JP2000334265A - Decomposition and removal of aromatic hydrocarbon contained in gaseous stream - Google Patents

Decomposition and removal of aromatic hydrocarbon contained in gaseous stream

Info

Publication number
JP2000334265A
JP2000334265A JP11148743A JP14874399A JP2000334265A JP 2000334265 A JP2000334265 A JP 2000334265A JP 11148743 A JP11148743 A JP 11148743A JP 14874399 A JP14874399 A JP 14874399A JP 2000334265 A JP2000334265 A JP 2000334265A
Authority
JP
Japan
Prior art keywords
platinum
titanium oxide
benzene
catalyst
titanium dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11148743A
Other languages
Japanese (ja)
Inventor
Hisahiro Einaga
久寛 永長
Shin Futamura
森 二タ村
Akitsugu Ibusuki
堯嗣 指宿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP11148743A priority Critical patent/JP2000334265A/en
Publication of JP2000334265A publication Critical patent/JP2000334265A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To completely covert benzene into carbon dioxide by photolysis by using platinum-supported titanium dioxide, obtained by irradiating a dispersion liquid containing titanium dioxide and a platinum compound with light, as a photolytic catalyst when an organic compound contained in a gaseous stream is decomposed and removed in the presence of the photolytic catalyst. SOLUTION: When an aromatic hydrocarbon, particularly benzene, contained in the gaseous stream exhausted from a chemical plant and the like is decomposed and removed in the presence of the photolytic catalyst, the aromatic hydrocarbon is converted into carbon dioxide using platinum-supported titanium dioxide obtained by irradiating the dispersion liquid containing titanium dioxide and the platinum compound with light as a photolytic catalyst. It is preferable that the dispersion liquid contains a lower alcohol, suitably ethanol. As the titanium dioxide, anatase-type titanium dioxide, rutile-type titanium dioxide, amorphous titanium dioxide, etc., are usable and as the platinum compound, chloroplatinic acid, platinum acethyl acetonate, etc., are usable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガス気流中に含ま
れる有機化合物、特にベンゼンを光分解して除去する方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing organic compounds, particularly benzene, contained in a gas stream by photolysis.

【0002】[0002]

【従来の技術】近年、ガス気流中例えば化学工場等から
廃ガス中の有機化合物特にベンゼンが発癌性があること
が指摘されており、我が国においては大気汚染防止法に
より規制物質に指定されている。また、平成9年2月に
は大気中の濃度に関する環境基準値が年均3μg/m
と定められ更には各種固定発生源からの排出基準値も5
0mg/m〜1500mg/mと厳しく制限される
に至っている。
2. Description of the Related Art In recent years, it has been pointed out that organic compounds, particularly benzene, in waste gas from a gas stream, for example, from a chemical plant, have carcinogenicity, and in Japan, it is designated as a regulated substance by the Air Pollution Control Law. . In February 1997, the environmental standard value for the concentration in the atmosphere was 3 μg / m 3 annually.
And the emission standard value from various fixed sources is also 5
0 mg / m 3 has come to severely limited the ~1500mg / m 3.

【0003】ところで、従来よりこのような固定発生源
からの廃ガス中の有機化合物の除去方法としては燃焼法
が一般的によく知られているが、化学工場や事業所から
の廃ガスは大気圧下、室温付近の領域で排出され、その
濃度も%オーダ以下と低いため、廃ガス中からのベンゼ
ンなどの有機化合物の除去法として、燃焼法は必ずしも
効率的なものではなかった。
[0003] Combustion has been generally well known as a method for removing organic compounds in waste gas from such stationary sources, but waste gas from chemical factories and business establishments is large. The combustion method is not always efficient as a method for removing organic compounds such as benzene from waste gas because the gas is discharged in a region near room temperature under atmospheric pressure and its concentration is as low as less than% order.

【0004】一方、気相中、酸化チタン触媒の存在下で
ベンゼンは光分解され、炭酸ガスに変換することが報告
されているが(Journal of the Air & Waste Managemen
t Association 46 891-898 1996)、炭酸ガスへの変
換率が悪く、人体に悪影響を与える一酸化炭素が10%
以上も副生するという問題があった。また、光酸化触媒
として、酸化チタンに塩化白金酸の水溶液を含浸した
後、水素化ホウ素ナトリウムを添加し白金を還元し、つ
いで乾燥して得られる酸化チタン/白金系触媒(試薬還
元法)を用いると、反応温度110℃で空気中のベンゼ
ンが転化率ほぼ100%で炭酸ガスに変換するという報
告もなされている(Applied catalysis B:Environmenta
l 6 209-224 1995)。
On the other hand, it has been reported that benzene is photodegraded in the gas phase in the presence of a titanium oxide catalyst and converted to carbon dioxide gas (Journal of the Air & Waste Managemen).
t Association 46 891-898 1996), 10% of carbon monoxide, which has a bad conversion rate to carbon dioxide and adversely affects the human body
There was also the problem of by-products. As a photo-oxidation catalyst, titanium oxide is impregnated with an aqueous solution of chloroplatinic acid, sodium borohydride is added to reduce the platinum, and then dried to obtain a titanium oxide / platinum-based catalyst (reagent reduction method). It has also been reported that when used, benzene in air is converted to carbon dioxide at a reaction temperature of 110 ° C. at a conversion of almost 100% (Applied catalysis B: Environmenta).
l 6 209-224 1995).

【0005】しかしながら、この報告例では、110℃
という極めて高温の反応温度条件を採用する必要があ
り、その排出温度が室温付近である、化学工場などの固
定発生源からの排出ガス中のベンゼンなどの有機化合物
を分解除去する方法としては、適用することができず、
また適用できたとしても必然的に高い反応温度の設定を
余儀なくされ、反応温度の選択の自由度が狭くなり、実
用的なものといえなかった。
[0005] However, in this report example, 110 ° C
It is necessary to adopt an extremely high reaction temperature condition, which is used as a method to decompose and remove organic compounds such as benzene in exhaust gas from stationary sources such as chemical factories whose emission temperature is around room temperature. Can not do
Even if it can be applied, it is inevitable to set a high reaction temperature, and the degree of freedom in selecting the reaction temperature is narrowed, which is not practical.

【0006】[0006]

【発明が解決しようとする課題】本発明はこのような従
来技術の事情に鑑みなされたものであって、その目的
は、高温はもとより室温付近の低温でもガス気流中の有
機化合物殊にベンゼンを光分解して一酸化炭素の生成を
伴うことなく完全に炭酸ガスに変換することができ、そ
の除去効率が改善されたガス気流中の有機化合物の分解
除去方法を提供することにある。
DISCLOSURE OF THE INVENTION The present invention has been made in view of such circumstances of the prior art, and has as its object to convert organic compounds, particularly benzene, in a gas stream not only at a high temperature but also at a low temperature near room temperature. An object of the present invention is to provide a method for decomposing and removing organic compounds in a gas stream, which can be completely converted to carbon dioxide without photodecomposition without producing carbon monoxide and whose removal efficiency is improved.

【0007】[0007]

【課題を解決するための手段】本発明によれば、第一
に、ガス気流中に含まれる有機化合物を光分解触媒の存
在下で分解除去する方法において、該光分解触媒とし
て、酸化チタンと白金化合物を含む分散液を光照射して
得られる白金担持酸化チタンを用いることを特徴とする
ガス気流中に含まれる有機化合物の分解除去方法が提供
される。第二に、上記第一の方法において、分散液が低
級アルコールを含むことを特徴とする有機化合物の分解
除去方法が提供される。第三に、上記第二の方法におい
て、低級アルコールがエタノールであることを特徴とす
る有機化合物の分解除去方法が提供される。第四に、上
記第第一乃至第三何れかの方法において、有機化合物が
ベンゼンであることを特徴とする有機化合物の分解除去
方法が提供される。
According to the present invention, first, in a method for decomposing and removing an organic compound contained in a gas stream in the presence of a photodecomposition catalyst, titanium oxide and titanium oxide are used as the photodecomposition catalyst. There is provided a method for decomposing and removing an organic compound contained in a gas stream, wherein a platinum-supported titanium oxide obtained by irradiating a dispersion containing a platinum compound with light is used. Secondly, there is provided a method for decomposing and removing an organic compound according to the first method, wherein the dispersion contains a lower alcohol. Third, a method for decomposing and removing an organic compound according to the second method, wherein the lower alcohol is ethanol. Fourthly, there is provided a method for decomposing and removing an organic compound according to any one of the first to third methods, wherein the organic compound is benzene.

【0008】本発明者らは、室温付近の低温でもガス気
流中の有機化合物殊にベンゼンを簡便に光分解除去でき
る方法について鋭意検討した結果、触媒として、酸化チ
タンと白金化合物を用いると共にこれらを光照射下で混
合調製した白金担持酸化チタンを使用すると高温はもと
より室温付近の低温でもガス気流中の有機化合物殊にベ
ンゼンを光分解して一酸化炭素の生成を伴うことなく完
全に炭酸ガスに変換できることを知見した。 本発明は
これらの新規な知見に基づいてなされたものである。以
下、本発明を詳細に説明する。
The present inventors have conducted intensive studies on a method capable of easily photolytically removing organic compounds, particularly benzene, in a gas stream even at a low temperature near room temperature. As a result, titanium oxide and a platinum compound were used as catalysts and these were used. Using platinum-supported titanium oxide mixed and prepared under light irradiation, even at high temperatures as well as low temperatures around room temperature, organic compounds, especially benzene, in the gas stream are photo-decomposed and completely converted to carbon dioxide without the production of carbon monoxide. It was found that it could be converted. The present invention has been made based on these new findings. Hereinafter, the present invention will be described in detail.

【0009】本発明で使用する触媒は、酸化チタンと白
金化合物を含む分散液を光照射して得られる白金担持酸
化チタンである。上記酸化チタンとしては、アナタース
型酸化チタン、ルチル型酸化チタン、無定型酸化チタン
等の従来公知のものであれば何れも使用できる。
The catalyst used in the present invention is platinum-supported titanium oxide obtained by irradiating a dispersion containing titanium oxide and a platinum compound with light. Any known titanium oxide such as anatase-type titanium oxide, rutile-type titanium oxide, and amorphous titanium oxide can be used as the titanium oxide.

【0010】白金化合物としては、塩化白金酸、白金ア
セチルアセトナート、塩化テトラアンミン白金等の従来
公知のものが使用できる。
As the platinum compound, conventionally known compounds such as chloroplatinic acid, platinum acetylacetonate, and tetraammineplatinum chloride can be used.

【0011】酸化チタンと白金化合物を含む分散液を調
製するには、白金化合物をたとえばアルコール、ケト
ン、カルボン酸などの有機溶媒あるいはこれらに水を混
合した溶媒系にあらかじめ溶解しておき、ついで酸化チ
タン粒子を分散させる方法、或いは酸化チタン粒子を上
記の有機溶媒にあらかじめ分散させておき、ついで白金
化合物を添加する方法等を採用すればよい。上記有機溶
媒との具体例としては、エタノール、メタノール、2−
プロパノール等の低級アルコール、アセトン等のケトン
類、酢酸等のカルボン酸類が挙げられるが、毒性の低
さ、白金の担持効率の点からみて低級アルコール 殊に
エタノールの使用が好ましい。
In order to prepare a dispersion containing titanium oxide and a platinum compound, the platinum compound is previously dissolved in an organic solvent such as alcohol, ketone, carboxylic acid or the like or a solvent system in which water is mixed with these compounds. A method of dispersing titanium particles or a method of dispersing titanium oxide particles in the above organic solvent in advance and then adding a platinum compound may be employed. Specific examples of the organic solvent include ethanol, methanol, 2-
Examples thereof include lower alcohols such as propanol, ketones such as acetone, and carboxylic acids such as acetic acid. From the viewpoint of low toxicity and platinum loading efficiency, use of lower alcohols, particularly ethanol, is preferred.

【0012】酸化チタンと白金化合物の使用割合に特別
な制約はないが、酸化チタン100重量部に対して白金
化合物を0.5重量%以上好ましくは1.0〜5.0重
量%程度とするのがよい。
There are no particular restrictions on the proportions of titanium oxide and platinum compound used, but the platinum compound should be present in an amount of at least 0.5% by weight, preferably about 1.0 to 5.0% by weight, based on 100 parts by weight of titanium oxide. Is good.

【0013】ついで、本発明に係る触媒調製法において
は、IV価の白金を0価に還元して酸化チタン表面上に固
定するために、得られた酸化チタンと白金化合物を含む
分散液に光を照射する。この際、分散液中の酸化チタン
粒子の分散性を保つため、同液を攪拌下に置くのが好ま
しい。光源としては、従来公知のものたとえば水銀灯、
キセノン灯、ブラックライトなどが使用できる。照射時
間は白金化合物が還元され、かつ該還元白金化合物が酸
化チタンの表面に担持された時期を目途とすればよい。
通常0.5〜10時間好ましくは1〜3時間である。
Next, in the catalyst preparation method according to the present invention, in order to reduce platinum of IV valence to zero and fix it on the surface of titanium oxide, the obtained dispersion containing titanium oxide and a platinum compound is added to the dispersion. Is irradiated. At this time, in order to maintain the dispersibility of the titanium oxide particles in the dispersion, the dispersion is preferably placed under stirring. As the light source, a conventionally known light source such as a mercury lamp,
Xenon lamps, black lights, etc. can be used. The irradiation time may be set at a time when the platinum compound is reduced and the reduced platinum compound is supported on the surface of the titanium oxide.
Usually, it is 0.5 to 10 hours, preferably 1 to 3 hours.

【0014】上記の方法において、白金を効率良く酸化
チタンに担持するためには、あらかじめ酸化チタンと白
金化合物を含む分散液から溶存酸素を除去(脱気)して
おくことが好ましい。脱気の方法としては、アルゴン、
窒素などの不活性ガスを分散液に通す方法、分散液を減
圧下にした後に不活性ガス雰囲気下に置く方法を採用す
れば良い。
In the above method, in order to efficiently carry platinum on titanium oxide, it is preferable to remove (degas) dissolved oxygen from a dispersion containing titanium oxide and a platinum compound in advance. As a method of deaeration, argon,
A method of passing an inert gas such as nitrogen through the dispersion, or a method of reducing the pressure of the dispersion and then placing it in an inert gas atmosphere may be employed.

【0015】上記光照射によって得られる沈殿物を分散
液から濾過等の手段により分離し水等などで洗浄し乾燥
することにより、本発明に係る光分解触媒が得られる。
かかる触媒は粉末状のもの、ゲル状のもの、支持体に固
定した薄膜のいずれでも良い。また、表面は多孔質でも
緻密質でもよい。
The precipitate obtained by the light irradiation is separated from the dispersion by means such as filtration, washed with water or the like, and dried to obtain the photolysis catalyst according to the present invention.
Such a catalyst may be in the form of a powder, a gel, or a thin film fixed on a support. The surface may be porous or dense.

【0016】これら金属担持酸化チタンは支持体に付着
して用いるのが望ましい。支持体として、ガラス、セラ
ミックス等の無機材料、ステンレス鋼、アルミニウム等
の金属材料などが挙げられる。
It is desirable to use these metal-supported titanium oxides by attaching them to a support. Examples of the support include inorganic materials such as glass and ceramics, and metal materials such as stainless steel and aluminum.

【0017】本発明に係る上記光照射法によって得られ
る白金担持酸化チタン触媒は、高温はもとより室温付近
の低温でもガス気流中例えば排ガス中の有機化合物殊に
ベンゼンを光分解して一酸化炭素の生成を伴うことなく
完全に炭酸ガスに変換することができるので、ガス気流
中の有機化合物殊に環境基準値が厳格になったベンゼン
の分解除去触媒として極めて有効なものである。なお、
白金担持酸化チタン系触媒であっても、光照射法(光還
元法)を使用せず、試薬還元法すなわち、酸化チタンに
白金化合物を含浸させ、しかる後水素化ホウ素ナトリウ
ム等の還元剤で処理し、次いで乾燥処理したものは、高
温での触媒活性には優れるものの低温下ではその触媒活
性が低下し、その触媒活性に温度依存性が強く本発明の
ような作用効果を期待することはできない。
The platinum-supported titanium oxide catalyst obtained by the above-mentioned light irradiation method according to the present invention can be used to photodecompose organic compounds, especially benzene, in a gas stream, for example, exhaust gas, at high temperatures as well as at low temperatures around room temperature to produce carbon monoxide. Since it can be completely converted to carbon dioxide gas without generation, it is extremely effective as a catalyst for decomposing and removing organic compounds in a gas stream, especially benzene, which has strict environmental standard values. In addition,
Even with a platinum-supported titanium oxide-based catalyst, a reagent reduction method, that is, a method in which titanium oxide is impregnated with a platinum compound and then treated with a reducing agent such as sodium borohydride, without using the light irradiation method (photoreduction method). Then, the dried product is excellent in catalytic activity at a high temperature, but its catalytic activity is reduced at a low temperature, and its catalytic activity is strongly temperature-dependent, so that the effects and effects as in the present invention cannot be expected. .

【0018】本発明の対象とするガス気流中に含まれる
有機化合物はたとえば空気中や化学工場や事業所等によ
って排出されるガス中に含まれるものである。有機化合
物としてはベンゼン、トルエン、キシレン等の芳香族炭
化水素の他、フェノール類、アルコール類、アルデヒド
類、アミン類、脂肪族ハロゲン化炭化水素類が挙げられ
るが、除去効率からみてベンゼン等の芳香族炭化水素や
トリクロロエチレン等の脂肪族ハロゲン化炭化水素を含
む排ガスを処理対象とするのが好ましい。
The organic compounds contained in the gas stream targeted by the present invention are contained, for example, in the air or in the gas discharged from chemical factories or business establishments. Organic compounds include phenols, alcohols, aldehydes, amines, and aliphatic halogenated hydrocarbons, in addition to aromatic hydrocarbons such as benzene, toluene, and xylene. It is preferable to treat exhaust gas containing aliphatic hydrocarbons such as aliphatic hydrocarbons and trichloroethylene.

【0019】本発明を具体的に実施するには例えばつぎ
のようにすればよい。パイレックスガラス製の円筒型の
外管、および 表面に摺りガラス処理を施し、両端を封
じたガラス製の内管からなる光反応器を準備する。つい
で上記光照射法により得られた酸化チタン/白金触媒を
内管の外表面に塗布し、乾燥させた後、ベンゼンを含む
ガス気流を光反応器に通し、光反応器の外側から光照射
を施す。照射光としては、太陽光、ブラックライト、水
銀灯、キセノン灯等を光源とする光を挙げることができ
るが、殊にブラックライトが好ましい。光の照射量や照
射時間は分解除去する有機化合物の種類や量などを勘案
して適宜設定すればよい。
The present invention may be embodied specifically as follows. Prepare a photoreactor consisting of a Pyrex glass cylindrical outer tube, and a glass inner tube whose surface is ground and the both ends are sealed. Next, the titanium oxide / platinum catalyst obtained by the above-mentioned light irradiation method is applied to the outer surface of the inner tube and dried, and then a gas stream containing benzene is passed through the light reactor, and light irradiation is performed from outside the light reactor. Apply. Examples of the irradiation light include light using a sunlight, a black light, a mercury lamp, a xenon lamp, or the like as a light source, and a black light is particularly preferable. The irradiation amount and irradiation time of light may be appropriately set in consideration of the type and amount of the organic compound to be decomposed and removed.

【0020】[0020]

【実施例】次に、本発明を実施例により更に詳細に説明
する。
Next, the present invention will be described in more detail with reference to examples.

【0021】実施例1 [光触媒の調製]所定量の酸化チタン(日本アエロジル
P-25)0.5gと塩化白金酸13.3mgを含むエタノー
ル-水溶液200ml(ミリリットル)(体積混合比3:
1)にアルゴンガス気流を通した後、500 W(ワッ
ト)高圧水銀灯にて3時間光照射した。続いて沈澱を濾
過し、純水で洗浄後、110℃で乾燥させた。 [ベンゼンの分解除去]上記のようにして得られた光触
媒を用い、ベンゼンの光分解を固定床流通系により行っ
た。反応温度は30℃に維持した。また前記触媒をあら
かじめ空気気流中で数時間光照射し、触媒の前処理を行
った。ついで、暗所下にて気相と触媒表面でベンゼンの
吸着平衡に達した後光照射を行い、光分解反応を開始し
た。光反応器は図1に示されるような、パイレックス製
の外管(外径15φ)および 0.24 gの白金担持酸
化チタンを塗布した内管(摺りガラス管:8φ×50 c
m)により構成されているものを使用した。また光源と
しては、20 Wのブラックライト(波長域:300〜4
20 nm )4本を使用した。ベンゼンの定量は水素炎イ
オン化検出器を装填したガスクロマトグラフ装置(Pora
pak Qカラム装填)により、二酸化炭素と一酸化炭素の
定量は熱伝導度検出器、メタナイザー、および水素炎イ
オン化検出器を装填したガスクロマトグラフ装置(Porap
ak Q, MS-13Xカラム, メタナイザー装填) によりそれぞ
れ行った。また、気相中生成物はガスクロマトグラフ−
質量分析計により同定した。その結果を図2に示す。図
2から、上記調製法により得られた白金担持酸化チタン
を光分解触媒の存在下による空気気流中(反応ガス滞留
時間:25 秒, 相対湿度:65 %)ベンゼンの光分解反応
では、ベンゼン転化率はほぼ100%を示すことが分かる。
また、二酸化炭素生成には誘導期が見られたものの、気
相中に他の生成物は検出されず、定常状態に達した際の
炭素収支はほぼ100 %と求められた。また、白金担持量
がCOx(二酸化炭素および一酸化炭素)生成活性および
選択率に及ぼす影響を調べた。その結果を図3 に示す
(反応ガス滞留時間:10 秒)。図3から、COx生成活性
は白金担持量にほとんど依存しないものの、一酸化炭素
選択率は白金担持量の増加に伴って低下することが分か
った。
Example 1 [Preparation of photocatalyst] A predetermined amount of titanium oxide (Nippon Aerosil)
P-25) 200 ml (milliliter) of an ethanol-water solution containing 0.5 g and 13.3 mg of chloroplatinic acid (volume mixing ratio 3:
After passing an argon gas flow through 1), light irradiation was performed for 3 hours using a 500 W (watt) high pressure mercury lamp. Subsequently, the precipitate was filtered, washed with pure water, and dried at 110 ° C. [Decomposition and Removal of Benzene] Using the photocatalyst obtained as described above, photolysis of benzene was carried out by a fixed bed flow system. The reaction temperature was maintained at 30C. The catalyst was pre-treated by irradiating the catalyst with light for several hours in an air stream. Then, after reaching the adsorption equilibrium of benzene between the gas phase and the catalyst surface in a dark place, light irradiation was performed to start the photolysis reaction. The photoreactor was an outer tube made of Pyrex (outer diameter 15φ) and an inner tube coated with 0.24 g of platinum-supported titanium oxide (ground glass tube: 8φ × 50 c) as shown in FIG.
m) was used. The light source is a 20 W black light (wavelength range: 300 to 4).
20 nm). The amount of benzene was determined using a gas chromatograph (Pora) equipped with a flame ionization detector.
Quantification of carbon dioxide and carbon monoxide by pak Q column loading was performed using a gas chromatograph equipped with a thermal conductivity detector, a metanizer, and a flame ionization detector (Porap
ak Q, MS-13X column, loaded with a metanizer). The products in the gas phase are gas chromatographs.
Identified by mass spectrometer. The result is shown in FIG. From FIG. 2, it can be seen that in the photolysis reaction of benzene in the presence of a photolysis catalyst, the platinum-supported titanium oxide obtained in the above-mentioned preparation method was reacted with benzene in an air stream (reaction gas residence time: 25 seconds, relative humidity: 65%). It can be seen that the rate shows almost 100%.
Although an induction period was observed in carbon dioxide production, no other products were detected in the gas phase, and the carbon balance at the time of reaching the steady state was determined to be almost 100%. In addition, the effect of the amount of supported platinum on COx (carbon dioxide and carbon monoxide) production activity and selectivity was examined. The results are shown in FIG. 3 (reaction gas residence time: 10 seconds). From FIG. 3, it was found that the COx generation activity hardly depends on the amount of supported platinum, but the carbon monoxide selectivity decreases with an increase in the amount of supported platinum.

【0022】比較例 [光触媒の調製]酸化チタンに塩化白金酸水溶液を含浸
させた後、水素化ホウ素ナトリウム0.1Mを含む水酸
化ナトリウム0.1M水溶液を接触させ、白金を還元す
ることにより(試薬還元法)、白金担持酸化チタン(白
金担持量0.1重量%)を調製した。 [ベンゼンの分解除去]上記調製法により得られた白金
担持酸化チタンを用いて、ベンゼンに光分解を固定床流
通系により、反応温度70〜140℃の間で行った。反
応温度100℃以下では二酸化炭素の選択率は80〜9
0%であった。同選択率が100%を達成するためには
110℃もの高温を必要とした。
Comparative Example [Preparation of Photocatalyst] Titanium oxide was impregnated with an aqueous solution of chloroplatinic acid, and then contacted with a 0.1 M aqueous solution of sodium hydroxide containing 0.1 M of sodium borohydride to reduce platinum. Reagent reduction method), and platinum-supported titanium oxide (platinum-supported amount: 0.1% by weight) was prepared. [Decomposition and Removal of Benzene] Using the platinum-supported titanium oxide obtained by the above-mentioned preparation method, photolysis was performed on benzene by a fixed bed flow system at a reaction temperature of 70 to 140 ° C. At a reaction temperature of 100 ° C. or lower, the selectivity of carbon dioxide is 80 to 9
It was 0%. To achieve the same selectivity of 100%, a temperature as high as 110 ° C. was required.

【0023】[0023]

【発明の効果】本発明方法は、前記した特有な調製法に
よって得た白金担持酸化チタン触媒を使用したことか
ら、高温はもとより室温付近の低温でもガス気流中の有
機化合物殊にベンゼンを光分解して一酸化炭素の生成を
伴うことなく完全に炭酸ガスに変換することができ、そ
の除去効率が著しく改善できると共に光分解反応を従来
法に比し温和な条件下で行えるといった利点を有するも
のである。
According to the method of the present invention, the platinum-supported titanium oxide catalyst obtained by the above-mentioned specific preparation method is used, so that organic compounds, particularly benzene, in a gas stream can be photo-decomposed not only at a high temperature but also at a low temperature near room temperature. Has the advantage that it can be completely converted to carbon dioxide without producing carbon monoxide, the removal efficiency can be significantly improved, and the photolysis reaction can be performed under milder conditions than conventional methods. It is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例で使用する光反応器の説明図FIG. 1 is an explanatory view of a photoreactor used in an embodiment of the present invention.

【図2】本発明に係る触媒を使用したベンゼンの光分解
反応におけるベンゼンの転化率及び二酸化炭素の生成量
の変化を表すグラフ
FIG. 2 is a graph showing changes in the conversion rate of benzene and the amount of carbon dioxide generated in the photolysis reaction of benzene using the catalyst according to the present invention.

【図3】本発明に係る触媒を使用したベンゼンの光分解
反応におけるCOx生成活性と選択率の変化を表すグラフ
FIG. 3 is a graph showing changes in COx generation activity and selectivity in the photolysis reaction of benzene using the catalyst according to the present invention.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年5月23日(2000.5.2
3)
[Submission date] May 23, 2000 (2005.2
3)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【書類名】 明細書[Document Name] Statement

【発明の名称】 ガス気流中に含まれる芳香族炭化
水素の分解除去方法
[Title of the Invention] Aromatic carbonization contained in gas stream
Hydrogen decomposition removal method

【特許請求の範囲】[Claims]

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガス気流中に含ま
れる芳香族炭化水素、特にベンゼンを光分解して除去す
る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing an aromatic hydrocarbon , particularly benzene, contained in a gas stream by photolysis.

【0002】[0002]

【従来の技術】近年、ガス気流中例えば化学工場等から
廃ガス中の有機化合物特にベンゼンが発癌性があること
が指摘されており、我が国においては大気汚染防止法に
より規制物質に指定されている。また、平成9年2月に
は大気中の濃度に関する環境基準値が年均3μg/m
と定められ更には各種固定発生源からの排出基準値も5
0mg/m〜1500mg/mと厳しく制限される
に至っている。
2. Description of the Related Art In recent years, it has been pointed out that organic compounds, particularly benzene, in waste gas from a gas stream, for example, from a chemical plant, have carcinogenicity, and in Japan, it is designated as a regulated substance by the Air Pollution Control Law. . In February 1997, the environmental standard value for the concentration in the atmosphere was 3 μg / m 3 annually.
And the emission standard value from various fixed sources is also 5
0 mg / m 3 has come to severely limited the ~1500mg / m 3.

【0003】ところで、従来よりこのような固定発生源
からの廃ガス中の有機化合物の除去方法としては燃焼法
が一般的によく知られているが、化学工場や事業所から
の廃ガスは大気圧下、室温付近の領域で排出され、その
濃度も%オーダ以下と低いため、廃ガス中からのベンゼ
ンなどの有機化合物の除去法として、燃焼法は必ずしも
効率的なものではなかった。
[0003] Combustion has been generally well known as a method for removing organic compounds in waste gas from such stationary sources, but waste gas from chemical factories and business establishments is large. The combustion method is not always efficient as a method for removing organic compounds such as benzene from waste gas because the gas is discharged in a region near room temperature under atmospheric pressure and its concentration is as low as less than% order.

【0004】一方、気相中、酸化チタン触媒の存在下で
ベンゼンは光分解され、炭酸ガスに変換することが報告
されているが(Journal of the Air & Waste Managemen
t Association 46 891-898 1996)、炭酸ガスへの変
換率が悪く、人体に悪影響を与える一酸化炭素が10%
以上も副生するという問題があった。また、光酸化触媒
として、酸化チタンに塩化白金酸の水溶液を含浸した
後、水素化ホウ素ナトリウムを添加し白金を還元し、つ
いで乾燥して得られる酸化チタン/白金系触媒(試薬還
元法)を用いると、反応温度110℃で空気中のベンゼ
ンが転化率ほぼ100%で炭酸ガスに変換するという報
告もなされている(Applied catalysis B:Environmenta
l 6 209-224 1995)。
On the other hand, it has been reported that benzene is photodegraded in the gas phase in the presence of a titanium oxide catalyst and converted to carbon dioxide gas (Journal of the Air & Waste Managemen).
t Association 46 891-898 1996), 10% of carbon monoxide, which has a bad conversion rate to carbon dioxide and adversely affects the human body
There was also the problem of by-products. As a photo-oxidation catalyst, titanium oxide is impregnated with an aqueous solution of chloroplatinic acid, sodium borohydride is added to reduce the platinum, and then dried to obtain a titanium oxide / platinum-based catalyst (reagent reduction method). It has also been reported that when used, benzene in air is converted to carbon dioxide at a reaction temperature of 110 ° C. at a conversion of almost 100% (Applied catalysis B: Environmenta).
l 6 209-224 1995).

【0005】しかしながら、この報告例では、110℃
という極めて高温の反応温度条件を採用する必要があ
り、その排出温度が室温付近である、化学工場などの固
定発生源からの排出ガス中のベンゼンなどの有機化合物
を分解除去する方法としては、適用することができず、
また適用できたとしても必然的に高い反応温度の設定を
余儀なくされ、反応温度の選択の自由度が狭くなり、実
用的なものといえなかった。
[0005] However, in this report example, 110 ° C
It is necessary to adopt an extremely high reaction temperature condition, which is used as a method to decompose and remove organic compounds such as benzene in exhaust gas from stationary sources such as chemical factories whose emission temperature is around room temperature. Can not do
Even if it can be applied, it is inevitable to set a high reaction temperature, and the degree of freedom in selecting the reaction temperature is narrowed, which is not practical.

【0006】[0006]

【発明が解決しようとする課題】本発明はこのような従
来技術の事情に鑑みなされたものであって、その目的
は、高温はもとより室温付近の低温でもガス気流中の
香族炭化水素殊にベンゼンを光分解して一酸化炭素の生
成を伴うことなく完全に炭酸ガスに変換することがで
き、その除去効率が改善されたガス気流中の有機化合物
の分解除去方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention has been made in view of the circumstances of the prior art, and its object is high temperature of the gas stream at a low temperature around room temperature as well Kaoru
A method for decomposing and removing organic compounds in a gas stream that can completely convert aromatic hydrocarbons, particularly benzene, into carbon dioxide by photodecomposition without the production of carbon monoxide, and with improved removal efficiency. To provide.

【0007】[0007]

【課題を解決するための手段】本発明によれば、第一
に、ガス気流中に含まれる芳香族炭化水素を光分解触媒
の存在下で分解除去する方法において、該光分解触媒と
して、酸化チタンと白金化合物を含む分散液を光照射し
て得られる白金担持酸化チタンを用い、該芳香族炭化水
素を二酸化炭素に変換することを特徴とするガス気流中
に含まれる芳香族炭化水素の分解除去方法が提供され
る。第二に、上記第一の方法において、芳香族炭化水素
がベンゼンであることを特徴とする芳香族炭化水素の分
解除去方法が提供される。第三に、上記第一又は第二の
方法において、分散液が低級アルコールを含むことを特
徴とする芳香族炭化水素の分解除去方法が提供される。
第四に、上記第一乃至第三何れかの方法において、低級
アルコールがエタノールであることを特徴とする芳香族
炭化水素の分解除去方法が提供される。
According to the present invention, the first
To photocatalyst aromatic hydrocarbons contained in the gas stream
Wherein the photolysis catalyst and the photolysis catalyst
And irradiate the dispersion containing titanium oxide and the platinum compound with light.
The platinum-supported titanium oxide obtained by
In gas stream characterized by converting element to carbon dioxide
Provided a method for decomposing and removing aromatic hydrocarbons contained in
You. Second, in the first method, the aromatic hydrocarbon
Wherein benzene is benzene
A solution removal method is provided. Third, the first or second
The method wherein the dispersion comprises a lower alcohol.
A method for cracking and removing aromatic hydrocarbons is provided.
Fourth, in any of the above first to third methods,
Aromatic, wherein the alcohol is ethanol
A method for cracking and removing hydrocarbons is provided.

【0008】本発明者らは、室温付近の低温でもガス気
流中の芳香族炭化水素殊にベンゼンを簡便に光分解除去
できる方法について鋭意検討した結果、触媒として、酸
化チタンと白金化合物を用いると共にこれらを光照射下
で混合調製した白金担持酸化チタンを使用すると高温は
もとより室温付近の低温でもガス気流中の有機化合物殊
にベンゼンを光分解して一酸化炭素の生成を伴うことな
く完全に炭酸ガスに変換できることを知見した。 本発
明はこれらの新規な知見に基づいてなされたものであ
る。以下、本発明を詳細に説明する。
The inventors of the present invention have conducted intensive studies on a method capable of easily photolytically removing aromatic hydrocarbons, particularly benzene, in a gas stream even at a low temperature near room temperature. As a result, titanium oxide and a platinum compound were used as catalysts. The use of platinum-supported titanium oxide prepared by mixing these under light irradiation makes it possible to completely decompose carbon compounds without generating carbon monoxide by photodecomposing organic compounds, especially benzene, in a gas stream even at high temperatures and low temperatures around room temperature. It was found that it could be converted to gas. The present invention has been made based on these new findings. Hereinafter, the present invention will be described in detail.

【0009】本発明で使用する触媒は、酸化チタンと白
金化合物を含む分散液を光照射して得られる白金担持酸
化チタンである。上記酸化チタンとしては、アナタース
型酸化チタン、ルチル型酸化チタン、無定型酸化チタン
等の従来公知のものであれば何れも使用できる。
The catalyst used in the present invention is platinum-supported titanium oxide obtained by irradiating a dispersion containing titanium oxide and a platinum compound with light. Any known titanium oxide such as anatase-type titanium oxide, rutile-type titanium oxide, and amorphous titanium oxide can be used as the titanium oxide.

【0010】白金化合物としては、塩化白金酸、白金ア
セチルアセトナート、塩化テトラアンミン白金等の従来
公知のものが使用できる。
As the platinum compound, conventionally known compounds such as chloroplatinic acid, platinum acetylacetonate, and tetraammineplatinum chloride can be used.

【0011】酸化チタンと白金化合物を含む分散液を調
製するには、白金化合物をたとえばアルコール、ケト
ン、カルボン酸などの有機溶媒あるいはこれらに水を混
合した溶媒系にあらかじめ溶解しておき、ついで酸化チ
タン粒子を分散させる方法、或いは酸化チタン粒子を上
記の有機溶媒にあらかじめ分散させておき、ついで白金
化合物を添加する方法等を採用すればよい。上記有機溶
媒との具体例としては、エタノール、メタノール、2−
プロパノール等の低級アルコール、アセトン等のケトン
類、酢酸等のカルボン酸類が挙げられるが、毒性の低
さ、白金の担持効率の点からみて低級アルコール 殊に
エタノールの使用が好ましい。
In order to prepare a dispersion containing titanium oxide and a platinum compound, the platinum compound is previously dissolved in an organic solvent such as alcohol, ketone, carboxylic acid or the like or a solvent system in which water is mixed with these compounds. A method of dispersing titanium particles or a method of dispersing titanium oxide particles in the above organic solvent in advance and then adding a platinum compound may be employed. Specific examples of the organic solvent include ethanol, methanol, 2-
Examples thereof include lower alcohols such as propanol, ketones such as acetone, and carboxylic acids such as acetic acid. From the viewpoint of low toxicity and platinum loading efficiency, use of lower alcohols, particularly ethanol, is preferred.

【0012】酸化チタンと白金化合物の使用割合に特別
な制約はないが、酸化チタン100重量部に対して白金
化合物を0.5重量%以上好ましくは1.0〜5.0重
量%程度とするのがよい。
There are no particular restrictions on the proportions of titanium oxide and platinum compound used, but the platinum compound should be present in an amount of at least 0.5% by weight, preferably about 1.0 to 5.0% by weight, based on 100 parts by weight of titanium oxide. Is good.

【0013】ついで、本発明に係る触媒調製法において
は、IV価の白金を0価に還元して酸化チタン表面上に固
定するために、得られた酸化チタンと白金化合物を含む
分散液に光を照射する。この際、分散液中の酸化チタン
粒子の分散性を保つため、同液を攪拌下に置くのが好ま
しい。光源としては、従来公知のものたとえば水銀灯、
キセノン灯、ブラックライトなどが使用できる。照射時
間は白金化合物が還元され、かつ該還元白金化合物が酸
化チタンの表面に担持された時期を目途とすればよい。
通常0.5〜10時間好ましくは1〜3時間である。
Next, in the catalyst preparation method according to the present invention, in order to reduce platinum of IV valence to zero and fix it on the surface of titanium oxide, the obtained dispersion containing titanium oxide and a platinum compound is added to the dispersion. Is irradiated. At this time, in order to maintain the dispersibility of the titanium oxide particles in the dispersion, the dispersion is preferably placed under stirring. As the light source, a conventionally known light source such as a mercury lamp,
Xenon lamps, black lights, etc. can be used. The irradiation time may be set at a time when the platinum compound is reduced and the reduced platinum compound is supported on the surface of the titanium oxide.
Usually, it is 0.5 to 10 hours, preferably 1 to 3 hours.

【0014】上記の方法において、白金を効率良く酸化
チタンに担持するためには、あらかじめ酸化チタンと白
金化合物を含む分散液から溶存酸素を除去(脱気)して
おくことが好ましい。脱気の方法としては、アルゴン、
窒素などの不活性ガスを分散液に通す方法、分散液を減
圧下にした後に不活性ガス雰囲気下に置く方法を採用す
れば良い。
In the above method, in order to efficiently carry platinum on titanium oxide, it is preferable to remove (degas) dissolved oxygen from a dispersion containing titanium oxide and a platinum compound in advance. As a method of deaeration, argon,
A method of passing an inert gas such as nitrogen through the dispersion, or a method of reducing the pressure of the dispersion and then placing it in an inert gas atmosphere may be employed.

【0015】上記光照射によって得られる沈殿物を分散
液から濾過等の手段により分離し水等などで洗浄し乾燥
することにより、本発明に係る光分解触媒が得られる。
かかる触媒は粉末状のもの、ゲル状のもの、支持体に固
定した薄膜のいずれでも良い。また、表面は多孔質でも
緻密質でもよい。
The precipitate obtained by the light irradiation is separated from the dispersion by means such as filtration, washed with water or the like, and dried to obtain the photolysis catalyst according to the present invention.
Such a catalyst may be in the form of a powder, a gel, or a thin film fixed on a support. The surface may be porous or dense.

【0016】これら金属担持酸化チタンは支持体に付着
して用いるのが望ましい。支持体として、ガラス、セラ
ミックス等の無機材料、ステンレス鋼、アルミニウム等
の金属材料などが挙げられる。
It is desirable to use these metal-supported titanium oxides by attaching them to a support. Examples of the support include inorganic materials such as glass and ceramics, and metal materials such as stainless steel and aluminum.

【0017】本発明に係る上記光照射法によって得られ
る白金担持酸化チタン触媒は、高温はもとより室温付近
の低温でもガス気流中例えば排ガス中の芳香族炭化水素
殊にベンゼンを光分解して一酸化炭素の生成を伴うこと
なく完全に炭酸ガスに変換することができるので、ガス
気流中の有機化合物殊に環境基準値が厳格になったベン
ゼンの分解除去触媒として極めて有効なものである。な
お、白金担持酸化チタン系触媒であっても、光照射法
(光還元法)を使用せず、試薬還元法すなわち、酸化チ
タンに白金化合物を含浸させ、しかる後水素化ホウ素ナ
トリウム等の還元剤で処理し、次いで乾燥処理したもの
は、高温での触媒活性には優れるものの低温下ではその
触媒活性が低下し、その触媒活性に温度依存性が強く本
発明のような作用効果を期待することはできない。
The platinum-supported titanium oxide catalyst obtained by the light irradiation method according to the present invention is capable of photodecomposing aromatic hydrocarbons, especially benzene, in a gas stream, for example, exhaust gas, at a high temperature as well as at a low temperature near room temperature. It can be completely converted to carbon dioxide without producing carbon monoxide, and is therefore extremely effective as a catalyst for the decomposition and removal of organic compounds in gas streams, especially benzene, which has strict environmental standards. is there. It should be noted that even with a platinum-supported titanium oxide-based catalyst, a light reduction method (photoreduction method) is not used, and a reagent reduction method, that is, a titanium compound is impregnated with a platinum compound, and then a reducing agent such as sodium borohydride is used. And then dried, the catalyst activity at high temperatures is excellent, but at low temperatures, the catalyst activity decreases, and the catalyst activity is strongly temperature-dependent, and the effect of the present invention can be expected. Can not.

【0018】本発明の対象とするガス気流中に含まれる
有機化合物はたとえば空気中や化学工場や事業所等によ
って排出されるガス中に含まれる芳香族炭化水素であ
る。このような芳香族炭化水素としてはベンゼン、トル
エン、キシレン等が挙げられるが、除去効率からみて特
にベンゼンを含むガスを処理対象とするのが好ましい。
The gas contained in the gas stream which is the subject of the present invention
Organic compounds are released, for example, from the air or from chemical factories and offices.
Aromatic hydrocarbons contained in the gas
You. Examples of such aromatic hydrocarbons include benzene and toluene.
Ene, xylene, etc.
It is preferable that a gas containing benzene be treated.

【0019】本発明を具体的に実施するには例えばつぎ
のようにすればよい。パイレックスガラス製の円筒型の
外管、および 表面に摺りガラス処理を施し、両端を封
じたガラス製の内管からなる光反応器を準備する。つい
で上記光照射法により得られた酸化チタン/白金触媒を
内管の外表面に塗布し、乾燥させた後、ベンゼンを含む
ガス気流を光反応器に通し、光反応器の外側から光照射
を施す。照射光としては、太陽光、ブラックライト、水
銀灯、キセノン灯等を光源とする光を挙げることができ
るが、殊にブラックライトが好ましい。光の照射量や照
射時間は分解除去する芳香族炭化水素の種類や量などを
勘案して適宜設定すればよい。
The present invention may be embodied specifically as follows. Prepare a photoreactor consisting of a Pyrex glass cylindrical outer tube, and a glass inner tube whose surface is ground and the both ends are sealed. Next, the titanium oxide / platinum catalyst obtained by the above-mentioned light irradiation method is applied to the outer surface of the inner tube and dried, and then a gas stream containing benzene is passed through the light reactor, and light irradiation is performed from outside the light reactor. Apply. Examples of the irradiation light include light using a sunlight, a black light, a mercury lamp, a xenon lamp, or the like as a light source, and a black light is particularly preferable. The irradiation amount and irradiation time of light may be appropriately set in consideration of the type and amount of the aromatic hydrocarbon to be decomposed and removed.

【0020】[0020]

【実施例】次に、本発明を実施例により更に詳細に説明
する。
Next, the present invention will be described in more detail with reference to examples.

【0021】実施例1 [光触媒の調製]所定量の酸化チタン(日本アエロジル
P-25)0.5gと塩化白金酸13.3mgを含むエタノー
ル-水溶液200ml(ミリリットル)(体積混合比3:
1)にアルゴンガス気流を通した後、500 W(ワッ
ト)高圧水銀灯にて3時間光照射した。続いて沈澱を濾
過し、純水で洗浄後、110℃で乾燥させた。 [ベンゼンの分解除去]上記のようにして得られた光触
媒を用い、ベンゼンの光分解を固定床流通系により行っ
た。反応温度は30℃に維持した。また前記触媒をあら
かじめ空気気流中で数時間光照射し、触媒の前処理を行
った。ついで、暗所下にて気相と触媒表面でベンゼンの
吸着平衡に達した後光照射を行い、光分解反応を開始し
た。光反応器は図1に示されるような、パイレックス製
の外管(外径15φ)および 0.24 gの白金担持酸
化チタンを塗布した内管(摺りガラス管:8φ×50 c
m)により構成されているものを使用した。また光源と
しては、20 Wのブラックライト(波長域:300〜4
20 nm )4本を使用した。ベンゼンの定量は水素炎イ
オン化検出器を装填したガスクロマトグラフ装置(Pora
pak Qカラム装填)により、二酸化炭素と一酸化炭素の
定量は熱伝導度検出器、メタナイザー、および水素炎イ
オン化検出器を装填したガスクロマトグラフ装置(Porap
ak Q, MS-13Xカラム, メタナイザー装填) によりそれぞ
れ行った。また、気相中生成物はガスクロマトグラフ−
質量分析計により同定した。その結果を図2に示す。図
2から、上記調製法により得られた白金担持酸化チタン
を光分解触媒の存在下による空気気流中(反応ガス滞留
時間:25 秒, 相対湿度:65 %)ベンゼンの光分解反応
では、ベンゼン転化率はほぼ100%を示すことが分かる。
また、二酸化炭素生成には誘導期が見られたものの、気
相中に他の生成物は検出されず、定常状態に達した際の
炭素収支はほぼ100 %と求められた。また、白金担持量
がCOx(二酸化炭素および一酸化炭素)生成活性および
選択率に及ぼす影響を調べた。その結果を図3 に示す
(反応ガス滞留時間:10 秒)。図3から、COx生成活性
は白金担持量にほとんど依存しないものの、一酸化炭素
選択率は白金担持量の増加に伴って低下することが分か
った。
Example 1 [Preparation of photocatalyst] A predetermined amount of titanium oxide (Nippon Aerosil)
P-25) 200 ml (milliliter) of an ethanol-water solution containing 0.5 g and 13.3 mg of chloroplatinic acid (volume mixing ratio 3:
After passing an argon gas flow through 1), light irradiation was performed for 3 hours using a 500 W (watt) high pressure mercury lamp. Subsequently, the precipitate was filtered, washed with pure water, and dried at 110 ° C. [Decomposition and Removal of Benzene] Using the photocatalyst obtained as described above, photolysis of benzene was carried out by a fixed bed flow system. The reaction temperature was maintained at 30C. The catalyst was pre-treated by irradiating the catalyst with light for several hours in an air stream. Then, after reaching the adsorption equilibrium of benzene between the gas phase and the catalyst surface in a dark place, light irradiation was performed to start the photolysis reaction. The photoreactor was an outer tube made of Pyrex (outer diameter 15φ) and an inner tube coated with 0.24 g of platinum-supported titanium oxide (ground glass tube: 8φ × 50 c) as shown in FIG.
m) was used. The light source is a 20 W black light (wavelength range: 300 to 4).
20 nm). The amount of benzene was determined using a gas chromatograph (Pora) equipped with a flame ionization detector.
Quantification of carbon dioxide and carbon monoxide by pak Q column loading was performed using a gas chromatograph equipped with a thermal conductivity detector, a metanizer, and a flame ionization detector (Porap
ak Q, MS-13X column, loaded with a metanizer). The products in the gas phase are gas chromatographs.
Identified by mass spectrometer. The result is shown in FIG. From FIG. 2, it can be seen that in the photolysis reaction of benzene in the presence of a photolysis catalyst, the platinum-supported titanium oxide obtained in the above-mentioned preparation method was reacted with benzene in an air stream (reaction gas residence time: 25 seconds, relative humidity: 65%). It can be seen that the rate shows almost 100%.
Although an induction period was observed in carbon dioxide production, no other products were detected in the gas phase, and the carbon balance at the time of reaching the steady state was determined to be almost 100%. In addition, the effect of the amount of supported platinum on COx (carbon dioxide and carbon monoxide) production activity and selectivity was examined. The results are shown in FIG. 3 (reaction gas residence time: 10 seconds). From FIG. 3, it was found that the COx generation activity hardly depends on the amount of supported platinum, but the carbon monoxide selectivity decreases with an increase in the amount of supported platinum.

【0022】比較例 [光触媒の調製]酸化チタンに塩化白金酸水溶液を含浸
させた後、水素化ホウ素ナトリウム0.1Mを含む水酸
化ナトリウム0.1M水溶液を接触させ、白金を還元す
ることにより(試薬還元法)、白金担持酸化チタン(白
金担持量0.1重量%)を調製した。 [ベンゼンの分解除去]上記調製法により得られた白金
担持酸化チタンを用いて、ベンゼンに光分解を固定床流
通系により、反応温度70〜140℃の間で行った。反
応温度100℃以下では二酸化炭素の選択率は80〜9
0%であった。同選択率が100%を達成するためには
110℃もの高温を必要とした。
Comparative Example [Preparation of Photocatalyst] Titanium oxide was impregnated with an aqueous solution of chloroplatinic acid, and then contacted with a 0.1 M aqueous solution of sodium hydroxide containing 0.1 M of sodium borohydride to reduce platinum. Reagent reduction method), and platinum-supported titanium oxide (platinum-supported amount: 0.1% by weight) was prepared. [Decomposition and Removal of Benzene] Using the platinum-supported titanium oxide obtained by the above-mentioned preparation method, photolysis was performed on benzene by a fixed bed flow system at a reaction temperature of 70 to 140 ° C. At a reaction temperature of 100 ° C. or lower, the selectivity of carbon dioxide is 80 to 9
It was 0%. To achieve the same selectivity of 100%, a temperature as high as 110 ° C. was required.

【0023】[0023]

【発明の効果】本発明方法は、前記した特有な調製法に
よって得た白金担持酸化チタン触媒を使用したことか
ら、高温はもとより室温付近の低温でもガス気流中の
香族炭化水素殊にベンゼンを光分解して一酸化炭素の生
成を伴うことなく完全に炭酸ガスに変換することがで
き、その除去効率が著しく改善できると共に光分解反応
を従来法に比し温和な条件下で行えるといった利点を有
するものである。
The present invention method according to the present invention, since using a platinum supporting titanium oxide catalyst obtained by specific preparation methods described above, high temperatures of the gas stream at a low temperature around room temperature as well Kaoru
Aromatic hydrocarbons, especially benzene, can be completely decomposed into carbon dioxide by photolysis without the production of carbon monoxide.The removal efficiency can be significantly improved, and the photolysis reaction is milder than conventional methods. This has the advantage that it can be carried out under a variety of conditions.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例で使用する光反応器の説明図FIG. 1 is an explanatory view of a photoreactor used in an embodiment of the present invention.

【図2】本発明に係る触媒を使用したベンゼンの光分解
反応におけるベンゼンの転化率及び二酸化炭素の生成量
の変化を表すグラフ
FIG. 2 is a graph showing changes in the conversion rate of benzene and the amount of carbon dioxide generated in the photolysis reaction of benzene using the catalyst according to the present invention.

【図3】本発明に係る触媒を使用したベンゼンの光分解
反応におけるCOx生成活性と選択率の変化を表すグラフ
FIG. 3 is a graph showing changes in COx generation activity and selectivity in the photolysis reaction of benzene using the catalyst according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 指宿 堯嗣 茨城県つくば市小野川16番3 工業技術院 資源環境技術総合研究所内 Fターム(参考) 4D048 AA18 AB01 BA07X BA13X BA30X BA39X BA41X BB05 CA01 EA01 4G069 AA03 AA08 BA04A BA04B BA21C BA48A BB02A BB02B BC75A BC75B BE06C CA07 CA11 CA15 DA05 DA06 EA01Y EA07 EC22Y EC26 FA01 FB06 FB45 FB58 FC01 FC10 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Takashi Ibusuki 16-3 Onogawa, Tsukuba, Ibaraki F-term (Reference) 4A048 BA04A BA04B BA21C BA48A BB02A BB02B BC75A BC75B BE06C CA07 CA11 CA15 DA05 DA06 EA01Y EA07 EC22Y EC26 FA01 FB06 FB45 FB58 FC01 FC10

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ガス気流中に含まれる有機化合物を光分
解触媒の存在下で分解除去する方法において、該光分解
触媒として、酸化チタンと白金化合物を含む分散液を光
照射して得られる白金担持酸化チタンを用いることを特
徴とするガス気流中に含まれる有機化合物の分解除去方
法。
1. A method for decomposing and removing an organic compound contained in a gas stream in the presence of a photodecomposition catalyst, wherein the photodecomposition catalyst is formed by irradiating a dispersion containing titanium oxide and a platinum compound with light. A method for decomposing and removing organic compounds contained in a gas stream, comprising using a supported titanium oxide.
【請求項2】 分散液が低級アルコールを含むことを特
徴とする請求項1の有機化合物の分解除去方法。
2. The method for decomposing and removing an organic compound according to claim 1, wherein the dispersion contains a lower alcohol.
【請求項3】 低級アルコールがエタノールであること
を特徴とする請求項2の有機化合物の分解除去方法。
3. The method for decomposing and removing an organic compound according to claim 2, wherein the lower alcohol is ethanol.
【請求項4】 有機化合物がベンゼンであることを特徴
とする請求項1乃至3何れか記載の有機化合物の分解除
去方法。
4. The method for decomposing and removing an organic compound according to claim 1, wherein the organic compound is benzene.
JP11148743A 1999-05-27 1999-05-27 Decomposition and removal of aromatic hydrocarbon contained in gaseous stream Pending JP2000334265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11148743A JP2000334265A (en) 1999-05-27 1999-05-27 Decomposition and removal of aromatic hydrocarbon contained in gaseous stream

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11148743A JP2000334265A (en) 1999-05-27 1999-05-27 Decomposition and removal of aromatic hydrocarbon contained in gaseous stream

Publications (1)

Publication Number Publication Date
JP2000334265A true JP2000334265A (en) 2000-12-05

Family

ID=15459640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11148743A Pending JP2000334265A (en) 1999-05-27 1999-05-27 Decomposition and removal of aromatic hydrocarbon contained in gaseous stream

Country Status (1)

Country Link
JP (1) JP2000334265A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068095A1 (en) * 2009-12-01 2011-06-09 住友化学株式会社 Method for producing liquid dispersion of noble metal-supporting photocatalyst particles, liquid dispersion of noble metal-supporting photocatalyst particles, hydrophilizing agent, and photocatalytic functional product
JP2014529494A (en) * 2011-08-24 2014-11-13 ブルー−オーテクノロジーインコーポレイテッド Plate-type catalyst product and production method thereof
CN109663498A (en) * 2018-12-11 2019-04-23 武汉中质先锋科技股份有限公司 A kind of natural oxygen catalytic control agent for administering indoor decorating pollution

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068095A1 (en) * 2009-12-01 2011-06-09 住友化学株式会社 Method for producing liquid dispersion of noble metal-supporting photocatalyst particles, liquid dispersion of noble metal-supporting photocatalyst particles, hydrophilizing agent, and photocatalytic functional product
CN102639241A (en) * 2009-12-01 2012-08-15 住友化学株式会社 Method for producing liquid dispersion of noble metal-supporting photocatalyst particles, liquid dispersion of noble metal-supporting photocatalyst particles, hydrophilizing agent, and photocatalytic functional product
JP2014529494A (en) * 2011-08-24 2014-11-13 ブルー−オーテクノロジーインコーポレイテッド Plate-type catalyst product and production method thereof
CN109663498A (en) * 2018-12-11 2019-04-23 武汉中质先锋科技股份有限公司 A kind of natural oxygen catalytic control agent for administering indoor decorating pollution

Similar Documents

Publication Publication Date Title
Date et al. Performance of Au/TiO2 catalyst under ambient conditions
Ma et al. efficient degradation of organic pollutants by using dioxygen activated by resin‐exchanged iron (II) bipyridine under visible irradiation
Shie et al. Photodegradation kinetics of formaldehyde using light sources of UVA, UVC and UVLED in the presence of composed silver titanium oxide photocatalyst
Kim et al. Photocatalytic degradation of volatile organic compounds at the gas–solid interface of a TiO2 photocatalyst
Lichtin et al. TiO2-photocatalyzed oxidative degradation of CH3CN, CH3OH, C2HCl3, and CH2Cl2 supplied as vapors and in aqueous solution under similar conditions
EP0444180A1 (en) Gas-solid photocatalytic oxidation of environmental pollutants
Vincent et al. Photocatalytic degradation of gaseous 1-propanol using an annular reactor: kinetic modelling and pathways
Wei et al. A systematic study of photocatalytic H2 production from propionic acid solution over Pt/TiO2 photocatalyst
EP2263795A1 (en) Photocatalyst, preparation method thereof, photoreactor, and photolysis process
Mazzarino et al. Degradation of organic pollutants in water by photochemical reactors
Tsuru et al. A photocatalytic membrane reactor for gas-phase reactions using porous titanium oxide membranes
Feng et al. Enhanced photo-degradation of gaseous toluene over MnOx/TiO2/activated carbon under a novel microwave discharge electrodeless lamps system
Shifu et al. Photocatalytic degradation of trace gaseous acetone and acetaldehyde using TiO2 supported on fiberglass cloth
JP2000334265A (en) Decomposition and removal of aromatic hydrocarbon contained in gaseous stream
Fukui et al. Photocatalytic Reductive Defluorination of Fluorinated Compounds in Aqueous Alcohol Suspensions of a Metal‐loaded Titanium (IV) Oxide
JP2006182615A (en) Method of photodecomposing nitrogen-containing compound
JP2014073956A (en) Method of oxidizing carbon monoxide to carbon dioxide by light
Mohamed et al. Palladium‐Modified TiO2/MWCNTs for Efficient Carbon Capture and Photocatalytic Reduction of Nitro‐aromatic Derivatives
Halász et al. Hydrodechlorination of chlorophenols over Pt-and Co-containing ZSM-5 zeolite catalysts
Vidya et al. An in situ FT-IR study of photo-oxidation of alcohols over uranyl-anchored MCM-41: Possible reaction pathways
JP2001205048A (en) Method for decomposing and removing organic compound contained in gas stream
Fudo et al. One-pot synthesis of secondary amines from aldehydes and primary amines over trifunctional Au-TiO2 as a water adsorbent, acid catalyst and photocatalyst without the use of hydrogen gas
JP2004089953A (en) Method of continuously decomposing and removing organic substance contained in gas
JPS61178402A (en) Method of decomposition treatment of ozone
Tieng et al. Major non-volatile intermediate products of photo-catalytic decomposition of ethylene