JP2000337701A5 - - Google Patents

Download PDF

Info

Publication number
JP2000337701A5
JP2000337701A5 JP1999149888A JP14988899A JP2000337701A5 JP 2000337701 A5 JP2000337701 A5 JP 2000337701A5 JP 1999149888 A JP1999149888 A JP 1999149888A JP 14988899 A JP14988899 A JP 14988899A JP 2000337701 A5 JP2000337701 A5 JP 2000337701A5
Authority
JP
Japan
Prior art keywords
bathtub
water
bath
temperature
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1999149888A
Other languages
Japanese (ja)
Other versions
JP2000337701A (en
JP3663976B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP14988899A priority Critical patent/JP3663976B2/en
Priority claimed from JP14988899A external-priority patent/JP3663976B2/en
Publication of JP2000337701A publication Critical patent/JP2000337701A/en
Application granted granted Critical
Publication of JP3663976B2 publication Critical patent/JP3663976B2/en
Publication of JP2000337701A5 publication Critical patent/JP2000337701A5/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【書類名】 明細書
【発明の名称】 ヒートポンプ風呂給湯機
【特許請求の範囲】
【請求項1】 圧縮機を有するヒートポンプ回路と、浴槽と、前記ヒートポンプ回路の冷媒と給湯水が熱交換する給湯熱交換器を有する給湯水回路と、浴槽水ポンプならびに前記ヒートポンプ回路の冷媒と浴槽水が熱交換する風呂熱交換器を有する浴槽水回路と、前記風呂熱交換器内で浴槽水回路を分岐して、前記風呂熱交換器の浴槽水出口部と連結させたバイパス回路と、前記バイパス回路を開閉するバイパス回路開閉弁と、前記浴槽内での浴槽水の上下温度差と関連してバイパス回路開閉弁を制御する制御手段を備え、浴槽内での浴槽水の上下温度差が所定値以上となったとき、前記浴槽水ポンプの作用により浴槽水をバイパス回路を介した循環系で循環させることで、浴槽内の浴槽水を攪拌するようにしたことを特徴とするヒートポンプ風呂給湯機。
【請求項2】 浴槽内での浴槽水の上下温度差を、運転時間で推測するようにした請求項1記載のヒートポンプ風呂給湯機。
【請求項3】 浴槽内での浴槽水の上下温度差を、浴槽水回路の浴槽水の温度にもとづいて検知するようにした請求項1記載のヒートポンプ風呂給湯機。
【請求項4】 浴槽内での浴槽水の上下温度差を風呂熱交換器を流動する浴槽水の圧力にもとづいて検知するようにした請求項1記載のヒートポンプ風呂給湯機。
【請求項5】 浴槽内での浴槽水の上下温度差を、風呂熱交換器を流動する冷媒の温度または圧力にもとづいて検知するようにした請求項1記載のヒートポンプ風呂給湯機。
【発明の詳細な説明】
【0001】
【発明の属する技術分野】
本発明は、ヒートポンプを応用して、大気熱や太陽熱などを浴槽水の加熱に利用したり、大気熱や太陽熱や浴槽水の温熱を給湯の加熱などに利用する装置の改良に関するものである。
【0002】
【従来の技術】
従来より、ヒートポンプサイクルを用いて外部の熱源から熱を汲熱し、給湯、および、風呂浴槽水の加熱を行う装置が提供されている。
【0003】
図11に、従来例の風呂浴槽水の温熱、または、大気熱を熱源とし、ヒートポンプによって給湯の加熱、または、風呂浴槽水の加熱を行う装置の構成を示す。図11のヒートポンプ給湯機は、圧縮機1と、膨張弁2a、2bと、冷媒回路3と、給湯熱交換器4と、給湯水回路5と、貯湯タンク6と、風呂熱交換器7と、浴槽水回路8と、浴槽9と、大気熱または太陽熱を集熱する集熱機10と、冷媒回路3を開閉する冷媒回路開閉弁11a、11b、11c、浴槽水を循環させる浴槽水ポンプ12により構成されている。
【0004】
浴槽の浴槽水の温熱を利用して、給湯の加熱運転をするときは、以下のような運転を行う。まず、浴槽水循環ポンプ12によって浴槽9の浴槽水を浴槽水回路8と、風呂熱交換器7に循環させる。そして、圧縮機1を運転して冷媒回路3内の冷媒を高温高圧に加圧し、給湯熱交換器4、膨張弁2a、風呂熱交換器7の順に送る。冷媒は風呂熱交換器7で浴槽水の熱を吸熱し、その後圧縮機1に吸入されて高温高圧に加圧され、給湯熱交換器4で凝縮して給湯水の加熱を行う。
【0005】
浴槽9の浴槽水の加熱運転をするときは、以下のような運転を行う。まず、浴槽水ポンプ12によって浴槽9の浴槽水を浴槽水回路8と、風呂熱交換器7に循環させる。そして、圧縮機1を運転して冷媒回路3内の冷媒を高温高圧に加圧し、風呂熱交換器7、膨張弁2b、集熱機10の順に送る。冷媒は集熱機10で大気の熱を吸熱し、その後圧縮機1で高温高圧に加圧され、風呂熱交換器7で凝縮して浴槽水の加熱を行う。
【0006】
この従来のヒートポンプ風呂給湯機の構成において、効率よく浴槽水の冷却と加熱を行うために、例えば特公平8−27079号公報に記載されているような方法が提案されている。さらに、ヒートポンプの応用展開として、浴槽水温熱を暖房に利用することが特開平9−159267号公報に記載されている。
【0007】
【発明が解決しようとする課題】
しかしながら、上記のような従来の構成では、以下に挙げる理由から、浴槽水の温熱を有効に給湯の加熱に利用することは困難であった。
【0008】
すなわち、風呂熱交換器7で冷媒から吸熱された浴槽水の温度は、浴槽9内の浴槽水の温度より低いので、両浴槽水の間には密度差が生じ、密度の大きい低温の浴槽水は浴槽9の底部に向けて流れる。従って、風呂熱交換器7から戻ってきた温度の低くなった浴槽水は、浴槽9の温度の高い浴槽水と十分に撹拌されることなく、浴槽9の底部に低温の層を形成する。従って、浴槽の浴槽水は、図12に示すような、浴槽9の底部の温度が低く、浴槽の上部の温度が高いような温度分布となる。このまま運転を続けていくと、浴槽9の底部の低温層は厚みを増していき、浴槽の浴槽水の出水口まで達したときは、風呂熱交換器7に流入する浴槽水の温度は著しく低下する。風呂熱交換器7に流入する浴槽水の温度が低下すると、ヒートポンプの効率が低下するばかりでなく、循環している浴槽水が吸熱された後で凍結するため、浴槽上部の温熱を有効に給湯の加熱に利用できないままヒートポンプの運転を終了しなければならない。従って、浴槽上部の温熱を有効に給湯の加熱に利用するためには、図12に示した浴槽9内に形成された温度分布を均一にしなければならない事が課題となる。
【0009】
【課題を解決するための手段】
本発明は上記課題を解決するために、圧縮機を有するヒートポンプ回路と、浴槽と、前記ヒートポンプ回路の冷媒と給湯水が熱交換する給湯熱交換器を有する給湯水回路と、浴槽水ポンプならびに前記ヒートポンプ回路の冷媒と浴槽水が熱交換する風呂熱交換器を有する浴槽水回路と、前記風呂熱交換器内で浴槽水回路を分岐して、前記風呂熱交換器の浴槽水出口部と連結させたバイパス回路と、前記バイパス回路を開閉するバイパス回路開閉弁と、前記浴槽内での浴槽水の上下温度差と関連してバイパス回路開閉弁を制御する制御手段を備え、浴槽内での浴槽水の上下温度差が所定値以上となったとき、前記浴槽水ポンプの作用により浴槽水をバイパス回路を介した循環系で循環させることで、浴槽内の浴槽水を攪拌するようにしたことを特徴とするヒートポンプ風呂給湯機としたものである。
【0010】
上記発明によれば、浴槽水の温熱を利用して給湯の加熱運転を行うときに、浴槽の底部の温度が低く、浴槽の上部の温度が高いような温度分布を均一化することが出来る。
【0011】
従って、浴槽水の温熱を有効かつ高効率に給湯の加熱に利用することができる。
【0012】
【発明の実施の形態】
本発明の実施の形態は、圧縮機を有するヒートポンプ回路と、浴槽と、前記ヒートポンプ回路の冷媒と給湯水が熱交換する給湯熱交換器を有する給湯水回路と、浴槽水ポンプならびに前記ヒートポンプ回路の冷媒と浴槽水が熱交換する風呂熱交換器を有する浴槽水回路と、前記風呂熱交換器内で浴槽水回路を分岐して、前記風呂熱交換器の浴槽水出口部と連結させたバイパス回路と、前記バイパス回路を開閉するバイパス回路開閉弁と、前記浴槽内での浴槽水の上下温度差と関連してバイパス回路開閉弁を制御する制御手段を備え、浴槽内での浴槽水の上下温度差が所定値以上となったとき、前記浴槽水ポンプの作用により浴槽水をバイパス回路を介した循環系で循環させることで、浴槽内の浴槽水を攪拌するようにした
【0013】
浴槽内での浴槽水の上下温度差は、例えば、運転時間で推測したり、或いは、浴槽水回路の浴槽水の温度にもとづいて検知する。その他、風呂熱交換器を流動する浴槽水の圧力とか、風呂熱交換器を流動する冷媒の温度または圧力にもとづいても検知できる。
【0014】
【実施例】
以下、本発明の実施例について図面を用いて説明する。
【0015】
(実施例1)
図1は本発明の実施例におけるヒートポンプ風呂給湯機の構成を模式的に示したものである。本実施例のヒートポンプ風呂給湯機は、従来の構成である圧縮機1、膨張弁2a、2b、冷媒回路3、給湯熱交換器4、給湯水回路5、貯湯タンク6、風呂熱交換器7、浴槽水回路8、浴槽9、集熱機10、冷媒回路開閉弁11a、11b、11c、浴槽水ポンプ12に加えて、風呂熱交換器7内の浴槽水回路8を分岐して出口部と連結させたバイパス回路13、バイパス回路開閉弁14、および、制御手段15を備えている。制御手段15は、バイパス回路開閉弁14を運転時間に基づいて開閉させる制御手段である。
【0016】
次に動作と作用について説明する。浴槽9の浴槽水の温熱を利用して、給湯水の加熱を行うときは、従来例と同様の動作を行い、運転開始時はバイパス回路開閉弁14は閉とし、バイパス回路13には浴槽水を流さない。浴槽水の温熱を利用して、給湯水の加熱運転を続けていくにつれて、浴槽9には図12のような温度分布が形成される。このとき、制御手段15によってバイパス回路開閉弁14を閉から開とし、風呂熱交換器7内の浴槽水回路8を分岐して出口部と連結させたバイパス回路13を開放する。従って、浴槽水の一部がバイパス回路13を流れるようになり、さらに、浴槽水回路8の圧力損失が低下するので、浴槽水ポンプ12で搬送される浴槽水の総循環流量が増加する。浴槽水回路8を循環する浴槽水の流量が増加すれば、浴槽9内の浴槽水の対流が促進され、浴槽9の底部の低温の浴槽水は、表層部の温度の高い浴槽水と効果的に対流によって攪拌されていく。従って、浴槽9の温度分布は徐々に均一になっていく。温度分布が均一に近い状態になったら、制御手段15によってバイパス回路開閉弁14を開から閉へとする。この上記運転を繰り返すときの循環する浴槽水の温度変化を図2に示す。バイパス回路開閉弁14の制御を繰り返し行うことによって、浴槽9の浴槽水全体の温度は徐々に低下し、ある所定の温度以下になるまでシステムの運転を行うことが出来れば、浴槽9の浴槽水の温熱を有効に給湯の加熱に活用できたことになる。制御手段15の制御により、浴槽水の一部をバイパス回路13を通すために、風呂熱交換器7の熱交換能力が低下するが、浴槽9に戻る浴槽水温度が上昇するので、浴槽9の温度分布は均一化されやすい。
【0017】
本実施例において、制御手段15によってバイパス回路開閉弁14が閉である時間aは、図12のような温度分布が形成されるまでの時間とし、制御手段15によってバイパス回路開閉弁14が開である時間bは、浴槽水の上層部と低層部の温度差が所定の温度差となるまでに要する値に設定した。
【0018】
なお、本実施例ではバイパス回路を1回路設置したが、複数回路設置しても良い。また、分岐される浴槽水回路は風呂熱交換器の出口部ではなく入口部に接続しても構わない。
【0019】
また、本実施例では浴槽水を加熱する場合においても適用することが出来る。すなわち、浴槽9の浴槽水を均一に加熱することが可能となる。従って、高効率な浴槽の加熱運転をすることが出来る。
【0020】
(実施例2)
図3は本発明の実施例2におけるヒートポンプ風呂給湯機の構成を模式的に示したものである。本実施例のヒートポンプ風呂給湯機は、従来の構成に加えて、風呂熱交換器7内の浴槽水回路8を分岐して出口部と連結させたバイパス回路13、バイパス回路開閉弁14、および、温度センサー16、制御手段17を備えている。温度センサー16は、浴槽水回路8の浴槽水温度の検知手段である。制御手段17は、バイパス回路開閉弁14を温度センサー16の検知温度に基づいて、開閉させる制御手段である。本実施例では、温度センサー16にはサーミスターを使用したが、他にも、熱電対や、測温抵抗体などを用いても良い。また、設置位置は浴槽水回路8であって浴槽水温度を測定できれば場所はどこでも良い。
【0021】
次に動作と作用について説明する。浴槽9の浴槽水の温熱を利用して、給湯水の加熱を行うときは、従来例と同様の動作を行い、運転開始時はバイパス回路開閉弁14は閉とし、バイパス回路13には浴槽水を流さない。浴槽水の温熱を利用して、給湯水の加熱運転を続けていくにつれて、浴槽9には図12のような温度分布が形成される。このとき、温度センサー16の温度が所定温度T1以下になったら、制御手段17によってバイパス回路開閉弁14を閉から開とし、風呂熱交換器7内の浴槽水回路8を分岐して出口部と連結させたバイパス回路13を開放する。従って、浴槽水の一部が浴槽出水口8aよりバイパス回路13を通って浴槽入水口8bに流れるようになり、さらに、浴槽水回路8の圧力損失が低下するので、浴槽水ポンプ8で搬送される浴槽水の総循環流量が増加する。浴槽水回路8を循環する浴槽水の流量が増加すれば、浴槽9内の浴槽水の対流が促進され、浴槽9の底部の低温の浴槽水は、表層部の温度の高い浴槽水と効果的に対流によって攪拌されていく。従って、浴槽9の温度分布は徐々に均一になっていく。温度分布が均一となるに従い、循環している浴槽水の温度は高くなるから、温度センサー16の検知温度が所定の温度T2以上になったら、浴槽9の浴槽水の温度分布は均一になったと判断して、制御手段17によってバイパス回路開閉弁14を開から閉へとする。この上記運転を繰り返すときの循環する浴槽水の温度変化を図4に示す。バイパス回路開閉弁14の制御を繰り返し行うことによって、浴槽9の浴槽水全体の温度は徐々に低下し、ある所定の温度以下になるまでシステムの運転を行うことが出来れば、浴槽9の浴槽水の温熱を有効に給湯の加熱に活用できたことになる。制御手段16の制御により、浴槽水の一部をバイパス回路13を通すために、風呂熱交換器7の熱交換能力が低下するが、浴槽9に戻る浴槽水温度が上昇するので、浴槽9の温度分布は均一化されやすい。
【0022】
本実施例では、所定温度T1、T2は一定値としたが、繰り返し回数や運転時間の関数として指定しても良く、同様の効果が得られる。
【0023】
なお、浴槽9の浴槽水温度を検知するために既存の温度センサーが設置してあれば、これを利用することで本実施例は実施できる。
【0024】
また、本実施例では浴槽水を加熱する場合においても適用することが出来る。すなわち、浴槽9の浴槽水を均一に加熱することが可能となる。従って、高効率な浴槽の加熱運転をすることが出来る。
【0025】
(実施例3)
図5は本発明の実施例3におけるヒートポンプ風呂給湯機の構成を模式的に示したものである。本実施例のヒートポンプ風呂給湯機は、従来の構成に加えて、風呂熱交換器7内の浴槽水回路を分岐して出口部と連結させたバイパス回路13、バイパス回路開閉弁14、および、圧力センサー18、制御手段19を備えている。圧力センサー18は、風呂熱交換器7の浴槽水入口圧力と出口圧力の差圧検知手段である。制御手段19は、バイパス回路開閉弁14を圧力センサー18の検知圧力に基づいて、開閉させる制御手段である。本実施例では、圧力センサー18は風呂熱交換器7の差圧力計として設置したが、風呂熱交換器の浴槽水の入口、または出口の絶対圧力、または、ゲージ圧力であっても良い。
【0026】
次に動作と作用について説明する。浴槽9の浴槽水の温熱を利用して、給湯水の加熱を行うときは、従来例と同様の動作を行うが、バイパス回路開閉弁14は閉とし、バイパス回路13には浴槽水を流さない。浴槽水の温熱を利用して、給湯水の加熱運転を続けていくにつれて、浴槽9には図12のような温度分布が形成される。風呂熱交換器7に流入する浴槽水温度が低下すると、浴槽水の粘性が大きくなり風呂熱交換器7における浴槽水の圧力損失が増加する。すなわち、循環する浴槽水の温度は、圧力センサー18の検知圧力に反映される。従って、圧力センサー18の差圧力が所定の値P1以上になったら、制御手段19によってバイパス回路開閉弁14を閉から開とし、風呂熱交換器7内の浴槽水回路を分岐して出口部と連結させたバイパス回路13を開放する。従って、浴槽水の一部がバイパス回路13を流れるようになり、さらに、浴槽水回路8の圧力損失が低下するので、浴槽水ポンプ8で搬送される浴槽水の総循環流量が増加する。
【0027】
浴槽水回路8を循環する浴槽水の流量が増加すれば、浴槽9内の浴槽水の対流が促進され、浴槽9の底部の低温の浴槽水は、表層部の温度の高い浴槽水と効果的に対流によって攪拌されていく。従って、浴槽9の温度分布は徐々に均一になっていく。循環している浴槽水の温度は高くなると、浴槽水の粘性が小さくなり風呂熱交換器7における浴槽水の圧力損失が減少する。圧力センサー18の検知する差圧力が所定の値P1以下になったら、浴槽9の浴槽水の温度分布は均一になったと判断して、制御手段19によってバイパス回路開閉弁14を開から閉へとする。この上記運転を繰り返すときの循環する浴槽水の温度変化を図6に示す。バイパス回路開閉弁14の制御を繰り返し行うことによって、浴槽9の浴槽水全体の温度は徐々に低下し、ある所定の温度以下になるまでシステムの運転を行うことが出来れば、浴槽9の浴槽水の温熱を有効に給湯の加熱に活用できたことになる。制御手段17の制御により、浴槽水の一部をバイパス回路13を通すために、風呂熱交換器7の熱交換能力が低下するが、浴槽9に戻る浴槽水温度が上昇するので、浴槽9の温度分布は均一化されやすい。
【0028】
本実施例では、所定圧力P1、P2は一定値としたが、繰り返し回数や運転時間の関数として指定しても良く、同様の効果が得られる。
【0029】
また、本実施例では浴槽水を加熱する場合においても適用することが出来る。すなわち、浴槽9の浴槽水を均一に加熱することが可能となる。従って、高効率な浴槽の加熱運転をすることが出来る。
【0030】
(実施例4)
図7は本発明の実施例4におけるヒートポンプ風呂給湯機の構成を模式的に示したものである。本実施例のヒートポンプ風呂給湯機は、従来の構成に加えて、風呂熱交換器7内の浴槽水回路を分岐して出口部と連結させたバイパス回路13、バイパス回路開閉弁14、および、温度センサー20、制御手段21を備えている。温度センサー20は、風呂熱交換器7の冷媒入口温度の検知手段である。制御手段21は、バイパス回路開閉弁14を温度センサー20の検知温度に基づいて、開閉させる制御手段である。本実施例では、温度センサー20にはサーミスターを使用したが、他にも、熱電対や、測温抵抗体などを用いても良い。また、設置位置は風呂熱交換器の冷媒出口であっても良い。
【0031】
次に動作と作用について説明する。浴槽9の浴槽水の温熱を利用して、給湯水の加熱を行うときは、従来例と同様の動作を行うが、バイパス回路開閉弁14は閉とし、バイパス回路13には浴槽水を流さない。浴槽水の温熱を利用して、給湯水の加熱運転を続けていくにつれて、浴槽9には図12のような温度分布が形成される。風呂熱交換器7に流入する浴槽水温度が低下すると、ヒートポンプ回路の蒸発圧力が低下するために、風呂熱交換器7に流入する冷媒の温度も低下する。すなわち、循環する浴槽水の温度は、温度センサー20の検知温度に反映される。従って、温度センサー20の温度が所定温度T3以下になったら、制御手段21によってバイパス回路開閉弁14を閉から開とし、風呂熱交換器7内の浴槽水回路を分岐して出口部と連結させたバイパス回路13を開放する。従って、浴槽水の一部がバイパス回路13を流れるようになり、さらに、浴槽水回路8の圧力損失が低下するので、浴槽水ポンプ8で搬送される浴槽水の総循環流量が増加する。浴槽水回路8を循環する浴槽水の流量が増加すれば、浴槽9内の浴槽水の対流が促進され、浴槽9の底部の低温の浴槽水は、表層部の温度の高い浴槽水と効果的に対流によって攪拌されていく。従って、浴槽9の温度分布は徐々に均一になっていく。温度分布が均一となるに従い、循環している浴槽水の温度は高くなるから、温度センサー20の検知温度が所定の温度T4以上になったら、浴槽9の浴槽水の温度分布は均一になったと判断して、制御手段21によってバイパス回路開閉弁14を開から閉へとする。この上記運転を繰り返すときの循環する浴槽水の温度変化を図8に示す。バイパス回路開閉弁14の制御を繰り返し行うことによって、浴槽9の浴槽水全体の温度は徐々に低下し、ある所定の温度以下になるまでシステムの運転を行うことが出来れば、浴槽9の浴槽水の温熱を有効に給湯の加熱に活用できたことになる。制御手段21の制御により、浴槽水の一部をバイパス回路13を通すために、風呂熱交換器7の熱交換能力が低下するが、浴槽9に戻る浴槽水温度が上昇するので、浴槽9の温度分布は均一化されやすい。
【0032】
なお、ヒートポンプサイクルを制御するために、温度センサーが浴槽水熱交換器の冷媒入口、または、出口に設置してあれば、これを用いて本実施例は実施できる。逆に、設置していなかった場合は、本実施例で設置した温度センサーを利用して、ヒートポンプサイクルの制御をすることが出来る。
【0033】
本実施例では、所定温度T3、T4は一定値としたが、繰り返し回数や運転時間の関数として指定しても良く、同様の効果が得られる。
【0034】
また、本実施例では浴槽水を加熱する場合においても適用することが出来る。すなわち、浴槽9の浴槽水を均一に加熱することが可能となる。従って、高効率な浴槽の加熱運転をすることが出来る。
【0035】
(実施例5)
図9は本発明の実施例5におけるヒートポンプ風呂給湯機の構成を模式的に示したものである。本実施例のヒートポンプ風呂給湯機は、従来の構成に加えて、風呂熱交換器7内の浴槽水回路を分岐して出口部と連結させたバイパス回路13、バイパス回路開閉弁14、および、圧力センサー22、制御手段23を備えている。圧力センサー22は、風呂熱交換器7の冷媒入口圧力の検知手段である。制御手段23は、バイパス回路開閉弁14を圧力センサー22の検知圧力に基づいて、開閉させる制御手段である。本実施例では、圧力センサー22は風呂熱交換器7の冷媒入口に設置したが、設置位置は風呂熱交換器の冷媒出口であっても良い。
【0036】
次に動作と作用について説明する。浴槽9の浴槽水の温熱を利用して、給湯水の加熱を行うときは、従来例と同様の動作を行うが、バイパス回路開閉弁14は閉とし、バイパス回路13には浴槽水を流さない。浴槽水の温熱を利用して、給湯水の加熱運転を続けていくにつれて、浴槽9には図12のような温度分布が形成される。風呂熱交換器7に流入する浴槽水温度が低下すると、ヒートポンプ回路の冷媒の蒸発する圧力が低下する。すなわち、循環する浴槽水の温度は、圧力センサー22の検知圧力に反映される。従って、圧力センサー22の検知圧力が所定の値P3以下になったら、制御手段23によってバイパス回路開閉弁14を閉から開とし、風呂熱交換器7内の浴槽水回路を分岐して出口部と連結させたバイパス回路13を開放する。従って、浴槽水の一部がバイパス回路13を流れるようになり、さらに、浴槽水回路8の圧力損失が低下するので、浴槽水ポンプ12で搬送される浴槽水の総循環流量が増加する。浴槽水回路8を循環する浴槽水の流量が増加すれば、浴槽9内の浴槽水の対流が促進され、浴槽9の底部の低温の浴槽水は、表層部の温度の高い浴槽水と効果的に対流によって攪拌されていく。従って、浴槽9の温度分布は徐々に均一になっていく。温度分布が均一となるに従い、循環している浴槽水の温度は高くなるから、圧力センサー22の検知圧力が所定の値P4以上になったら、浴槽9の浴槽水の温度分布は均一になったと判断して、制御手段23によってバイパス回路開閉弁14を開から閉へとする。この上記運転を繰り返すときの循環する浴槽水の温度変化を図10に示す。バイパス回路開閉弁14の制御を繰り返し行うことによって、浴槽9の浴槽水全体の温度は徐々に低下し、ある所定の温度以下になるまでシステムの運転を行うことが出来れば、浴槽9の浴槽水の温熱を有効に給湯の加熱に活用できたことになる。制御手段23の制御により、浴槽水の一部をバイパス回路13を通すために、風呂熱交換器7の熱交換能力が低下するが、浴槽9に戻る浴槽水温度が上昇するので、浴槽9の温度分布は均一化されやすい。
【0037】
なお、ヒートポンプサイクルを制御するために、圧力センサーが浴槽水熱交換器の冷媒入口、または、出口に設置してあれば、これを用いて本実施例は実施できる。逆に、設置していなかった場合は、本実施例で設置した圧力センサーを利用して、ヒートポンプサイクルの制御をすることが出来る。
【0038】
本実施例では、所定圧力P3、P4は一定値としたが、繰り返し回数や運転時間の関数として指定しても良く、同様の効果が得られる。
【0039】
また、本実施例では浴槽水を加熱する場合においても適用することが出来る。すなわち、浴槽9の浴槽水を均一に加熱することが可能となる。従って、高効率な浴槽の加熱運転をすることが出来る。
【0040】
上記実施例に記載したヒートポンプ風呂給湯機によれば、次のような効果が得られる。
【0041】
(1)浴槽水の温熱を利用して給湯の加熱運転を行う場合に、浴槽の深さ方向に運転効率に不利な浴槽水の温度分布が形成されても、バイパス回路に浴槽水を流す制御により、浴槽の温度分布を均一にすることが出来る。
【0042】
したがって、浴槽水の温熱を有効に給湯の加熱に利用できることから、浴槽水の温熱を利用して給湯の加熱運転を行う場合の高効率化が実現される。
【0043】
(2)バイパス回路を開とするときに、循環する流量が増加することから、浴槽と浴槽水回路、および、風呂熱交換器に汚れが付着しにくい。
【0044】
(3)風呂熱交換器の出口部分で浴槽水における汚れや腐食による閉塞が起きても、バイパス回路を用いることにより、風呂熱交換器で浴槽水との熱交換が可能であるから、装置の延命化が可能となる。
【0045】
(4)付加した温度センサーを、装置の安全性を感知する手段とする事が出来るので、装置の安全性が向上し、またこの温度センサーを浴槽水の湯温を制御するために兼用することもできる。
【0046】
(5)風呂熱交換器に汚れが付着して浴槽水流路の圧力損失が上昇した場合には、圧力センサーでこの状態を検知することが出来る。従って、メンテナンス時期を知らせる機能を持たせることができる。
【0047】
(6)温度センサーをヒートポンプサイクル制御にも利用することが出来るため、これを利用することで、装置の高効率化が図れる。
【0048】
【発明の効果】
このように本発明のヒートポンプ風呂給湯機によれば、浴槽水の温熱を有効に給湯の加熱に利用できるもので、効率の向上が期待できるものである。
【図面の簡単な説明】
【図1】
本発明の実施例1におけるヒートポンプ風呂給湯機の構成説明図
【図2】
同ヒートポンプ風呂給湯機の運転時間と浴槽水温度との関係を示した図
【図3】
本発明の実施例2におけるヒートポンプ風呂給湯機の構成説明図
【図4】
同ヒートポンプ風呂給湯機の運転時間と浴槽水温度との関係を示した図
【図5】
本発明の実施例3におけるヒートポンプ風呂給湯機の構成説明図
【図6】
同ヒートポンプ風呂給湯機の運転時間と浴槽水温度との関係を示した図
【図7】
本発明の実施例4におけるヒートポンプ風呂給湯機の構成説明図
【図8】
同ヒートポンプ風呂給湯機の運転時間と浴槽水温度との関係を示した図
【図9】
本発明の実施例5におけるヒートポンプ風呂給湯機の構成説明図
【図10】
同ヒートポンプ風呂給湯機の運転時間と浴槽水温度との関係を示した図
【図11】
従来のヒートポンプ風呂給湯機の構成説明図
【図12】
同ヒートポンプ風呂給湯機の浴槽水深と浴槽水温度との関係を示した図
【符号の説明】
1 圧縮機
2a、2b 膨張弁
3 冷媒回路
4 給湯熱交換器
5 給湯水回路
6 貯湯タンク
7 風呂熱交換器
8 浴槽水回路
9 浴槽
10 集熱機
11a、11b、11c 開閉弁
12 浴槽水ポンプ
13 バイパス回路
14 バイパス回路開閉弁
15 運転時間に基づいてバイパス回路開閉弁を制御する制御手段
16、20 温度センサー
17、21 温度センサーの検知温度に基づいてバイパス回路開閉弁を制御する制御手段
18、22 圧力センサー
19、23 圧力センサーの検知圧力に基づいてバイパス回路開閉弁を制御する制御手段
[Document name] Statement
[Title of Invention] Heat Pump Bath Water Heater
[Claims]
1. A heat pump circuit having a compressor, a bathtub, a hot water supply water circuit having a hot water supply heat exchanger in which the refrigerant of the heat pump circuit and hot water supply water exchange heat, a bath water pump, and a refrigerant and a bathtub of the heat pump circuit. A bath water circuit having a bath heat exchanger in which water exchanges heat, a bypass circuit in which the bath water circuit is branched in the bath heat exchanger and connected to a bath water outlet portion of the bath heat exchanger, and the above. With a bypass circuit on-off valve that opens and closes the bypass circuit, A control means for controlling the bypass circuit on-off valve in relation to the temperature difference between the upper and lower parts of the bathtub water in the bathtub.WithWhen the upper and lower temperature difference of the bathtub water in the bathtub becomes a predetermined value or more, the bathtub water in the bathtub is agitated by circulating the bathtub water in the circulation system via the bypass circuit by the action of the bathtub water pump. I didA heat pump bath water heater that features this.
2. The first aspect of the present invention, wherein the temperature difference between the upper and lower parts of the bathtub water in the bathtub is estimated by the operating time.Heat pump bath water heater.
3. The first aspect of claim 1, wherein the difference in temperature between the upper and lower parts of the bathtub water in the bathtub is detected based on the temperature of the bathtub water in the bathtub water circuit.Heat pump bath water heater.
4. The first aspect of claim 1, wherein the temperature difference between the upper and lower parts of the bathtub water in the bathtub is detected based on the pressure of the bathtub water flowing through the bath heat exchanger.Heat pump bath water heater.
5. The first aspect of claim 1, wherein the temperature difference between the upper and lower parts of the bathtub water in the bathtub is detected based on the temperature or pressure of the refrigerant flowing through the bath heat exchanger.Heat pump bath water heater.
Description: TECHNICAL FIELD [Detailed description of the invention]
[0001]
[Technical field to which the invention belongs]
The present invention relates to an improvement of an apparatus that applies a heat pump to use atmospheric heat, solar heat, etc. for heating bathtub water, and uses atmospheric heat, solar heat, and hot water temperature for heating hot water supply.
0002.
[Conventional technology]
Conventionally, an apparatus has been provided in which heat is drawn from an external heat source using a heat pump cycle to supply hot water and heat bath tub water.
0003
FIG. 11 shows a configuration of a device that heats hot water supply or heats bath tub water by a heat pump using the heat of the bath tub water or atmospheric heat of a conventional example as a heat source. The heat pump water heater of FIG. 11 includes a compressor 1, expansion valves 2a and 2b, a refrigerant circuit 3, a hot water supply heat exchanger 4, a hot water supply water circuit 5, a hot water storage tank 6, a bath heat exchanger 7, and the like. Consists of a tub water circuit 8, a tub 9, a heat collector 10 that collects atmospheric heat or solar heat, refrigerant circuit on-off valves 11a, 11b, 11c that open and close the refrigerant circuit 3, and a tub water pump 12 that circulates the tub water. Has been done.
0004
When using the heat of the bathtub water to heat the hot water supply, perform the following operations. First, the bathtub water circulation pump 12 circulates the bathtub water of the bathtub 9 to the bathtub water circuit 8 and the bath heat exchanger 7. Then, the compressor 1 is operated to pressurize the refrigerant in the refrigerant circuit 3 to a high temperature and high pressure, and send the hot water supply heat exchanger 4, the expansion valve 2a, and the bath heat exchanger 7 in this order. The refrigerant absorbs the heat of the bath water in the bath heat exchanger 7, is then sucked into the compressor 1 and pressurized to a high temperature and high pressure, and is condensed in the hot water supply heat exchanger 4 to heat the hot water supply water.
0005
When the bathtub water of the bathtub 9 is heated, the following operation is performed. First, the bathtub water of the bathtub 9 is circulated to the bathtub water circuit 8 and the bath heat exchanger 7 by the bathtub water pump 12. Then, the compressor 1 is operated to pressurize the refrigerant in the refrigerant circuit 3 to a high temperature and high pressure, and send the bath heat exchanger 7, the expansion valve 2b, and the heat collector 10 in this order. The refrigerant absorbs the heat of the atmosphere with the heat collector 10, is then pressurized to a high temperature and high pressure with the compressor 1, and condenses with the bath heat exchanger 7 to heat the bath water.
0006
In the configuration of this conventional heat pump bath water heater, in order to efficiently cool and heat the bathtub water, for example, a method as described in Japanese Patent Publication No. 8-27079 has been proposed. Further, as an application development of the heat pump, it is described in Japanese Patent Application Laid-Open No. 9-159267 that the temperature of bathtub water is used for heating.
0007
[Problems to be Solved by the Invention]
However, in the conventional configuration as described above, it is difficult to effectively use the heat of the bathtub water for heating the hot water supply for the following reasons.
0008
That is, since the temperature of the bathtub water absorbed from the refrigerant by the bath heat exchanger 7 is lower than the temperature of the bathtub water in the bathtub 9, there is a density difference between the two bathtub waters, and the low temperature bathtub water having a high density is generated. Flows toward the bottom of the bathtub 9. Therefore, the cold bathtub water returned from the bath heat exchanger 7 is not sufficiently agitated with the hot bathtub water of the bathtub 9, and forms a low temperature layer at the bottom of the bathtub 9. Therefore, the bath water in the bathtub has a temperature distribution such that the temperature at the bottom of the bathtub 9 is low and the temperature at the top of the bathtub is high, as shown in FIG. If the operation is continued as it is, the low temperature layer at the bottom of the bathtub 9 will increase in thickness, and when it reaches the outlet of the bathtub water of the bathtub, the temperature of the bathtub water flowing into the bath heat exchanger 7 will drop significantly. To do. When the temperature of the bath water flowing into the bath heat exchanger 7 decreases, not only the efficiency of the heat pump decreases, but also the circulating bath water freezes after being absorbed, so that the heat of the upper part of the bath is effectively supplied. The operation of the heat pump must be terminated without being available for heating. Therefore, in order to effectively utilize the heat of the upper part of the bathtub for heating the hot water supply, it is an issue that the temperature distribution formed in the bathtub 9 shown in FIG. 12 must be made uniform.
0009
[Means for solving problems]
In order to solve the above problems, the present invention has a heat pump circuit having a compressor, a bathtub, a hot water supply water circuit having a hot water supply heat exchanger in which the refrigerant of the heat pump circuit and hot water supply water exchange heat, a bath water pump, and the above. A bath water circuit having a bath heat exchanger in which the refrigerant of the heat pump circuit and the bath water exchange heat, and the bath water circuit are branched in the bath heat exchanger and connected to the bath water outlet portion of the bath heat exchanger. A bypass circuit and a bypass circuit on-off valve that opens and closes the bypass circuit., A control means for controlling the bypass circuit on-off valve in relation to the temperature difference between the upper and lower parts of the bathtub water in the bathtub.WithWhen the upper and lower temperature difference of the bathtub water in the bathtub becomes a predetermined value or more, the bathtub water in the bathtub is agitated by circulating the bathtub water in the circulation system via the bypass circuit by the action of the bathtub water pump. I didIt is a heat pump bath water heater characterized by this.
0010
According to the above invention, when the hot water supply is heated by utilizing the heat of the bathtub water, it is possible to make the temperature distribution uniform so that the temperature at the bottom of the bathtub is low and the temperature at the top of the bathtub is high.
0011
Therefore, the heat of the bathtub water can be effectively and highly efficiently used for heating the hot water supply.
0012
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present inventionA heat pump circuit having a compressor, a bathtub, a hot water supply water circuit having a hot water supply heat exchanger for heat exchange between the refrigerant of the heat pump circuit and hot water supply water, a bath water pump, and a refrigerant and bath water of the heat pump circuit exchange heat. The bath water circuit having the bath heat exchanger, the bypass circuit in which the bath water circuit is branched in the bath heat exchanger and connected to the bath water outlet portion of the bath heat exchanger, and the bypass circuit are opened and closed. A control means for controlling the bypass circuit on-off valve and the bypass circuit on-off valve in relation to the temperature difference between the upper and lower sides of the bath water in the bath.WithWhen the upper and lower temperature difference of the bathtub water in the bathtub becomes a predetermined value or more, the bathtub water in the bathtub is agitated by circulating the bathtub water in the circulation system via the bypass circuit by the action of the bathtub water pump. I did..
0013
The difference in temperature between the upper and lower parts of the bathtub water in the bathtub is estimated by, for example, the operating time, or detected based on the temperature of the bathtub water in the bathtub water circuit. In addition, it can be detected based on the pressure of the bathtub water flowing through the bath heat exchanger and the temperature or pressure of the refrigerant flowing through the bath heat exchanger.
0014.
【Example】
Hereinafter, examples of the present invention will be described with reference to the drawings.
0015.
(Example 1)
FIG. 1 schematically shows the configuration of a heat pump bath water heater according to an embodiment of the present invention. The heat pump bath water heater of this embodiment has a conventional configuration of a compressor 1, expansion valves 2a and 2b, a refrigerant circuit 3, a hot water supply heat exchanger 4, a hot water supply water circuit 5, a hot water storage tank 6, and a bath heat exchanger 7. In addition to the bath water circuit 8, the bath 9, the heat collector 10, the refrigerant circuit on-off valves 11a, 11b, 11c, and the bath water pump 12, the bath water circuit 8 in the bath heat exchanger 7 is branched and connected to the outlet. The bypass circuit 13, the bypass circuit on-off valve 14, and the control means 15 are provided. The control means 15 is a control means for opening and closing the bypass circuit on-off valve 14 based on the operation time.
0016.
Next, the operation and operation will be described. When heating the hot water supply water using the heat of the bathtub water of the bathtub 9, the same operation as in the conventional example is performed, the bypass circuit on-off valve 14 is closed at the start of operation, and the bathtub water is in the bypass circuit 13. Do not shed. As the heating operation of the hot water supply water is continued by utilizing the heat of the bathtub water, the temperature distribution as shown in FIG. 12 is formed in the bathtub 9. At this time, the bypass circuit on-off valve 14 is opened from the closed state by the control means 15, and the bypass circuit 13 in which the bathtub water circuit 8 in the bath heat exchanger 7 is branched and connected to the outlet portion is opened. Therefore, a part of the bathtub water flows through the bypass circuit 13, and the pressure loss of the bathtub water circuit 8 is reduced, so that the total circulation flow rate of the bathtub water conveyed by the bathtub water pump 12 is increased. If the flow rate of the bathtub water circulating in the bathtub water circuit 8 is increased, the convection of the bathtub water in the bathtub 9 is promoted, and the low temperature bathtub water at the bottom of the bathtub 9 is effective with the hot bathtub water at the surface layer. It is agitated by convection. Therefore, the temperature distribution of the bathtub 9 gradually becomes uniform. When the temperature distribution is close to uniform, the control means 15 opens and closes the bypass circuit on-off valve 14. FIG. 2 shows a temperature change of the circulating bath water when the above operation is repeated. By repeatedly controlling the bypass circuit on-off valve 14, the temperature of the entire bathtub water in the bathtub 9 gradually decreases, and if the system can be operated until the temperature drops below a certain predetermined temperature, the bathtub water in the bathtub 9 can be operated. This means that the heat of the hot water supply could be effectively used to heat the hot water supply. By the control of the control means 15, since a part of the bathtub water is passed through the bypass circuit 13, the heat exchange capacity of the bath heat exchanger 7 is lowered, but the temperature of the bathtub water returning to the bathtub 9 rises, so that the bathtub 9 The temperature distribution tends to be uniform.
[0017]
In this embodiment, the time a during which the bypass circuit on-off valve 14 is closed by the control means 15 is the time until the temperature distribution as shown in FIG. 12 is formed, and the bypass circuit on-off valve 14 is opened by the control means 15. A certain time b was set to a value required for the temperature difference between the upper layer portion and the lower layer portion of the bath water to become a predetermined temperature difference.
0018
In this embodiment, one bypass circuit is installed, but a plurality of circuits may be installed. Further, the branched bathtub water circuit may be connected to the inlet portion of the bath heat exchanger instead of the outlet portion.
0019
Further, in this embodiment, it can be applied even when the bathtub water is heated. That is, it is possible to uniformly heat the bath water in the bathtub 9. Therefore, the heating operation of the bathtub can be performed with high efficiency.
0020
(Example 2)
FIG. 3 schematically shows the configuration of the heat pump bath water heater according to the second embodiment of the present invention. In the heat pump bath water heater of the present embodiment, in addition to the conventional configuration, the bypass circuit 13, the bypass circuit on-off valve 14, and the bypass circuit on-off valve 14 in which the bathtub water circuit 8 in the bath heat exchanger 7 is branched and connected to the outlet portion are used. It includes a temperature sensor 16 and a control means 17. The temperature sensor 16 is a means for detecting the bathtub water temperature of the bathtub water circuit 8. The control means 17 is a control means for opening and closing the bypass circuit on-off valve 14 based on the detected temperature of the temperature sensor 16. In this embodiment, a thermistor is used for the temperature sensor 16, but a thermocouple, a resistance temperature detector, or the like may also be used. Further, the installation position may be any place as long as the bathtub water circuit 8 can measure the bathtub water temperature.
0021.
Next, the operation and operation will be described. When heating the hot water supply water using the heat of the bathtub water of the bathtub 9, the same operation as in the conventional example is performed, the bypass circuit on-off valve 14 is closed at the start of operation, and the bathtub water is in the bypass circuit 13. Do not shed. As the heating operation of the hot water supply water is continued by utilizing the heat of the bathtub water, the temperature distribution as shown in FIG. 12 is formed in the bathtub 9. At this time, when the temperature of the temperature sensor 16 becomes equal to or lower than the predetermined temperature T1, the bypass circuit on-off valve 14 is opened from the closed state by the control means 17, and the bathtub water circuit 8 in the bath heat exchanger 7 is branched to the outlet portion. The connected bypass circuit 13 is opened. Therefore, a part of the bathtub water flows from the bathtub outlet 8a through the bypass circuit 13 to the bathtub inlet 8b, and further, the pressure loss of the bathtub water circuit 8 is reduced, so that the bathtub water is conveyed by the bathtub water pump 8. Increases the total circulating flow of bathtub water. If the flow rate of the bathtub water circulating in the bathtub water circuit 8 is increased, the convection of the bathtub water in the bathtub 9 is promoted, and the low temperature bathtub water at the bottom of the bathtub 9 is effective with the hot bathtub water at the surface layer. It is agitated by convection. Therefore, the temperature distribution of the bathtub 9 gradually becomes uniform. As the temperature distribution becomes uniform, the temperature of the circulating bathtub water increases. Therefore, when the temperature detected by the temperature sensor 16 becomes a predetermined temperature T2 or higher, the temperature distribution of the bathtub water in the bathtub 9 becomes uniform. Upon determination, the control means 17 changes the bypass circuit on-off valve 14 from open to closed. FIG. 4 shows a temperature change of the circulating bath water when the above operation is repeated. By repeatedly controlling the bypass circuit on-off valve 14, the temperature of the entire bathtub water in the bathtub 9 gradually decreases, and if the system can be operated until the temperature drops below a certain predetermined temperature, the bathtub water in the bathtub 9 can be operated. This means that the heat of the hot water supply could be effectively used to heat the hot water supply. By the control of the control means 16, since a part of the bathtub water is passed through the bypass circuit 13, the heat exchange capacity of the bath heat exchanger 7 is lowered, but the temperature of the bathtub water returning to the bathtub 9 rises, so that the bathtub 9 is used. The temperature distribution tends to be uniform.
0022.
In this embodiment, the predetermined temperatures T1 and T2 are set to constant values, but they may be specified as a function of the number of repetitions or the operation time, and the same effect can be obtained.
[0023]
If an existing temperature sensor is installed to detect the bathtub water temperature of the bathtub 9, this embodiment can be carried out by using the existing temperature sensor.
0024
Further, in this embodiment, it can be applied even when the bathtub water is heated. That is, it is possible to uniformly heat the bath water in the bathtub 9. Therefore, the heating operation of the bathtub can be performed with high efficiency.
0025
(Example 3)
FIG. 5 schematically shows the configuration of the heat pump bath water heater according to the third embodiment of the present invention. In the heat pump bath water heater of this embodiment, in addition to the conventional configuration, the bypass circuit 13, the bypass circuit on-off valve 14, and the pressure, in which the bathtub water circuit in the bath heat exchanger 7 is branched and connected to the outlet portion, are used. It includes a sensor 18 and a control means 19. The pressure sensor 18 is a means for detecting the differential pressure between the bathtub water inlet pressure and the outlet pressure of the bath heat exchanger 7. The control means 19 is a control means for opening and closing the bypass circuit on-off valve 14 based on the detected pressure of the pressure sensor 18. In this embodiment, the pressure sensor 18 is installed as a differential pressure gauge of the bath heat exchanger 7, but it may be the absolute pressure at the inlet or outlet of the bath water of the bath heat exchanger, or the gauge pressure.
0026
Next, the operation and operation will be described. When heating the hot water supply water using the heat of the bathtub water of the bathtub 9, the same operation as in the conventional example is performed, but the bypass circuit on-off valve 14 is closed and the bathtub water does not flow through the bypass circuit 13. .. As the heating operation of the hot water supply water is continued by utilizing the heat of the bathtub water, the temperature distribution as shown in FIG. 12 is formed in the bathtub 9. When the temperature of the bathtub water flowing into the bath heat exchanger 7 decreases, the viscosity of the bathtub water increases and the pressure loss of the bathtub water in the bath heat exchanger 7 increases. That is, the temperature of the circulating bath water is reflected in the detection pressure of the pressure sensor 18. Therefore, when the differential pressure of the pressure sensor 18 becomes a predetermined value P1 or more, the bypass circuit on-off valve 14 is opened from the closed state by the control means 19, and the bathtub water circuit in the bath heat exchanger 7 is branched to the outlet portion. The connected bypass circuit 13 is opened. Therefore, a part of the bathtub water flows through the bypass circuit 13, and the pressure loss of the bathtub water circuit 8 is reduced, so that the total circulation flow rate of the bathtub water conveyed by the bathtub water pump 8 is increased.
[0027]
If the flow rate of the bathtub water circulating in the bathtub water circuit 8 is increased, the convection of the bathtub water in the bathtub 9 is promoted, and the low temperature bathtub water at the bottom of the bathtub 9 is effective with the hot bathtub water at the surface layer. It is agitated by convection. Therefore, the temperature distribution of the bathtub 9 gradually becomes uniform. When the temperature of the circulating bathtub water becomes high, the viscosity of the bathtub water becomes small and the pressure loss of the bathtub water in the bath heat exchanger 7 decreases. When the differential pressure detected by the pressure sensor 18 becomes a predetermined value P1 or less, it is determined that the temperature distribution of the bathtub water in the bathtub 9 has become uniform, and the bypass circuit on-off valve 14 is opened to closed by the control means 19. To do. FIG. 6 shows a temperature change of the circulating bath water when the above operation is repeated. By repeatedly controlling the bypass circuit on-off valve 14, the temperature of the entire bathtub water in the bathtub 9 gradually decreases, and if the system can be operated until the temperature drops below a certain predetermined temperature, the bathtub water in the bathtub 9 can be operated. This means that the heat of the hot water supply could be effectively used to heat the hot water supply. By the control of the control means 17, since a part of the bathtub water is passed through the bypass circuit 13, the heat exchange capacity of the bath heat exchanger 7 is lowered, but the temperature of the bathtub water returning to the bathtub 9 rises, so that the bathtub 9 The temperature distribution tends to be uniform.
[0028]
In this embodiment, the predetermined pressures P1 and P2 are set to constant values, but they may be specified as a function of the number of repetitions or the operation time, and the same effect can be obtained.
[0029]
Further, in this embodiment, it can be applied even when the bathtub water is heated. That is, it is possible to uniformly heat the bath water in the bathtub 9. Therefore, the heating operation of the bathtub can be performed with high efficiency.
[0030]
(Example 4)
FIG. 7 schematically shows the configuration of the heat pump bath water heater according to the fourth embodiment of the present invention. In the heat pump bath water heater of this embodiment, in addition to the conventional configuration, the bypass circuit 13, the bypass circuit on-off valve 14, and the temperature of the bathtub water circuit in the bath heat exchanger 7 are branched and connected to the outlet portion. It includes a sensor 20 and a control means 21. The temperature sensor 20 is a means for detecting the refrigerant inlet temperature of the bath heat exchanger 7. The control means 21 is a control means for opening and closing the bypass circuit on-off valve 14 based on the detected temperature of the temperature sensor 20. In this embodiment, a thermistor is used for the temperature sensor 20, but a thermocouple, a resistance temperature detector, or the like may also be used. Further, the installation position may be the refrigerant outlet of the bath heat exchanger.
0031
Next, the operation and operation will be described. When heating the hot water supply water using the heat of the bathtub water of the bathtub 9, the same operation as in the conventional example is performed, but the bypass circuit on-off valve 14 is closed and the bathtub water does not flow through the bypass circuit 13. .. As the heating operation of the hot water supply water is continued by utilizing the heat of the bathtub water, the temperature distribution as shown in FIG. 12 is formed in the bathtub 9. When the temperature of the bathtub water flowing into the bath heat exchanger 7 decreases, the evaporation pressure of the heat pump circuit decreases, so that the temperature of the refrigerant flowing into the bath heat exchanger 7 also decreases. That is, the temperature of the circulating bathtub water is reflected in the detection temperature of the temperature sensor 20. Therefore, when the temperature of the temperature sensor 20 becomes a predetermined temperature T3 or less, the bypass circuit on-off valve 14 is opened from the closed state by the control means 21, and the bathtub water circuit in the bath heat exchanger 7 is branched and connected to the outlet portion. The bypass circuit 13 is opened. Therefore, a part of the bathtub water flows through the bypass circuit 13, and the pressure loss of the bathtub water circuit 8 is reduced, so that the total circulation flow rate of the bathtub water conveyed by the bathtub water pump 8 is increased. If the flow rate of the bathtub water circulating in the bathtub water circuit 8 is increased, the convection of the bathtub water in the bathtub 9 is promoted, and the low temperature bathtub water at the bottom of the bathtub 9 is effective with the hot bathtub water at the surface layer. It is agitated by convection. Therefore, the temperature distribution of the bathtub 9 gradually becomes uniform. As the temperature distribution becomes uniform, the temperature of the circulating bathtub water increases. Therefore, when the temperature detected by the temperature sensor 20 becomes a predetermined temperature T4 or higher, the temperature distribution of the bathtub water in the bathtub 9 becomes uniform. Upon determination, the control means 21 changes the bypass circuit on-off valve 14 from open to closed. FIG. 8 shows a temperature change of the circulating bath water when the above operation is repeated. By repeatedly controlling the bypass circuit on-off valve 14, the temperature of the entire bathtub water in the bathtub 9 gradually decreases, and if the system can be operated until the temperature drops below a certain predetermined temperature, the bathtub water in the bathtub 9 can be operated. This means that the heat of the hot water supply could be effectively used to heat the hot water supply. By the control of the control means 21, since a part of the bathtub water is passed through the bypass circuit 13, the heat exchange capacity of the bath heat exchanger 7 is lowered, but the temperature of the bathtub water returning to the bathtub 9 rises, so that the bathtub 9 The temperature distribution tends to be uniform.
[0032]
If a temperature sensor is installed at the refrigerant inlet or outlet of the bathtub water heat exchanger in order to control the heat pump cycle, this embodiment can be carried out using this. On the contrary, when it is not installed, the heat pump cycle can be controlled by using the temperature sensor installed in this embodiment.
0033
In this embodiment, the predetermined temperatures T3 and T4 are set to constant values, but they may be specified as a function of the number of repetitions or the operation time, and the same effect can be obtained.
0034
Further, in this embodiment, it can be applied even when the bathtub water is heated. That is, it is possible to uniformly heat the bath water in the bathtub 9. Therefore, the heating operation of the bathtub can be performed with high efficiency.
0035.
(Example 5)
FIG. 9 schematically shows the configuration of the heat pump bath water heater according to the fifth embodiment of the present invention. In the heat pump bath water heater of this embodiment, in addition to the conventional configuration, the bypass circuit 13, the bypass circuit on-off valve 14, and the pressure, in which the bathtub water circuit in the bath heat exchanger 7 is branched and connected to the outlet portion, are used. It includes a sensor 22 and a control means 23. The pressure sensor 22 is a means for detecting the refrigerant inlet pressure of the bath heat exchanger 7. The control means 23 is a control means for opening and closing the bypass circuit on-off valve 14 based on the detected pressure of the pressure sensor 22. In this embodiment, the pressure sensor 22 is installed at the refrigerant inlet of the bath heat exchanger 7, but the installation position may be the refrigerant outlet of the bath heat exchanger.
0036
Next, the operation and operation will be described. When heating the hot water supply water using the heat of the bathtub water of the bathtub 9, the same operation as in the conventional example is performed, but the bypass circuit on-off valve 14 is closed and the bathtub water does not flow through the bypass circuit 13. .. As the heating operation of the hot water supply water is continued by utilizing the heat of the bathtub water, the temperature distribution as shown in FIG. 12 is formed in the bathtub 9. When the temperature of the bath water flowing into the bath heat exchanger 7 decreases, the evaporating pressure of the refrigerant in the heat pump circuit decreases. That is, the temperature of the circulating bath water is reflected in the detected pressure of the pressure sensor 22. Therefore, when the detected pressure of the pressure sensor 22 becomes a predetermined value P3 or less, the bypass circuit on-off valve 14 is opened from the closed state by the control means 23, and the bathtub water circuit in the bath heat exchanger 7 is branched to the outlet portion. The connected bypass circuit 13 is opened. Therefore, a part of the bathtub water flows through the bypass circuit 13, and the pressure loss of the bathtub water circuit 8 is reduced, so that the total circulation flow rate of the bathtub water conveyed by the bathtub water pump 12 is increased. If the flow rate of the bathtub water circulating in the bathtub water circuit 8 is increased, the convection of the bathtub water in the bathtub 9 is promoted, and the low temperature bathtub water at the bottom of the bathtub 9 is effective with the hot bathtub water at the surface layer. It is agitated by convection. Therefore, the temperature distribution of the bathtub 9 gradually becomes uniform. As the temperature distribution becomes uniform, the temperature of the circulating bathtub water increases. Therefore, when the detected pressure of the pressure sensor 22 becomes a predetermined value P4 or more, the temperature distribution of the bathtub water in the bathtub 9 becomes uniform. Upon determination, the control means 23 changes the bypass circuit on-off valve 14 from open to closed. FIG. 10 shows a temperature change of the circulating bath water when the above operation is repeated. By repeatedly controlling the bypass circuit on-off valve 14, the temperature of the entire bathtub water in the bathtub 9 gradually decreases, and if the system can be operated until the temperature drops below a certain predetermined temperature, the bathtub water in the bathtub 9 can be operated. This means that the heat of the hot water supply could be effectively used to heat the hot water supply. By the control of the control means 23, since a part of the bathtub water is passed through the bypass circuit 13, the heat exchange capacity of the bath heat exchanger 7 is lowered, but the temperature of the bathtub water returning to the bathtub 9 rises, so that the bathtub 9 The temperature distribution tends to be uniform.
0037
If a pressure sensor is installed at the refrigerant inlet or outlet of the bathtub water heat exchanger in order to control the heat pump cycle, this embodiment can be carried out using this. On the contrary, when it is not installed, the heat pump cycle can be controlled by using the pressure sensor installed in this embodiment.
[0038]
In this embodiment, the predetermined pressures P3 and P4 are set to constant values, but they may be specified as a function of the number of repetitions or the operation time, and the same effect can be obtained.
[0039]
Further, in this embodiment, it can be applied even when the bathtub water is heated. That is, it is possible to uniformly heat the bath water in the bathtub 9. Therefore, the heating operation of the bathtub can be performed with high efficiency.
0040
According to the heat pump bath water heater described in the above embodiment, the following effects can be obtained.
[0041]
(1) Control to flow bathtub water to the bypass circuit even if a temperature distribution of bathtub water that is disadvantageous for operation efficiency is formed in the depth direction of the bathtub when the hot water supply is heated by using the heat of the bathtub water Therefore, the temperature distribution of the bathtub can be made uniform.
[0042]
Therefore, since the heat of the bathtub water can be effectively used for heating the hot water supply, high efficiency is realized when the heating operation of the hot water supply is performed using the heat of the bathtub water.
[0043]
(2) When the bypass circuit is opened, the circulating flow rate increases, so that the bathtub, the bathtub water circuit, and the bath heat exchanger are less likely to get dirty.
[0044]
(3) Even if the outlet of the bath heat exchanger is blocked due to dirt or corrosion in the bathtub water, the bath heat exchanger can exchange heat with the bathtub water by using the bypass circuit. Life can be extended.
0045
(4) Since the added temperature sensor can be used as a means for detecting the safety of the device, the safety of the device is improved, and this temperature sensor is also used to control the temperature of the bathtub water. You can also.
[0046]
(5) When the bath heat exchanger becomes dirty and the pressure loss in the bathtub water flow path increases, this state can be detected by the pressure sensor. Therefore, it is possible to have a function of notifying the maintenance time.
[0047]
(6) Since the temperature sensor can also be used for heat pump cycle control, the efficiency of the device can be improved by using this.
0048
【Effect of the invention】
As described above, according to the heat pump bath water heater of the present invention, the heat of the bathtub water can be effectively used for heating the hot water supply, and the efficiency can be expected to be improved.
[Simple explanation of drawings]
FIG. 1
Configuration explanatory view of the heat pump bath water heater in Example 1 of the present invention
FIG. 2
The figure which showed the relationship between the operation time of the heat pump bath water heater and the bathtub water temperature
FIG. 3
Configuration explanatory view of the heat pump bath water heater in Example 2 of the present invention
FIG. 4
The figure which showed the relationship between the operation time of the heat pump bath water heater and the bathtub water temperature
FIG. 5
Configuration explanatory view of the heat pump bath water heater in Example 3 of the present invention
FIG. 6
The figure which showed the relationship between the operation time of the heat pump bath water heater and the bathtub water temperature
FIG. 7
Configuration explanatory view of the heat pump bath water heater in Example 4 of the present invention
FIG. 8
The figure which showed the relationship between the operation time of the heat pump bath water heater and the bathtub water temperature
FIG. 9
Configuration explanatory view of the heat pump bath water heater in Example 5 of the present invention
FIG. 10
The figure which showed the relationship between the operation time of the heat pump bath water heater and the bathtub water temperature
FIG. 11
Configuration explanatory view of the conventional heat pump bath water heater
FIG. 12
The figure which showed the relationship between the bathtub water depth and the bathtub water temperature of the heat pump bath water heater
[Explanation of symbols]
1 Compressor
2a, 2b expansion valve
3 Refrigerant circuit
4 Hot water heat exchanger
5 Hot water supply circuit
6 Hot water storage tank
7 Bath heat exchanger
8 Bathtub water circuit
9 bathtub
10 Heat collector
11a, 11b, 11c on-off valve
12 Bathtub water pump
13 Bypass circuit
14 Bypass circuit on-off valve
15 Control means for controlling the bypass circuit on-off valve based on the operating time
16, 20 temperature sensor
17, 21 Control means for controlling the bypass circuit on-off valve based on the detected temperature of the temperature sensor
18, 22 pressure sensor
19, 23 Control means for controlling the bypass circuit on-off valve based on the detected pressure of the pressure sensor

JP14988899A 1999-05-28 1999-05-28 Heat pump bath water heater Expired - Fee Related JP3663976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14988899A JP3663976B2 (en) 1999-05-28 1999-05-28 Heat pump bath water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14988899A JP3663976B2 (en) 1999-05-28 1999-05-28 Heat pump bath water heater

Publications (3)

Publication Number Publication Date
JP2000337701A JP2000337701A (en) 2000-12-08
JP3663976B2 JP3663976B2 (en) 2005-06-22
JP2000337701A5 true JP2000337701A5 (en) 2005-06-23

Family

ID=15484840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14988899A Expired - Fee Related JP3663976B2 (en) 1999-05-28 1999-05-28 Heat pump bath water heater

Country Status (1)

Country Link
JP (1) JP3663976B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5829492B2 (en) * 2011-11-10 2015-12-09 大阪瓦斯株式会社 Hot water storage type hot water supply system and operation control method thereof
JP6111409B2 (en) * 2012-04-13 2017-04-12 パナソニックIpマネジメント株式会社 Water heater
US11316619B2 (en) 2017-09-05 2022-04-26 Ofinno, Llc HARQ feedback transmission

Similar Documents

Publication Publication Date Title
US5224466A (en) Process for converting solar energy into heat and device for implementing the process
JP4993384B2 (en) Air conditioning system
JP2004257583A (en) Storage water heater
JP4153682B2 (en) Thermal waste heat recovery equipment
JP2009276031A (en) Hot water supply apparatus
KR20110058442A (en) A boiler based on vacuum circulation
JP2000337701A5 (en)
JP3663976B2 (en) Heat pump bath water heater
JP2000337702A5 (en)
JP3632502B2 (en) Heat pump bath water heater
JP4492634B2 (en) Heat pump system
JP2000337703A5 (en)
JP2008082692A (en) Open-to-atmosphere heat storage device
JP3663977B2 (en) Heat pump bath water heater
JP2011094922A (en) Heat pump type water heater
JP4700371B2 (en) Defrosting method for heating tower
JP3632459B2 (en) Heat pump bath water heater
KR0174226B1 (en) Control device for hot water temperature of hot water circulation type heating machine
JP3632445B2 (en) Heat pump bath water heater
JP2005076932A (en) Storage type hot water supply system
JP4515883B2 (en) Hot water storage water heater
JP3507841B2 (en) Steam or hot water heating device
JP2000088346A5 (en)
JP4007174B2 (en) Heat pump system
JPH08112526A (en) Heater by steam or hot water