Acoustic processing for estimating size of small targets
JPS60233577A (en) Radiolocator
JP2576044B2 (en) Signal tracking method