JP2000338153A - Method for processing insulating resistance measured value under hot line of power cable - Google Patents

Method for processing insulating resistance measured value under hot line of power cable

Info

Publication number
JP2000338153A
JP2000338153A JP11148515A JP14851599A JP2000338153A JP 2000338153 A JP2000338153 A JP 2000338153A JP 11148515 A JP11148515 A JP 11148515A JP 14851599 A JP14851599 A JP 14851599A JP 2000338153 A JP2000338153 A JP 2000338153A
Authority
JP
Japan
Prior art keywords
insulation resistance
value
measured
noise voltage
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11148515A
Other languages
Japanese (ja)
Inventor
Tadaharu Nakayama
忠晴 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP11148515A priority Critical patent/JP2000338153A/en
Publication of JP2000338153A publication Critical patent/JP2000338153A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make the processing of a measured value out of a true value caused by the mixing of noise voltage and the like, into a value near an insulating resistance true value by determining a representative insulating resistance value from a group of insulating resistance measured values consisting of only positive polarity. SOLUTION: The measurement of insulating resistance is executed to a cable to be measured at time intervals to obtain a group of insulating resistance measured values [RI]. The remeasurement is executed for the insulating resistance measurement from which the insulating resistance measured value of negative polarity was obtained among a group of insulating resistance measured values, and the data of the value of negative polarity is rejected when the insulating resistance measured value of negative polarity is obtained inspite of the remeasurement. A representative insulating resistance value representing a group of insulating resistance measured values is determined from a group of insulating resistance measured values consisting of only positive polarity. Whereby the power cable insulating resistance under hot line can be indicated by a value sufficiently near a true value under the adverse measuring environment that the insulating resistance of an anticorrosion layer is low and the intrusion noise voltage is high, and this can be applied to the monitoring of the insulation under hot line of the high tension power cable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は高圧及び特別高圧
分野で使用する電力ケーブルの絶縁劣化診断に係り、活
線下において直流の低信号電圧を印加して電力ケーブル
の絶縁抵抗を測定して真値に近い絶縁抵抗測定値を得る
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for diagnosing insulation deterioration of a power cable used in a high-voltage or extra-high-voltage field and applying a low DC signal voltage under a live line to measure the insulation resistance of the power cable. It relates to a method of obtaining an insulation resistance measurement value close to the value.

【0002】[0002]

【従来の技術】活線下で電力ケーブルの絶縁抵抗を測定
する実用的な方法として、交流使用電圧に重畳して直流
の低信号電圧を印加し、対象ケーブルのしゃへい端と大
地間に流れる直流漏洩電流を測定して絶縁抵抗を算出す
る技術が知られている。また、この技術において絶縁抵
抗測定中に時として大きな測定誤差が導入されることが
知られている。その原因は次の二つに要約される。
2. Description of the Related Art As a practical method for measuring the insulation resistance of a power cable under a live line, a DC low signal voltage is superimposed on an AC working voltage, and a DC current flowing between a shielded end of a target cable and the ground is applied. 2. Description of the Related Art There is known a technique of calculating an insulation resistance by measuring a leakage current. It is also known in the art that large measurement errors are sometimes introduced during insulation resistance measurement. The causes are summarized in the following two.

【0003】(イ)測定対象ケーブルの防食層絶縁抵抗
値が低い。 (ロ)不定雑音電圧Enが測定系に侵入する。 その理由について説明を加える(詳しくは文献、電学論
B,116巻9号、平成8年P1074〜1082参
照)。防食層絶縁抵抗Rsは一般に1MΩ以下を不良と
しているが、ポリエチレン防食層を持つケーブルでは1
0MΩ以下でも既に不良であり、防食層にピンホール又
は局部劣化箇所を有するとみてよい。この様な場合その
箇所には、しゃへい銅テープと大地間に局部電圧Es
発生している。この局部電圧Esは一般に1V以下であ
り、その値が安定しているのなら、活線下絶縁抵抗測定
装置は積極的に対抗電圧を作成してその電圧を打消した
り、或は計算処理でその影響を打消したりすることで測
定誤差を招来しないようにすることができる。しかし局
部電圧Esが不安定な様相を示して完全な打消しが不可
能な場合は、その残留変動分Enが雑音電圧として測定
回路に侵入して来て測定誤差の原因となるのである。雑
音電圧Enの発生源は局部電圧Esのみにとどまらず他
にも存在するが、どの場合でも測定誤差に及ぼす影響は
防食層絶縁抵抗Rsが小さいほど大きい。さらに正確に
は、主たる測定対象である絶縁層絶縁抵抗RIのRsに対
する比 K=RI/Rsと、雑音電圧Enとの積、KEn
大きいほど測定誤差は大きくなる。これを数式で表すと
次の如くである。
(A) The insulation resistance of the anticorrosion layer of the cable to be measured is low. (B) Undefined noise voltage E n from entering the measurement system. The reason for this will be explained (for details, see Literature, Denki Kagaku B, Vol. 116, No. 9, 1996, pages 1074 to 1082). Although anti-corrosion layer insulation resistance R s are generally bad with 1MΩ or less, 1 cable with polyethylene anticorrosion layer
Even if it is 0 MΩ or less, it is already defective, and it may be considered that the anticorrosion layer has a pinhole or a locally deteriorated portion. In such a case the that point, local voltage E s between shielding copper tape and earth occurs. This local voltage E s is generally at 1V or less, if the value is stable, the live wire under the insulation resistance measuring device or cancel the voltage to create the actively oppose voltage or computing By canceling out the influence, it is possible to prevent a measurement error from occurring. However, if the local voltage E s is a complete cancellation is not possible to indicate the unstable appearance is than it causes measurement errors come to penetrate the measuring circuit residue variation E n is as noise voltage . Source of noise voltage E n is also present in other beyond only the local voltage Es, effect on the measurement error in any case is greater the smaller anticorrosion layer insulation resistance R s. More precisely, the ratio K = R I / R s with respect to R s of the insulating layers insulation resistance R I is a primary measured, the product of the noise voltage E n, the measurement error larger the KE n increases. This is represented by the following equation.

【0004】β=[RI]/RI=E/(E+KEn) ここで RI :絶縁抵抗真値 〔RI〕:誤差を含んで測定された絶縁抵抗値 K :RI/Rs s:防食層絶縁抵抗値 E:直流信号電圧、一般に50V βを90%程度に留めようとすると、KEnはEの10
%以下に収めなければならない。即ち5V以下が望まし
い。絶縁抵抗真値RIが大きくなるほど、防食層絶縁抵
抗値Rsが小さくなるほど、雑音電圧Enが大きくなるほ
どこの条件の達成は難しくなる。
Β = [R I ] / R I = E / (E + KE n ) where R I : insulation resistance true value [R I ]: insulation resistance value including error K: R I / R s R s: anticorrosion layer insulation resistance E: DC signal voltage and generally try Tomeyo a 50 V beta to about 90%, of KE n is E 10
%. That is, 5V or less is desirable. The larger the insulation resistance true value R I is as anticorrosion layer insulation resistance R s is small, the noise voltage E n is about achieving this condition is difficult larger.

【0005】[0005]

【表1】 [Table 1]

【0006】表1及び図1はRI=100,000M
Ω、10,000MΩ、1,000MΩの3ケースにつ
き、雑音電圧Enをパラメータとして測定絶縁抵抗値
〔RI〕と防食層絶縁抵抗値Rsとの関係を計算、図示し
たものである。表1には、仮想雑音電圧En!=ERs
〔RI〕の値も示している。図1において雑音電圧En
主としてプラス極性、従ってβが1より小さい場合を示
しているが、雑音電圧Enはプラス極性のみに限られる
ものでなく、マイナス極性であらわれる場合もある。そ
の場合βは1より大きい数字となり、KEnがマイナス
50Vよりさらにマイナス方向に大きくなるとβは∽通
過してマイナス極性に転ずる。即ち測定絶縁抵抗値〔R
I〕は絶縁抵抗真値RIより小さくなるとは限らず、絶縁
抵抗真値RIより大きく誤測定される場合もあれば、中
にはマイナス極性の測定絶縁抵抗値〔RI〕として計算
される場合もある。雑音電圧Enそのものは0を中心と
して正規分布するような性格のものではないが、プラス
極性となる確率とマイナス極性となる確率は共に等しい
と見てよい。しかし測定絶縁抵抗値〔RI〕がプラス極
性となる確率とマイナス極性となる確率は上記説明によ
り判るように明らかに前者の方が高い。実際に測定され
た結果としてマイナス極性の測定絶縁抵抗値〔RI〕が
得られた場合にそれをどのようにう取扱うかが問題とな
る。この問題を従来の技術では次の様に処理されてい
た。 (イ) マイナス極性の測定絶縁抵抗値〔RI〕が得ら
れた時は、測定絶縁抵抗値〔RI〕≒∞として測定され
たものと考え、無限大のままでは後々の処理ができない
ので、測定装置の分解能で定まる読取可能最大絶縁抵抗
値、例えば20万MΩ、のプラス極性の測定絶縁抵抗値
〔RI〕が測定されたものとする。 (ロ) このような限界高絶縁抵抗値を含む一群のプラ
ス極性ばかりの測定絶縁抵抗値〔RI〕の幾何平均値を
求め、それをもってその一群の代表絶縁抵抗とする。 (ハ) 一群の測定は通常1ヶ月を3等分した上旬、中
旬、下旬といった約10日から成る1旬内で、毎日1回
宛測定したデータで構成されている。即ちその旬の日数
分のデータが集積された後、これらの幾何平均値を求め
てその群の代表絶縁抵抗値とする。
Table 1 and FIG. 1 show that R I = 100,000 M
Ω, 10,000MΩ, every three cases 1,000Emuomega, calculating the relationship between the measured insulation resistance value of the noise voltage E n as a parameter and [R I] and the anticorrosion layer insulation resistance R s, is a depiction. In Table 1, the virtual noise voltage E n! = ER s /
The value of [R I ] is also shown. Noise voltage E n is predominantly positive polarity in FIG. 1, hence β but indicates the smaller than 1, the noise voltage E n is not limited only to the positive polarity, in some cases appearing in negative polarity. In this case beta may be greater than one digit, the KE n increases further the minus direction from minus 50 V beta is starts to negative polarity by ∽ pass. That is, the measured insulation resistance [R
I] is not limited to be smaller than the insulation resistance true value R I, if also be measured erroneously greater than the insulation resistance true value R I, it is calculated as the measured insulation resistance of the negative polarity [R I] Some In some cases. Although not character like noise voltage E n itself is normally distributed around a 0, the probability that the probability and negative polarity as a positive polarity may be considered are equal. However, the probability that the measured insulation resistance value [R I ] becomes a positive polarity and the probability that the measured insulation resistance value becomes a negative polarity are clearly higher in the former as can be understood from the above description. When a measured insulation resistance value [R I ] of negative polarity is obtained as a result of actual measurement, how to handle it is a problem. This problem has been dealt with in the prior art as follows. (B) When the measured insulation resistance [R I ] of the negative polarity is obtained, it is considered that the measurement was performed as the measured insulation resistance [R I ] ≒ ∞. It is assumed that the maximum readable insulation resistance [R I ] of the maximum readable insulation resistance determined by the resolution of the measuring device, for example, 200,000 MΩ, is measured. (B) A geometric mean value of a group of measured insulation resistance values [R I ] of only a group of positive polarities including such a critical high insulation resistance value is obtained, and is used as a representative insulation resistance of the group. (C) A group of measurements usually consists of data measured once a day within a period of about 10 days, such as the early, middle, and late quarters of a month. That is, after data for the number of days in the season is accumulated, these geometric average values are obtained and set as representative insulation resistance values of the group.

【0007】[0007]

【発明が解決しようとする課題】前述のような絶縁抵抗
測定値の処理方法により、特に問題を生ずることなく、
大概の高電圧ケーブルの活線下絶縁監視の目的は充分に
果して来た。しかし測定対象ケーブルの使用電圧領域が
特別高圧領域に及ぶようになると、測定すべき絶縁抵抗
の値も高域に及ぶようになる。次表は本発明者が用いて
いる、各種電圧領域における架橋ポリエチレン絶縁電力
ケーブルの良、不良を別ける絶縁抵抗しきい値を示すも
のである。
With the above-described method of processing the measured insulation resistance, no particular problem occurs.
The purpose of monitoring under-line insulation of most high-voltage cables has been well fulfilled. However, when the operating voltage range of the cable to be measured extends to an extra high voltage range, the value of the insulation resistance to be measured also extends to a high range. The following table shows the insulation resistance threshold values used by the inventor to distinguish good and bad crosslinked polyethylene insulated power cables in various voltage ranges.

【0008】電力ケーブル絶縁特性の良、不良を別ける
絶縁抵抗しきい値 公称使用電圧 しきい値 (高圧域) 3KV 1,000MΩ 6KV 3,000MΩ (特別高圧域) 10KV 10,000MΩ 20KV 30,000MΩ 表に示すように高圧域ケーブルと特別高圧域ケーブルで
は、測定すべき絶縁抵抗値に1桁の差があるので、次の
ような問題が生じて来た。従来と同じ測定環境、即ち同
等の雑音電圧発生、同等の防食層絶縁抵抗のもとで、直
流信号電圧Eを50Vに維持し、しきい値付近の高絶縁
抵抗を監視すると、K値が1桁増加するので測定誤差が
著しく増加する。現実には夏季の測定で防食層絶縁抵抗
が1MΩ以下に低下しているような場合、冬季の測定で
は10,000MΩ以下の値を示していたケーブルの絶
縁抵抗が、しばしば1,000MΩ以下の値を示し、真
に絶縁性能が低下しているのか、或は単なる誤差測定結
果なのかの区別がつかず疑心暗鬼を生ずる。場合によっ
ては実際よりも逆に高い絶縁抵抗値を示していたと見ら
れる例も現われた。上述の状況をSimulation
(シミュレーション)により解明した結果を以下に示
す。
Insulation resistance threshold value for distinguishing good and bad power cable insulation characteristics Nominal working voltage threshold value (high voltage range) 3KV 1,000MΩ 6KV 3,000MΩ (special high voltage range) 10KV 10,000MΩ 20KV 30,000MΩ As shown in (1), since the insulation resistance to be measured has an order of magnitude difference between the high voltage range cable and the special high voltage range cable, the following problems have occurred. When the DC signal voltage E is maintained at 50 V and the high insulation resistance near the threshold is monitored under the same measurement environment as before, that is, under the same noise voltage generation and equivalent corrosion protection layer insulation resistance, the K value becomes 1 Since the number of digits increases, the measurement error increases significantly. In reality, when the corrosion resistance of the anticorrosion layer is reduced to 1 MΩ or less in the summer measurement, the insulation resistance of the cable, which has shown a value of 10,000 MΩ or less in the winter measurement, is often 1,000 MΩ or less. And it cannot be distinguished whether the insulation performance is truly lowered or just an error measurement result, resulting in doubt. In some cases, some cases appeared to show a higher insulation resistance value than was actually the case. Simulation of the above situation
The results clarified by (simulation) are shown below.

【0009】 Simulationの条件 対象ケーブル :10KV CVケーブル 絶縁抵抗劣化特性 :原点絶縁抵抗 10万MΩ 劣化状況 1旬(10日)毎に新たに10万MΩの faultが1ヶ所加わる。Conditions of Simulation Target Cable: 10 KV CV Cable Insulation Resistance Degradation Characteristics: Insulation Resistance of Origin: 100,000 MΩ Degradation Condition One 100,000 MΩ fault is newly added every season (10 days).

【0010】 この間を対数的に正弦変化するものを標準とし、それに
さらに倍、半分の振幅変化を重畳する。
[0010] During this period, a logarithmic sine change is set as a standard, and a double or half amplitude change is superimposed thereon.

【0011】 雑音電圧 :+10mV、+3mV、+1mV、+0.3mV 0 :−0.3mV、−1mV、−3mV、−10mV 重み付け無しで9種の雑音電圧をアトランダムに取り入
れる。
Noise voltage: +10 mV, +3 mV, +1 mV, +0.3 mV 0: −0.3 mV, −1 mV, −3 mV, −10 mV Nine kinds of noise voltages are taken in at random without weighting.

【0012】期間 :第1年度冬季第1旬よ
り始まり、第3年度秋季第3旬に終る、全3年、全10
8旬 Simulation結果 代表としてしきい値10,000MΩ近辺に絶縁抵抗R
I値が低下している第1年度冬季第9旬から春季第2旬
にわたる期間での毎日の測定環境と測定絶縁抵抗値〔R
I〕を表2及び図2に示す。
Period: Beginning in the first winter of the first year and ending in the third autumn of the third year, for a total of three years, for a total of ten
August Simulation result Insulation resistance R near the threshold of 10,000 MΩ as a representative
Daily measurement environment and the measurement insulation resistance value measured over the first year Winter ninth season that I value is decreased across the second season Spring [R
I ] is shown in Table 2 and FIG.

【0013】[0013]

【表2】 [Table 2]

【0014】測定絶縁抵抗値〔RI〕がマイナス値で得
られた場合は〔RI〕=20万MΩとして図2上に示し
ている。しかし表2に見られる如く、毎日の測定がマイ
ナスとなっていなくても、実はマイナスの雑音電圧が侵
入していて、真値より高い値がプラスの有効測定値とし
て採上げられることがしばしばあることが判る。このよ
うな偽わりの高絶縁抵抗値も含んで計算した各旬の平均
絶縁抵抗(図2上では二重丸の点で示した)が比較的絶
縁抵抗真値に近く示されたとしても、それは偶然の産物
にすぎない。図3には全Simulation期間での
各旬平均絶縁抵抗値の変化を、絶縁抵抗真値の変化曲線
と共に示した。本Simulation例では測定絶縁
抵抗値〔RI〕が真値より高く示される場合が多いこと
が判る。防食層絶縁抵抗の低くなる夏期にはプラス誤差
が増大している。もちろんこのような状況は本Simu
lationの場合に限定されることで、すべてのケー
ブルの劣化に当てはまるわけではないが、マイナスの雑
音電圧の侵入結果の測定値に及ぼす影響に対して、従来
技術による測定値処理方法は如何にも無策で、偶然の成
行きに任せすぎであり不合理であることは明らかであ
る。この発明は、雑音電圧の混入等により絶縁抵抗真値
から外れて処理されていた測定絶縁抵抗値を、絶縁抵抗
真値に近い値へ処理できる、電力ケーブルの活線下絶縁
抵抗測定値の新規な処理方法を提供することである。
When the measured insulation resistance value [R I ] is obtained as a negative value, it is shown in FIG. 2 on the assumption that [R I ] = 200,000 MΩ. However, as shown in Table 2, even if the daily measurement is not negative, a negative noise voltage actually penetrates, and a value higher than the true value is often taken as a positive effective measurement value. You can see that. Even if the average insulation resistance (indicated by the double circles in FIG. 2) calculated including the false high insulation resistance values is relatively close to the true insulation resistance value, It is only a coincidence. FIG. 3 shows the change of each seasonal average insulation resistance value during the entire simulation period together with a change curve of the true insulation resistance value. In this simulation example, it is found that the measured insulation resistance value [R I ] is often higher than the true value. The positive error increases in summer when the corrosion resistance of the anticorrosion layer decreases. Of course, this situation is
In the case of the limitation of the case of the present invention, the influence of the negative noise voltage on the measured value of the intrusion result is not limited by the prior art. Obviously, it is unreasonable, too much left to chance, and irrational. The present invention provides a new method of measuring insulation resistance under a live line of a power cable, which can process a measured insulation resistance value that has been deviated from a true insulation resistance value due to a mixed noise voltage or the like to a value close to the true insulation resistance value. Is to provide a simple processing method.

【0015】[0015]

【課題を解決するための手段】本発明の電力ケーブルの
活線下絶縁抵抗測定値の処理方法は、測定対象ケーブル
に対して絶縁抵抗測定を、時間間隔を経て実行して該測
定対象ケーブルに関する一群の絶縁抵抗測定値を得る段
階と、一群の絶縁抵抗測定値のうちマイナス極性の絶縁
抵抗測定値を得た絶縁抵抗測定に対して再測定を行なう
段階と、再測定にかかわらずマイナス極性の絶縁抵抗測
定値を得る場合は、そのデータは棄却する段階と、測定
対象ケーブルに対してプラス極性のみからなる前記一群
の絶縁抵抗測定値から該一群の絶縁抵抗測定値を代表す
る代表絶縁抵抗値を決定する段階と、を含む。さらに、
前記代表絶縁抵抗値を決定する段階は、仮想雑音電圧を
それぞれの絶縁抵抗測定値毎に計算し、仮想雑音電圧対
絶縁抵抗測定値の関係曲線を最小自乗法により求める段
階と、曲線で求められるそれぞれの仮想雑音電圧に対応
する較正絶縁抵抗値と、測定絶縁抵抗値の大小関係を比
較し、小なる方の値をもってその仮想雑音電圧での仮想
代表絶縁抵抗値とする段階と、一群の絶縁抵抗測定値に
関係する平均防食層絶縁抵抗下による値に前記仮想雑音
電圧を較正し、前記一群に関して決定される所定限度値
以下の較正仮想雑音電圧に対応する前記仮想代表絶縁抵
抗値を棄却する段階と、残留した前記仮想代表絶縁抵抗
値の内最大の値を前記一群の絶縁抵抗測定値を代表する
代表絶縁抵抗測定値と決定する段階と、を含む。
SUMMARY OF THE INVENTION According to the present invention, there is provided a method for processing a measured value of insulation resistance under a live line of a power cable, wherein the insulation resistance measurement is performed on the cable to be measured with a time interval. Obtaining a group of insulation resistance measurement values, performing a re-measurement on the insulation resistance measurement having obtained a negative polarity insulation resistance measurement value of the group of insulation resistance measurement values, When obtaining the insulation resistance measurement value, the data is discarded, and a representative insulation resistance value representing the one group of insulation resistance measurement values is obtained from the group of insulation resistance measurement values consisting of only the positive polarity for the cable to be measured. Determining. further,
The step of determining the representative insulation resistance value includes calculating a virtual noise voltage for each insulation resistance measurement value, obtaining a relation curve between the virtual noise voltage and the insulation resistance measurement value by the least square method, and determining the curve. Comparing the calibration insulation resistance value corresponding to each virtual noise voltage with the measured insulation resistance value, and using the smaller value as a virtual representative insulation resistance value at that virtual noise voltage; Calibrating the virtual noise voltage to a value below the average corrosion protection layer insulation resistance related to the resistance measurement and rejecting the virtual representative insulation resistance value corresponding to a calibrated virtual noise voltage below a predetermined limit determined for the group. And determining a maximum value of the remaining virtual representative insulation resistance values as a representative insulation resistance measurement value representing the group of insulation resistance measurement values.

【0016】[0016]

【発明の実施の形態】従釆技術で不合理と認められるの
は、マイナスの測定絶縁抵抗値〔RI〕が得られた時
に、これをプラス限界高絶縁抵抗値、例えば20万M
Ω,に置換して平均値算出に用いていることである。こ
れは、プラスの雑音電圧が侵入したために真値より極め
て低く測定されている他のデータとつり合って平均値を
真値に近づける効果はあるが、その結果の程度、即ち行
き過ぎか或は不足かは全くの偶然性に左右され、結果が
どの様になるか予測することは出来ない。そこでこの不
合理性を排除し、真値に近付くための第1歩として、再
測定という手段を採用する。即ちマイナスの測定絶縁抵
抗値〔RI〕が測定されたケーブルはマークしておき、
ケーブル群の一巡の測定が終った後当該ケーブルに立返
り測定を繰返すこととする。再測定によりプラス極性の
測定絶縁抵抗値〔RI〕を得ることを期待している。再
度の測定でもマイナス極性の測定絶縁抵抗値〔RI〕が
得られる確率は依然として存在するが、Simulat
ion結果ではプラスに転換する確率の方が高かった。
それでも再度マイナス測定絶縁抵抗値〔RI〕を得た場
合どうするかには二つの考え方がある。一つは三度目の
測定に挑戦すること。もう一つはそのケーブルの測定デ
ータを棄却することである。前者は測定対象ケーブルの
数量と残存する測定余裕時間とで実施の可否が決まる。
後者は、実用的な対処法といえよう。再々度の測定で又
もマイナス極性の結果が得られた時は一連のデータは棄
却する。前述のように処理を施したSimulatio
n結果を図4に示す。予測されたように、プラス極性の
測定絶縁抵抗値〔RI〕ばかりの再平均値は図3の場合
よりも低下している。しかし全プロット点がRIの真値
変化曲線より下方に位置するのではなく、依然として測
定絶縁抵抗値〔RI〕の再平均値が絶縁抵抗真値R1より
高く示されているケースが多数存在することも判る。皮
肉にもこのような状況故に図4は図3よりも真値の劣化
特性に近い変化曲線を示しているように見える。これも
既に行った解析で示しているように、測定絶縁抵抗値
〔RI〕がプラス極性で得られていても実はマイナス極
性の雑音電圧Enが侵入していて、絶縁抵抗真値RIより
高い測定絶縁抵抗値〔RI〕がプラス極性で示されるば
かりにそれを排除することが出来ず、平均値計算に折込
まれてしまったためである。従って単純に、プラス極性
ばかりの測定絶縁抵抗値〔RI〕の集積を一群として得
て、その中での最高の測定絶縁抵抗値〔RI〕をもって
その群の代表絶縁抵抗として採上げれば良いというよう
な考えは成立しない。絶縁抵抗真値RIより高い測定絶
縁抵抗値〔RI〕をどのようにして見つけ、排除するか
ということが次の課題となる。前述の再測定の実施はハ
ードによる手段であったが、次の手段はソフトによる処
理方法で、必要な基礎データは既に手許に揃っている。
これを次の如く処理する。 (1)仮想雑音電圧En! を各測定絶縁抵抗値〔RI
毎に求める。計算式は次の通りである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS It is unreasonable in the prior art that, when a negative measured insulation resistance value [R I ] is obtained, the measured insulation resistance value is added to a positive limit high insulation resistance value, for example, 200,000 M.
Ω, which is used for calculating the average value. This has the effect of making the average value closer to the true value in proportion to other data measured very low below the true value due to the intrusion of the positive noise voltage, but the degree of the result, that is, overshoot or lack It depends entirely on chance, and you can't predict what the result will be. Therefore, as a first step for eliminating this irrationality and approaching the true value, a means called re-measurement is adopted. That is, the cable where the negative measured insulation resistance value [R I ] is measured is marked,
After the round of measurement of the cable group is completed, the return measurement is repeated for the cable. It is expected that the measurement insulation resistance value [R I ] of the positive polarity is obtained by the re-measurement. Although there is still a probability that the measured insulation resistance value [R I ] of the negative polarity can be obtained even in the second measurement, Simulat
In the ion results, the probability of turning positive was higher.
Nevertheless, there are two ideas for what to do if the negative measured insulation resistance [R I ] is obtained again. One is to try the third measurement. Another is to reject the measurement data of the cable. In the former case, the feasibility is determined by the number of cables to be measured and the remaining measurement allowance time.
The latter is a practical solution. If the result of measurement again shows a negative polarity result, the series of data is rejected. Simulatio processed as described above
The results are shown in FIG. As expected, the re-averaged value of only the measured insulation resistance [R I ] of the positive polarity is lower than in the case of FIG. But all plotted points rather than positioned lower than the true value change curve R I, cases still re average value of the measured insulation resistance value [R I] are shown above the insulation resistance true value R 1 number We know that it exists. Ironically, due to such a situation, FIG. 4 seems to show a change curve closer to the true value deterioration characteristic than FIG. As is also shown in the analysis already carried out, measured insulation resistance value [R I] is the noise voltage E n of the obtained even though actually negative polarity positive polarity has penetrated the insulation resistance true value R I This is because the higher measured insulation resistance value [R I ] could not be excluded because it was indicated with a positive polarity, and was included in the average value calculation. Therefore, simply, the integration of the measured insulation resistance values [R I ] having only the positive polarity is obtained as a group, and the highest measured insulation resistance value [R I ] among them is taken as the representative insulation resistance of the group. Such an idea does not hold. The next task is how to find and eliminate the measured insulation resistance value [R I ] that is higher than the true insulation resistance value R I. The above-mentioned remeasurement was performed by hardware, but the next method is a processing method by software, and the necessary basic data is already available.
This is processed as follows. (1) virtual noise voltage E n! Is the measured insulation resistance value [R I ]
Ask every time. The calculation formula is as follows.

【0017】En!=ERs/〔RI〕 仮想雑音電圧En!は侵入雑音電圧Enそのものではな
い。雑音電圧Enが判明すれば測定絶縁抵抗値〔RI〕か
ら絶縁抵抗真値R1を計算で求めることができるが、雑
音電圧Enは如何にしても求めることは不可能であるの
で、これに代わるものとして現実に取り扱える数値とし
て仮想雑音電圧En!を用い、これをさらに次のステッ
プで役立てようとするのである。雑音電圧Enと仮想雑
音電圧En!との間には次の関係がある。(誘導は省
略) En=En!(RI−〔RI〕)/RI 故に測定絶縁抵抗値〔RI〕が絶縁抵抗真値RIに比して
極めて小さく測定されたような場合は仮想雑音電圧En
!は雑音電圧Enに極めて近い。或いは測定絶縁抵抗値
〔RI〕が絶縁抵抗真値R1に極めて近く測定された場合
は、仮想雑音電圧En!はそこそこの値で計算されてい
ても、雑音電圧Enは0に近い。ここで表1に戻って雑
音電圧Enと仮想雑音電圧En!との関係の実数を調べる
と、或る防食層絶縁抵抗のもとで、任意の二つの測定絶
縁抵抗値〔RI〕では仮想雑音電圧En!同士の差電圧は
雑音電圧En同士の差電圧に等しい。故に一方の測定絶
縁抵抗値〔RI〕が絶縁抵抗真値RIに等しいか近似であ
る時は、他方の測定絶縁抵抗値〔R1〕を生ずるに至っ
た雑音電圧Enは二者の仮想雑音電圧En!同士の差電圧
に等しいか近似であることが判る。上述したような雑音
電圧Enと仮想雑音電圧En!との関係から、仮想雑音電
圧En!を求めることで雑音電圧Enの実数を推測するこ
とができそうには見えるが、Simulationだか
ら判ることであって、現実には測定絶縁抵抗値〔RI
と絶縁抵抗真値R1の大小関係は簡単に判らない。よっ
て仮想雑音電圧En!と雑音電圧Enとの定性的な関係を
承知しておくことのみにとどめて、雑音電圧Enに代り
以後の取扱をすすめる際の唯一の指標電圧として仮想雑
音電圧En!を用いる。 (2)仮想雑音電圧En!対絶縁抵抗測定値〔RI〕の関
係曲線を作成する。これからのステップはすべて絶縁抵
抗真値RIより高い絶縁抵抗測定値〔RI〕を排除するこ
とを目指すものである。先ず仮想雑音電圧En!と測定
絶縁抵抗値〔RI〕との関係を最小自乗法により求め
る。各仮想雑音電圧En!及びそれに対応する測定絶縁
抵抗値〔RI〕はすべてそれらの自然対数を求め仮想雑
音電圧En!の平均値及び測定絶縁抵抗値〔RI〕の平均
値を得ると共にこれら平均値を通り、両対数方眼上で通
常右下りの直線となる曲線を画く。測定絶縁抵抗値〔R
I〕自体もプロットすると曲線の上下に散らばる。この
曲線はそのグループの幾何平均防食層絶縁抵抗値(Rs
平均)下における、仮想雑音電圧En!と測定絶縁抵抗
値〔RI〕との関係を示すものと見てよい。 (3)前記関係曲線より上方にプロットされた測定絶縁
抵抗値〔RI〕は誤差含みの疑が濃いものとしてこれを
棄却する。仮想雑音電圧En!対測定絶縁抵抗値〔RI
関係曲線より上方にプロットされている測定絶縁抵抗値
〔RI〕は、雑音電圧Enがマイナス値で侵入した結果の
産物である疑いが濃厚である。全体として右下がりであ
るのは、防食層絶縁抵抗Rsが低下する影響を強く受け
る結果であって、プロット点が曲線より上部にあるのは
防食層絶縁抵抗Rsが平均値より高いことを原因とする
場合も含むが、今はマイナス雑音電圧Enの侵入により
生じた絶縁抵抗真値RIより高い測定絶縁抵抗値〔RI
を発見し排除することを目指しているので、その疑いの
ある曲線より上部に存在する測定絶縁抵抗値〔R1〕は
すべて棄却する。棄却した測定絶縁抵抗値〔RI〕に代
りその仮想雑音電圧En!に対応する関係曲線上の較正
測定絶縁抵抗値〔RI〕を代表としてあてる。次に関係
曲線より下方に存在する測定絶縁抵抗値〔RI〕はすべ
て、代表として有効する。以上を言葉を変えて表すと、
同一仮想雑音電圧En!軸上で仮想雑音電圧En!対測定
絶縁抵抗値〔RI〕関係曲線上で求められる較正測定絶
縁抵抗値〔RI〕と、もとの絶縁抵抗真値RIとの大小関
係を比較し、小さい値をもってその仮想雑音電圧での代
表絶縁抵抗値とする。以後の取扱いのためにはここで残
留した測定絶縁抵抗値〔RI〕を大きい値から小さい値
へ並べ直しておけば良いであろう。最も大きい値を示し
ている測定絶縁抵抗値〔RI〕をもってその群(旬)の
代表絶縁抵抗とするのはまだ早すぎる。偽わりの高絶縁
抵抗(RIより高い〔RI〕)がまだまだ残留しているで
あろうからである。 (4)較正仮想雑音電圧しきい値を一群毎に設定し、測
定絶縁抵抗値〔RI〕棄却のための検定を行う。
[0017] E n! = ER s / [R I] virtual noise voltage E n! Not its intrusion noise voltage E n. Although noise voltage E n can be determined by calculating the insulation resistance true value R 1 from the measured insulation resistance value [R I] If it turns out, because the noise voltage E n is it is impossible to determine even if the how, virtual noise voltage E n as a numerical value that can be handled in reality as an alternative to this! And try to use this in the next step. Noise voltage E n and the virtual noise voltage E n! Has the following relationship: (Induction omitted) E n = E n! (R I - [R I]) / R If I thus measured the insulation resistance value [R I] is as measured extremely small as compared with the insulation resistance true value R I is virtual noise voltage E n
! Very close to the noise voltage E n it is. Or measured when the insulation resistance value [R I] is very close measured insulation resistance true value R 1, the virtual noise voltage E n! Even though it is calculated by the modest value, the noise voltage E n is close to zero. Returning now to Table 1 noise voltage E n and the virtual noise voltage E n! Examining the real relationship with, under certain anticorrosion layer insulation resistance, any two measured insulation resistance value [R I] In the virtual noise voltage E n! Differential voltage between the equal to the difference voltage between the noise voltage E n. Therefore, when one of the measured insulation resistance values [R I ] is equal to or close to the true insulation resistance value R I , the noise voltage En that led to the other measured insulation resistance value [R 1 ] is equal to the two. virtual noise voltage E n! It can be seen that the difference voltage is equal or approximate. Virtual noise voltage E n and the noise voltage E n as described above! From the relationship between the virtual noise voltage E n! Appears to likely be able to infer the real noise voltage E n by obtaining, there is Simulation So seen that, measured insulation resistance value is actually [R I]
It is not easy to determine the relationship between the value and the true value of the insulation resistance R 1 . Therefore, the virtual noise voltage E n! And is kept only to be kept aware of the qualitative relationship between the noise voltage E n, virtual noise voltage E n as the only indicator voltage at the time to promote an alternative after handling the noise voltage E n! Is used. (2) the virtual noise voltage E n! A relation curve of the measured insulation resistance [R I ] is created. All of the following steps aim to eliminate insulation resistance measurements [R I ] that are higher than the true insulation resistance value R I. First virtual noise voltage E n! And the measured insulation resistance value [R I ] is determined by the least squares method. Each virtual noise voltage E n! And the virtual noise voltage E n measured insulation resistance value [R I] asked all their natural logarithms corresponding to it! And the average value of the measured insulation resistance values [R I ] are obtained, and a curve which passes through these average values and which is usually a straight line to the right on a log-logarithmic grid is drawn. Measure insulation resistance [R
I ] itself is scattered above and below the curve when plotted. This curve shows the geometric mean corrosion protection layer insulation resistance (R s
Average) in the lower, the virtual noise voltage E n! And the measured insulation resistance [R I ]. (3) The measured insulation resistance value [R I ] plotted above the relationship curve is rejected because it is highly suspected of including an error. Virtual noise voltage E n! Insulation resistance against measurement [R I ]
Measured insulation resistance values are plotted above the relational curve [R I] is suspected noise voltage E n is a product of the result of entering a minus value is concentrated. The downward slope as a whole is the result of the strong influence of the decrease in the corrosion protection layer insulation resistance R s . The plot point above the curve indicates that the corrosion protection layer insulation resistance R s is higher than the average value. Although also a case caused, high measurement insulation resistance value than the insulation resistance true value R I caused by invasion of the negative noise voltage E n is now [R I]
Therefore, all the measured insulation resistance values [R 1 ] above the suspected curve are rejected. The virtual noise voltage E n instead rejected measurements insulation resistance value [R I]! The calibration measurement insulation resistance value [R I ] on the relationship curve corresponding to the above is used as a representative. Next, all measured insulation resistance values [R I ] below the relationship curve are valid as representatives. Putting the above in different words,
The same virtual noise voltage E n! Virtual noise voltage E n on the axis! Vs. measured insulation resistance value [R I] calibration measurements insulation resistance value determined on the relational curve between [R I], compares the magnitude relation between the original insulation resistance true value R I, its virtual noise voltage with a smaller value Is the representative insulation resistance value. For subsequent handling, the remaining measured insulation resistance [R I ] may be rearranged from a large value to a small value. It is still too early to use the measured insulation resistance value [R I ] showing the largest value as the representative insulation resistance of the group (season). False fairly high insulation resistance (higher R I [R I]) is because it will have still remained. (4) A calibration virtual noise voltage threshold is set for each group, and a test for rejection of the measured insulation resistance value [R I ] is performed.

【0018】群の幾何平均防食層絶縁抵抗Rs平均値を
次式で求める。(別にそれぞれのRsから求めても同じ
である) Rs平均値=(En!平均値×〔RI〕平均値)/E 較正仮想雑音電圧En!を各測定絶縁抵抗値〔RI〕及び
それに対応する仮想雑音電圧En!毎に次式で求める。
[0018] The geometric mean anti-corrosion layer insulation resistance R s mean value of groups obtained by the following equation. (The same also obtained from separate each R s) R s mean = (E n! Average × [R I] mean) / E calibrated virtual noise voltage E n! Each measured insulation resistance value [R I] and the virtual noise voltage E n corresponding to it! The following equation is used for each calculation.

【0019】 較正仮想雑音電圧En!=En!/(Rs平均値/Rs) ここでRsはその測定絶縁抵抗値〔RI〕を測定した時の
実測防食層絶縁抵抗Rsである。較正仮想雑音電圧En
を次式で示す群毎の仮想雑音電圧En!しきい値と比較
し、較正仮想雑音電圧En!がしきい値より小さけれ
ば、これに対応する測定絶縁抵抗値〔RI〕は棄却す
る。
[0019] The calibration virtual noise voltage E n! = E n ! / A (R s average / R s) where R s is measured anticorrosion layer insulation resistance R s when measuring the measured insulation resistance value [R I]. Calibration virtual noise voltage E n!
Is given by the following equation, and the virtual noise voltage En n ! It is compared with the threshold value, calibration virtual noise voltage E n! Is smaller than the threshold value, the corresponding measured insulation resistance value [R I ] is rejected.

【0020】 En!しきい値=En!平均値/log〔RI〕平均値 本式の分母となるlog〔RI〕平均値はSimula
tionから得られた全くの経験式で、物理的な意味は
無い。Simulationにより、絶縁抵抗真値RI
より高い測定絶縁抵抗値〔RI〕を発見するのに適当な
分母数は10〜2で、しかも固定数では成績不良で不可
であること、測定絶縁抵抗値〔RI〕が大きい程大きく
なる値であることが好ましいことが判明した。log
〔RI〕平均値はこの要請にもっとも簡単に応えられる
関数として採用したもので、今後の実施使用の経験から
或は改められることがあろう。かくして残留した測定絶
縁抵抗値〔RI〕の中で最も高い値をもって、その群
(旬)を代表する絶縁抵抗処理値と決定する。
[0020] E n! Threshold = E n! Average value / log [R I ] average value The log [R I ] average value which is the denominator of this formula is Simula
This is a purely empirical formula obtained from the Tion and has no physical meaning. By simulation, the insulation resistance true value R I
A suitable denominator for finding a higher measured insulation resistance [R I ] is 10 to 2, and a fixed number is not acceptable due to poor results. The larger the measured insulation resistance [R I ], the larger the value. It has been found that a value is preferred. log
The [R I ] average has been adopted as the function that most easily responds to this requirement, and may be or may be modified from experience in practical use. The highest value of the remaining measured insulation resistance values [R I ] is determined as the insulation resistance treatment value representative of the group (season).

【0021】実施例 表3〜表5に、RI=100,000MΩ、10,00
0MΩ、1,000MΩの近辺において実施した、絶縁
抵抗処理値決定のためのSimulationの具体例
を示す。
Examples Tables 3 to 5 show that R I = 100,000 MΩ, 10,000
A specific example of a simulation for determining an insulation resistance processing value performed near 0 MΩ or 1,000 MΩ will be described.

【0022】[0022]

【表3】 [Table 3]

【0023】[0023]

【表4】 [Table 4]

【0024】[0024]

【表5】 [Table 5]

【0025】図5〜図7は表3〜表5に対応する仮想雑
音電圧En!対絶縁抵抗測定値〔RI〕の関係を示す。図
上で二重丸で示した測定絶縁抵抗値〔RI〕が本法を適
用して決定されたそのグループを代表する絶縁抵抗処理
値である。
[0025] FIGS. 5 to 7 virtual noise voltage E n corresponding to Tables 3 to 5! The relationship between the measured insulation resistance [R I ] is shown. The measured insulation resistance value [R I ] indicated by a double circle in the figure is the insulation resistance treatment value representative of the group determined by applying the present method.

【0026】図8は全Simulation結果を示す
測定絶縁抵抗値〔RI〕処理値の変化曲線である。これ
は既にプラス極性の〔RI〕値のみで構成された図4と
全く同じ測定結果に基き、本発明による処理法を適用し
た成果を示すものである。夏期に測定誤差が大きく出る
現象は消滅している。
FIG. 8 is a change curve of the measured insulation resistance value [R I ] processing value showing the result of the whole simulation. This shows the result of applying the processing method according to the present invention based on exactly the same measurement results as in FIG. 4, which already consisted of only the positive polarity [R I ] value. The phenomenon of large measurement errors in summer has disappeared.

【0027】図4と比較して、絶縁抵抗真値の変化曲線
より測定絶縁抵抗値〔RI〕が下まわることが極めて少
くなっていることが明らかである。逆に上まわることが
多いことも見てとれる。これは表3〜表5でも見られる
ように雑音電圧Enがマイナス極性の0.3mV、lm
Vといったところで現れた絶縁抵抗真値RIより高い測
定絶縁抵抗値〔RI〕を完全に排除し切っていないこと
があるということである。しかし現在技術による図3と
比較すれば全般的に大いに改善されていることも明らか
である。大きいマイナス極性雑音電圧が侵入していてし
かもプラス極性の測定絶縁抵抗値〔RI〕を示している
場合は的確に排除されていることも表3〜表5が一例と
して示している。
Compared with FIG. 4, it is clear from the change curve of the true value of the insulation resistance that the measured insulation resistance value [R I ] is extremely small. On the contrary, you can see that it often exceeds. This Tables 3 5 Any noise voltage E n is negative polarity as seen 0.3 mV, lm
This means that the measured insulation resistance value [R I ] higher than the insulation resistance true value R I appearing at V may not be completely excluded. However, it is also clear that the overall improvement has been greatly improved when compared to FIG. Tables 3 to 5 also show, as an example, that when a large negative polarity noise voltage has penetrated and the measured insulation resistance value [R I ] of the positive polarity has been shown, it is accurately excluded.

【0028】本Simulation例で示されている
絶縁抵抗真値R1より高い測定絶縁抵抗値〔RI〕をなお
シャープに排除しようとして仮想雑音電圧En!しきい
値を決める式の分母を小さくする即ちしきい値を大きく
探ると、絶縁抵抗真値RIの高い領域で〔RI〕処理値が
絶縁抵抗真値RIより低くなってしまうことが別途判明
している。絶縁抵抗真値RIにできるだけ近い測定絶縁
抵抗値〔RI〕を得たいのは3,000MΩ以上のRI
領域であるから、このあたりの処理成績を重視すれば良
いであろう。本Simulationはその意味でかな
り良好な成績を示しているといって良い。3,000M
Ω未満の絶縁抵抗真値RIの領域では、既に絶縁不良で
あることがそれ迄の測定結果の集積で確定しているので
あるから、測定誤差をそれほど問題にする必要は無い。
Simulationは絶縁抵抗変化を長期間、時系列
的に追う例を示したが、本発明は或る測定対象ケーブル
1条をとらえて、例えば15分毎に1回の測定を繰返す
ことで、極めて不安定な雑音電圧侵入環境下でそのケー
ブルの絶縁抵抗真値の近似値を得ることにも応用でき
る。
The virtual noise voltage E n high measurement insulation resistance value than the insulation resistance true value R 1 which is shown in this Simulation example [R I] Note as trying to eliminate sharp! When exploring large That threshold to reduce the expression of the denominator for determining the threshold value, be [R I] processed value with high insulation resistance true value R I region becomes lower than the insulation resistance true value R I It is known separately. Since it is desired to obtain the measured insulation resistance value [R I ] as close as possible to the true insulation resistance value R I in the region of R I of 3,000 MΩ or more, the processing results in this region may be emphasized. In this sense, the present Simulation can be said to show quite good results. 3,000M
In the region of the true value of the insulation resistance R I of less than Ω, the fact that the insulation failure has already been determined by the integration of the measurement results up to that point, the measurement error does not need to be a problem.
Although Simulation showed an example in which the insulation resistance change was tracked in a time series over a long period of time, the present invention captures a single cable to be measured and repeats the measurement once, for example, every 15 minutes, which is extremely impractical. It can also be applied to obtain an approximate value of the true insulation resistance of the cable in a stable noise voltage intrusion environment.

【0029】[0029]

【発明の効果】本発明は、今まで偶然性に依存していた
非科学的なデータ処理方法と異なり、合理的かつSim
ulationに裏付けられたハード及びソフト面での
改良の結果、今までより高域の活線下の電力ケーブル絶
縁抵抗を、防食層絶縁抵抗が低く、かつ侵入雑音電圧が
高い悪測定環境下で、充分真値に近い値で示すことがで
きるので、高圧電力ケーブルの活線下絶縁監視はもとよ
り、特別高圧電力ケーブルの活線下絶縁監視に適用する
のに最適である。
According to the present invention, unlike the non-scientific data processing method which has hitherto relied on chance, a rational and Sim
As a result of improvement in hardware and software backed by the ulation, the power cable insulation resistance under the live band in the higher range than before has been improved in a bad measurement environment where the insulation resistance of the anticorrosion layer is low and the intrusion noise voltage is high. Since it can be indicated by a value sufficiently close to the true value, it is optimally applied to monitoring under insulation of a high voltage power cable as well as monitoring of insulation under a hot line of a special high voltage power cable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】雑音電圧Enをパラメータとして測定絶縁抵抗
値〔RI〕、絶縁抵抗真値RI、防食層絶縁抵抗Rsの関
係を示す図である。
[1] Measurement insulation resistance noise voltage E n as a parameter [R I] is a diagram showing the relationship between the insulation resistance true value R I, anticorrosion layer insulation resistance R s.

【図2】測定期間と測定絶縁抵抗値〔RI〕の関係を示
す図である。
FIG. 2 is a diagram showing a relationship between a measurement period and a measured insulation resistance value [R I ].

【図3】全シミュレーション期間における各旬平均測定
絶縁抵抗値の変化を絶縁抵抗真値の変化曲線と共に示す
図である。
FIG. 3 is a diagram showing a change in an insulation resistance value measured in each season during the entire simulation period, together with a change curve of a true insulation resistance value.

【図4】再測定の結果、マイナス極性の測定絶縁抵抗値
を破棄した後の全シミュレーション期間における各旬平
均測定絶縁抵抗値の変化を絶縁抵抗真値の変化曲線と共
に示す図である。
FIG. 4 is a diagram showing a change in each season's average measured insulation resistance value during the entire simulation period after discarding a measured insulation resistance value of negative polarity as a result of re-measurement, together with a change curve of a true insulation resistance value.

【図5】表3に対応して仮想雑音電圧En!対測定絶縁
抵抗値〔RI〕の変化曲線を表す図である。
[Figure 5] In response to Table 3 virtual noise voltage E n! It is a figure showing the change curve of insulation resistance value [ RI ] with respect to measurement.

【図6】表4に対応して仮想雑音電圧En!対測定絶縁
抵抗値〔RI〕の変化曲線を表す図である。
[6] In response to the Table 4 virtual noise voltage E n! It is a figure showing the change curve of insulation resistance value [ RI ] with respect to measurement.

【図7】表5に対応して仮想雑音電圧En!対測定絶縁
抵抗値〔RI〕の変化曲線を表す図である。
[7] In response to the Table 5 virtual noise voltage E n! It is a figure showing the change curve of insulation resistance value [ RI ] with respect to measurement.

【図8】全シミュレーション期間における測定絶縁抵抗
値〔RI〕の処理値を絶縁抵抗真値の変化曲線と共に示
す図である。
FIG. 8 is a diagram showing a processing value of a measured insulation resistance value [R I ] in a whole simulation period together with a change curve of a true insulation resistance value.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】交流使用電圧に重畳して直流の低信号電圧
を印加し、測定対象ケーブルのしゃへい端と大地間に流
れる直流漏洩電流を測定して計算により絶縁抵抗測定値
を得る、活線下で電力ケーブルの絶縁抵抗を測定する方
法において、測定対象ケーブルに対して絶縁抵抗測定
を、時間間隔を経て実行して該測定対象ケーブルに関す
る一群の絶縁抵抗測定値を得る段階と、前記一群の絶縁
抵抗測定値のうちマイナス極性の絶縁抵抗測定値を得た
絶縁抵抗測定に対して再測定を行なう段階と、前記再測
定にかかわらずマイナス極性の絶縁抵抗測定値を得る場
合は、そのデータは棄却する段階と、前記測定対象ケー
ブルに対してプラス極性のみからなる前記一群の絶縁抵
抗測定値から該一群の絶縁抵抗測定値を代表する代表絶
縁抵抗値を決定する段階と、を含む、電力ケーブルの活
線下絶縁抵抗測定値の処理方法。
1. A live line, wherein a DC low signal voltage is applied superimposed on an AC working voltage, and a DC leakage current flowing between a shielded end of a cable to be measured and the ground is measured to obtain a measured insulation resistance value. In a method for measuring the insulation resistance of a power cable below, performing an insulation resistance measurement on the cable to be measured over a time interval to obtain a group of insulation resistance measurements for the cable to be measured; and In the step of performing a re-measurement on the insulation resistance measurement having obtained the negative polarity insulation resistance measurement value among the insulation resistance measurement values, and when obtaining the negative polarity insulation resistance measurement value regardless of the re-measurement, the data is Rejecting and determining a representative insulation resistance value representative of the group of insulation resistance measurement values from the group of insulation resistance measurement values consisting of only the positive polarity with respect to the cable to be measured. Comprising a floor, a processing method of hot-under insulation resistance measurement of the power cable.
【請求項2】前記代表絶縁抵抗値を決定する段階は、仮
想雑音電圧をそれぞれの絶縁抵抗測定値毎に計算し、仮
想雑音電圧対絶縁抵抗測定値の関係曲線を最小自乗法に
より求める段階と、前記曲線で求められるそれぞれの仮
想雑音電圧に対応する較正絶縁抵抗値と、測定絶縁抵抗
値の大小関係を比較し、小なる方の値をもってその仮想
雑音電圧での仮想代表絶縁抵抗値とする段階と、前記一
群の絶縁抵抗測定値に関係する平均防食層絶縁抵抗下に
よる値に前記仮想雑音電圧を較正し、前記一群に関して
決定される所定限度値以下の較正仮想雑音電圧に対応す
る前記仮想代表絶縁抵抗値を棄却する段階と、残留した
前記仮想代表絶縁抵抗値の内最大の値を前記一群の絶縁
抵抗測定値を代表する代表絶縁抵抗測定値と決定する段
階と、を含む、請求項1に記載の処理方法
2. The step of determining the representative insulation resistance value includes the steps of calculating a virtual noise voltage for each insulation resistance measurement value, and obtaining a relationship curve between the virtual noise voltage and the insulation resistance measurement value by a least square method. Compare the calibration insulation resistance values corresponding to the respective virtual noise voltages determined by the curves, and the magnitude relationship between the measured insulation resistance values, and use the smaller value as the virtual representative insulation resistance value at that virtual noise voltage. Calibrating the virtual noise voltage to a value according to the average corrosion protection layer insulation resistance related to the group of insulation resistance measurements and the virtual noise voltage corresponding to a calibrated virtual noise voltage below a predetermined limit determined for the group. Rejecting a representative insulation resistance value; and determining a maximum value of the remaining virtual representative insulation resistance values as a representative insulation resistance measurement value representing the group of insulation resistance measurement values. The method according to claim 1
JP11148515A 1999-05-27 1999-05-27 Method for processing insulating resistance measured value under hot line of power cable Pending JP2000338153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11148515A JP2000338153A (en) 1999-05-27 1999-05-27 Method for processing insulating resistance measured value under hot line of power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11148515A JP2000338153A (en) 1999-05-27 1999-05-27 Method for processing insulating resistance measured value under hot line of power cable

Publications (1)

Publication Number Publication Date
JP2000338153A true JP2000338153A (en) 2000-12-08

Family

ID=15454505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11148515A Pending JP2000338153A (en) 1999-05-27 1999-05-27 Method for processing insulating resistance measured value under hot line of power cable

Country Status (1)

Country Link
JP (1) JP2000338153A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112083299A (en) * 2020-09-11 2020-12-15 国网重庆市电力公司北碚供电分公司 Direct current system insulation fault prediction method based on Kalman filtering

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112083299A (en) * 2020-09-11 2020-12-15 国网重庆市电力公司北碚供电分公司 Direct current system insulation fault prediction method based on Kalman filtering

Similar Documents

Publication Publication Date Title
WO2020186718A1 (en) Method and system for determining insulation state of direct current cable, and storage medium
CN109521327B (en) Distribution line fault reason comprehensive probability analysis method
CN112362987B (en) Lightning arrester fault diagnosis method based on robust estimation
CN115078938A (en) Method and device for identifying insulating property of lightning arrester
CN110579684A (en) low-current grounding system line selection method based on fusion algorithm
CN110673000B (en) Online monitoring method and device for partial discharge of oil-immersed current transformer
CN112285425B (en) Grounding resistance calculation method and device of tower grounding device and terminal equipment
CN110265906B (en) Transformer substation grounding grid state evaluation method and computer system
JP2000338153A (en) Method for processing insulating resistance measured value under hot line of power cable
CN114062852B (en) Cable intermediate connector fault diagnosis method, device, equipment and readable storage medium
DE3237895C2 (en)
da Silva et al. High impedance fault location-case study using wavelet transform and artificial neural networks
US7076374B2 (en) Methods and systems for detecting and locating damage in a wire
Behjat et al. A new statistical approach to interpret power transformer frequency response analysis: Nonparametric statistical methods
CN113848439A (en) Fault arc detection method and device, computer equipment and storage medium
CN115327426A (en) Direct-current power supply ground fault on-line detection method and system
DE102018007248B3 (en) Method and device for determining the state of electrical equipment of high voltage engineering and power electronics
CN113985226A (en) Cable processing method and system
Lazkano et al. Study of high impedance fault detection in Levante area in Spain
CN114019296A (en) Distribution line ground fault identification method based on BP neural network
Yousof et al. The influence of data size in statistical analysis of power transformer frequency response
Do Coutto Filho et al. Critical measuring units for state estimation
EP2995930B1 (en) Method for determining a state of an electrically conductive object protected by cathodic corrosion protection and device for determining the condition of it
Baran et al. Lightning performance of high voltage overhead lines assessed using the critical currents curves
DE102021111858B3 (en) Method and measuring device for determining a leakage current in an unearthed, single-phase AC power supply system