JP2000333693A - Isolation of saccharide from glycoside - Google Patents

Isolation of saccharide from glycoside

Info

Publication number
JP2000333693A
JP2000333693A JP2000074565A JP2000074565A JP2000333693A JP 2000333693 A JP2000333693 A JP 2000333693A JP 2000074565 A JP2000074565 A JP 2000074565A JP 2000074565 A JP2000074565 A JP 2000074565A JP 2000333693 A JP2000333693 A JP 2000333693A
Authority
JP
Japan
Prior art keywords
glycoside
xylosidase
glucosidase
enzyme
primeveroside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000074565A
Other languages
Japanese (ja)
Inventor
Shigeru Yamamoto
繁 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amano Enzyme Inc
Original Assignee
Amano Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amano Pharmaceutical Co Ltd filed Critical Amano Pharmaceutical Co Ltd
Priority to JP2000074565A priority Critical patent/JP2000333693A/en
Publication of JP2000333693A publication Critical patent/JP2000333693A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • General Preparation And Processing Of Foods (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a variety of physiologically active components by allowing an enzyme composition to act on a glycoside thereby liberating monosaccharides from the glycoside and by allowing the liberated monosaccharides to act on a precursor of perfume components, pigment components or physiologically active components, for example, β-primeveroside. SOLUTION: An enzyme composition containing β-xylosidase and/or β- glucosidase which can be obtained from microorganisms and/or plants is allowed to act on β-primeveroside and/or similar glycosides, for example, a disaccharide glycoside that are precursors of perfume components, pigment components or physiologically active precursor. Consequently, saccharides are liberated from the glycoside in the form of monosaccharides and the perfumes, pigments and physiological components are enhanced or weakened by the aglycones- liberating action. This enzyme composition can be widely applied to a variety of foods, medicines, quasi drugs and the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、微生物又は植物等
より得ることができ、香気成分、色素成分又は生理活性
成分の前駆体であるβ−プリメベロシド又はその類似体
に作用して各種生理活性成分を生成させる能力を有する
酵素を有効成分として含有する酵素組成物に関する。よ
り詳細には、二糖配糖体であるβ−プリメベロシド又は
その類似体を単糖単位で切断し、生理活性成分遊離作用
を有するβ−キシロシダーゼ及び/又はβ−グルコシダ
ーゼを含有する酵素組成物を用いた用途に関する。
The present invention relates to various physiologically active ingredients which can be obtained from microorganisms or plants and act on .beta.-primeveroside or an analog thereof, which is a precursor of an aroma component, a pigment component or a physiologically active component. The present invention relates to an enzyme composition containing, as an active ingredient, an enzyme having an ability to produce lipase. More specifically, an enzyme composition containing β-xylosidase and / or β-glucosidase which has a disaccharide glycoside β-primeveroside or an analog thereof cleaved by a monosaccharide unit and has a physiologically active ingredient releasing action. Related to the application used.

【0002】[0002]

【従来の技術】例えば、植物の香気成分であるゲラニオ
ール、リナロール、ベンジルアルコール、2−フェニル
エーテルやC13−ノルテルペノイドアルコールなどの
アルコール系香気は花、茶、果物、ワインなどの香気生
成に重要な働きをなしている。
2. Description of the Related Art For example, alcohol-based aromas such as geraniol, linalool, benzyl alcohol, 2-phenyl ether and C13-norterpenoid alcohol, which are aroma components of plants, are important for generating aroma of flowers, tea, fruits, wines and the like. Working.

【0003】これらの香気成分のなかで、ベンジルアル
コールや(Z)−3−ヘキセノールの香気前駆体として
はβ−D−glucopyranoside等の単糖配糖体が単離同定
されている。
[0003] Among these odor components, monosaccharide glycosides such as β-D-glucopyranoside have been isolated and identified as odor precursors of benzyl alcohol and (Z) -3-hexenol.

【0004】最近になって、花のような香気について重
要な働きを果たすと考えられる、ゲラニオールやリナロ
ール等のアルコール系香気前駆体として二糖配糖体のβ
−primeveroside(6−O−β−D−xylopyranosyl−β
−D−glucopyranoside)あるいはその類似体の存在が
確認された。また、その他の前述した他のアルコール系
香気成分の前駆体としても二糖配糖体のβ−primeveros
ideとその類似体の存在が明らかになってきている。
[0004] Recently, β-glycoside of the disaccharide glycoside has been considered as an alcohol-based odor precursor such as geraniol or linalool, which is thought to play an important role in the odor of flowers.
-Primeveroside (6-O-β-D-xylopyranosyl-β
-D-glucopyranoside) or its analog was confirmed. Further, β-primeveros of disaccharide glycoside is also used as a precursor of other alcohol-based flavor components described above.
The existence of ide and its analogs is becoming apparent.

【0005】さらに香気以外にも色素、薬理成分など生
理活性物質の一部においても二糖配糖体β−primeveros
ideあるいはその類似体として存在していることが明ら
かになってきている。例えばソテツなどに存在するマク
ロザミンはβ−プリメベロシダーゼによって二糖単位で
切断され生理活性物質であるメチルアゾキシメタノール
が生成することが知られている。
[0005] In addition to the aroma, the disaccharide glycoside β-primeveros is also used in some physiologically active substances such as pigments and pharmacological components.
It has become clear that it exists as ide or its analogs. For example, it is known that macrozamine present in cycads and the like is cleaved by β-primeverosidase at disaccharide units to produce methylazoxymethanol, which is a physiologically active substance.

【0006】[0006]

【発明が解決しようとする課題】上述のように、二糖配
糖体であるβ−プリメベロシド又はその類似体である生
理活性成分の前駆体に作用して生理活性成分遊離作用を
有する酵素は茶葉などよりわずかに確認、精製されてい
るのみである。従って、従来の茶葉などに給源が限定さ
れることなく、二糖配糖体であるβ−プリメベロシド又
はその類似体に作用して生理活性成分を生成する酵素の
開発が強く望まれていた。
As described above, the enzyme having the action of releasing a bioactive component by acting on a precursor of a bioactive component which is a disaccharide glycoside β-primeveroside or an analog thereof is tea leaf. It has been slightly confirmed and refined. Therefore, there has been a strong demand for the development of an enzyme that acts on β-primeveroside, which is a disaccharide glycoside, or an analog thereof to generate a physiologically active component, without limiting the source to conventional tea leaves and the like.

【0007】[0007]

【課題を解決するための手段】本発明者らは上記問題点
を解決すべく鋭意研究の結果、従来より知られている酵
素を含む酵素組成物が、意外にも前記二糖配糖体である
β−プリメベロシド又はその類似体に作用して生理活性
成分を生成せしめることができることを見いだし本発明
を完成した。即ち、本発明はβ−キシロシダーゼ及び/
又はβ−グルコシダーゼを用い、生理活性成分の前駆体
である二糖配糖体であるβ−プリメベロシド及び/又は
その類似体に作用させ、単糖単位で切断して生理活性成
分を遊離せしめることを特徴とする生理活性成分の遊離
法に関する。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above problems, and as a result, the enzyme composition containing a conventionally known enzyme was unexpectedly replaced with the disaccharide glycoside. The present inventors have found that a bioactive ingredient can be produced by acting on a certain β-primeveroside or an analog thereof, and completed the present invention. That is, the present invention relates to β-xylosidase and / or
Alternatively, using β-glucosidase to act on β-primeveroside, which is a disaccharide glycoside that is a precursor of a physiologically active component, and / or an analog thereof, to release the physiologically active component by cleaving at a monosaccharide unit. The present invention relates to a method for releasing a physiologically active ingredient.

【0008】尚、本発明において各種酵素活性測定は特
に記載しないかぎり、以下に記載する方法により求めた
値で表示する。
In the present invention, various enzyme activities are indicated by values obtained by the methods described below unless otherwise specified.

【0009】 β−キシロシダーゼ活性 活性の測定は自動化学分析装置(東芝社製、TBA-20R)
を用いて行った。酵素サンプル45μlと基質としてパラ
ニトロフェニル(pNP)キシロシド(シグマ社製)を2
0mMの酢酸緩衝液(pH5.5)に2mMになるように溶解せし
めたもの200μlと混合し、37℃、サイクルタイム30.0s
ecで反応させた後、炭酸ナトリウム250μlを加え412nm
の吸光度を測定した。サンプル由来のブランクの測定は
基質溶液の代わりに20mM酢酸緩衝液(pH5.5)を用いて同
様に測定した。この条件下で吸光度を1上昇させる酵素
量を1単位(1AU)とした。
Β-xylosidase activity The activity was measured using an automatic chemical analyzer (TBA-20R, manufactured by Toshiba Corporation).
This was performed using 45 µl of enzyme sample and 2 parts of paranitrophenyl (pNP) xyloside (Sigma) as substrate
Mix with 200 µl of 2 mM dissolved in 0 mM acetate buffer (pH 5.5), 37 ° C, cycle time 30.0s
After the reaction with ec, 250 μl of sodium carbonate was added and 412 nm
Was measured for absorbance. The blank from the sample was measured in the same manner using a 20 mM acetate buffer (pH 5.5) instead of the substrate solution. The amount of the enzyme that increases the absorbance by 1 under these conditions was defined as 1 unit (1 AU).

【0010】 β−グルコシダーゼ活性 活性の測定は自動化学分析装置(東芝社製、TBA-20R)
を用いて行った。酵素サンプル45μlと基質としてパラ
ニトロフェニル(pNP)グルコシド(メルク社製)を2
0mMの酢酸緩衝液(pH5.5)に2mMになるように溶解せし
めたもの200μlと混合し、37℃、サイクルタイム30.0s
ecで反応させた後、炭酸ナトリウム250μlを加え412nm
の吸光度を測定した。サンプル由来のブランクの測定は
基質溶液の代わりに20mM酢酸緩衝液(pH5.5)を用いて同
様に測定した。この条件下で吸光度を1上昇させる酵素
量を1単位(1AU)とした。
[0010] β-glucosidase activity The activity is measured by an automatic chemical analyzer (TBA-20R, manufactured by Toshiba Corporation).
This was performed using 45 μl of enzyme sample and 2 parts of paranitrophenyl (pNP) glucoside (manufactured by Merck) as substrate
Mix with 200 µl of 2 mM dissolved in 0 mM acetate buffer (pH 5.5), 37 ° C, cycle time 30.0s
After the reaction with ec, 250 μl of sodium carbonate was added and 412 nm
Was measured for absorbance. The blank from the sample was measured in the same manner using a 20 mM acetate buffer (pH 5.5) instead of the substrate solution. Under these conditions, the amount of the enzyme that increases the absorbance by 1 was defined as 1 unit (1 AU).

【0011】次いで本発明について詳細に説明する。本
発明者らは、β−プリメベロシド又は類似する二糖配糖
体を単糖単位で切断し、アグリコン遊離作用を有する酵
素、組み合わせることによりアグリコン遊離作用を有す
る市販の酵素製剤を対象として検討した。更に、このよ
うな酵素製剤を生産する能力を有する微生物についても
スクリーニングを検討した。また、本発明の対象となる
配糖体は上述した様なβ−プリメベロシド又は類似する
二糖配糖体ばかりでなく、糖が2つより多く結合してい
る配糖体をも対象とすることができる。尚、本発明にお
いてβ−プリメベロシドに類似する二糖配糖体とは、ア
グリコン側にグルコースを有する二糖類であり、例え
ば、アピオフラノシル−β−D−グルコピラノシド、ア
ラビノフラノシル−β−D−グルコピラノシド等が挙げ
られる。
Next, the present invention will be described in detail. The present inventors studied β-primeveroside or a similar disaccharide glycoside at a monosaccharide unit and studied an enzyme having an aglycone releasing action, and a commercially available enzyme preparation having an aglycone releasing action by combining the enzymes. Furthermore, screening was also examined for microorganisms having the ability to produce such enzyme preparations. In addition, glycosides that are the subject of the present invention include not only β-primeveroside or similar disaccharide glycosides as described above, but also glycosides in which more than two sugars are bonded. Can be. In the present invention, the disaccharide glycoside similar to β-primeveroside is a disaccharide having glucose on the aglycone side, for example, apiofranosyl-β-D-glucopyranoside, arabinofuranosyl-β-D -Glucopyranoside and the like.

【0012】本発明の性質を有する酵素及び本発明に使
用できる酵素を生産する微生物については以下のように
してスクリーニングすることができる。即ち、菌株であ
れば適当な液体培地で培養して、酵素製品であれば適当
な緩衝液に懸濁及び/又は希釈して、pNP―プリメベロ
シド等を基質としてpNP遊離量を指標として当該産生微
生物をスクリーニングすることができる。
An enzyme having the properties of the present invention and a microorganism producing the enzyme which can be used in the present invention can be screened as follows. That is, the strain is cultured in an appropriate liquid medium if the strain is used, and the enzyme product is suspended and / or diluted in an appropriate buffer, and the production microorganism is determined using pNP-primeveroside or the like as a substrate and the amount of released pNP as an index. Can be screened.

【0013】基質となるpNP-プリメベロシドは、例えば
pNP-グルコシド(メルク社製)とキシロオリゴ糖(和光
純薬社製)を酵素キシロシダーゼ(シグマ社製)を用い
て反応させ、pNP-グルコシドにキシロースをβ-1,6結合
で1残基転移させることにより合成できる。
The pNP-primeveroside serving as a substrate is, for example,
pNP-glucoside (manufactured by Merck) is reacted with xylo-oligosaccharide (manufactured by Wako Pure Chemical Industries) using the enzyme xylosidase (Sigma) to transfer one residue of xylose to pNP-glucoside by β-1,6 bond. Can be synthesized.

【0014】市販の酵素製剤についてスクリーニングし
た結果、ペクチナーゼG(天野製薬株式会社製、Asperg
illus pulverulentus由来)に二糖配糖体であるβ−プ
リメベロシド又はその類似体を単糖単位で切断し、生理
活性成分遊離作用を有する酵素が存在することを見い出
した。
As a result of screening a commercially available enzyme preparation, pectinase G (Asperg, manufactured by Amano Pharmaceutical Co., Ltd.)
illus pulverulentus), which is obtained by cleaving β-primeveroside, which is a disaccharide glycoside, or an analog thereof with a monosaccharide unit, and finding that an enzyme having a physiologically active ingredient releasing action is present.

【0015】本発明者らは、この作用にβ−キシロシダ
ーゼ及び/又はβ−グルコシダーゼが関与していること
を確認した。即ち、β−キシロシダーゼ活性により二糖
配糖体であるβ−プリメベロシドからキシロースが遊離
し、続いてβ−グルコシダーゼ活性により単糖配糖体か
らグルコースが遊離し、結果として生理活性物質が遊離
するという作用機構を確認した。
The present inventors have confirmed that β-xylosidase and / or β-glucosidase are involved in this action. That is, xylose is released from β-primeveroside which is a disaccharide glycoside by β-xylosidase activity, and then glucose is released from monosaccharide glycoside by β-glucosidase activity, resulting in release of a physiologically active substance. The mechanism of action was confirmed.

【0016】本発明においては、β−キシロシダーゼ活
性を有する酵素製剤及びβ−グルコシダーゼ活性を有す
る酵素製剤は各々別の起源から調製されたものを混合し
て使用することもできる。
In the present invention, the enzyme preparation having β-xylosidase activity and the enzyme preparation having β-glucosidase activity can be used by mixing those prepared from different sources.

【0017】また、本発明に使用できる酵素組成物を構
成するβ−キシロシダーゼやβ−グルコシダーゼは動
物、植物、微生物など何れの起源のものでも使用するこ
とができ、特に限定されない。例えば、β−キシロシダ
ーゼであれば、ペニシリウム属由来、スクミリンゴガイ
(ジャンボタニシ)由来などが知られ、β−グルコシダ
ーゼであればアンズ種子由来、ソテツ種子由来、Asperg
illus niger由来などが知られている。もちろん本発明
者が実施例などで使用している市販の酵素製剤から分離
精製したものを利用することもできる。
The β-xylosidase and β-glucosidase constituting the enzyme composition that can be used in the present invention can be of any origin such as animals, plants, and microorganisms, and are not particularly limited. For example, β-xylosidase is known to be derived from the genus Penicillium, derived from the apple snail (jumbo snail), and β-glucosidase is derived from apricot seed, cycad seed, Asperg.
It is known from illus niger. Of course, it is also possible to use those obtained by separating and purifying from a commercially available enzyme preparation used by the present inventors in Examples and the like.

【0018】その混合比として、各々の活性比がβ−キ
シロシダーゼ活性:β−グルコシダーゼ活性が10:0〜
0:10、好ましくは8:2〜2:8、より好ましくは
6:4〜4:6である。また、これらの酵素組成物は順
次反応させて目的とする生理活性物質を配糖体から遊離
することもできる。しかも、本発明者らはβ−キシロシ
ダーゼやβ−グルコシダーゼは各々単独でもβ−プリメ
ベロシド又はその類似体に作用して単糖単位で切断し生
理活性成分を遊離することができることも本発明で見い
だした。
As the mixing ratio, each activity ratio is such that β-xylosidase activity: β-glucosidase activity is 10: 0 to
0:10, preferably 8: 2 to 2: 8, more preferably 6: 4 to 4: 6. In addition, these enzyme compositions can be sequentially reacted to release the desired physiologically active substance from the glycoside. Furthermore, the present inventors have also found in the present invention that β-xylosidase and β-glucosidase each alone can act on β-primeveroside or an analog thereof and cleave at a monosaccharide unit to release a physiologically active component. .

【0019】更にまた、本発明に使用できる酵素組成物
は上述したスクリーニング法により自然界から新たに求
めることも可能であり、このようにして求められた微生
物を通常の手段により培養・抽出することにより、本発
明に使用できる酵素組成物を得ることができる。また、
各種の遺伝子操作手法により本発明に使用できる酵素組
成物を生産することもできる。
Furthermore, the enzyme composition that can be used in the present invention can be newly obtained from nature by the above-described screening method. The microorganism thus obtained can be cultured and extracted by ordinary means. Thus, an enzyme composition that can be used in the present invention can be obtained. Also,
An enzyme composition that can be used in the present invention can also be produced by various genetic manipulation techniques.

【0020】即ち、本発明において利用できる生産方法
としては、β−キシロシダーゼ及び/又はβ−グルコシ
ダーゼ生産能を有する菌種の突然変異株、あるいは組換
えDNA法によりβ−キシロシダーゼ及び/又はβ−グ
ルコシダーゼを生産できるように改変された各種微生
物、或いは各種細胞、例えば酵母細胞、細菌細胞、高等
植物細胞、動物細胞等をも包含する。β−キシロシダー
ゼ及び/又はβ−グルコシダーゼ遺伝子を導入すること
で、β−キシロシダーゼ及び/又はβ−グルコシダーゼ
生産能を付与する場合にはホストとなる微生物にはβ−
キシロシダーゼ及び/又はβ−グルコシダーゼ生産能が
なくてもよい。
That is, the production method that can be used in the present invention includes a mutant strain of a strain having β-xylosidase and / or β-glucosidase producing ability, or β-xylosidase and / or β-glucosidase by a recombinant DNA method. Various microorganisms or various cells, such as yeast cells, bacterial cells, higher plant cells, animal cells, etc., which have been modified so as to be able to produce E. coli are also included. When the β-xylosidase and / or β-glucosidase production ability is imparted by introducing the β-xylosidase and / or β-glucosidase gene, the host microorganism is β-xylosidase and / or β-glucosidase.
The ability to produce xylosidase and / or β-glucosidase may not be required.

【0021】各種微生物などを用いてβ−キシロシダー
ゼ及び/又はβ−グルコシダーゼを製造するためには、
当該微生物の培養に適合した方法や条件を設定でき、こ
れらの方法や条件は特に限定されない。例えば、上述し
た各種菌種の培養法としては液体培養、固体培養の何れ
でも良いが、好ましくは液体培養が利用される。液体培
養としては例えば、以下のようにして行うことができ
る。
In order to produce β-xylosidase and / or β-glucosidase using various microorganisms, etc.,
Methods and conditions suitable for the culture of the microorganism can be set, and these methods and conditions are not particularly limited. For example, the method for culturing the various bacterial species described above may be either liquid culture or solid culture, but preferably liquid culture is used. The liquid culture can be performed, for example, as follows.

【0022】使用できる培地としては、β−キシロシダ
ーゼ及び/又はβ−グルコシダーゼを生産する微生物が
生育可能な培地であれば、如何なるものでも良い。例え
ば、グルコース、シュクロース、可溶性デンプン、グリ
セリン、デキストリン、糖蜜、有機酸等の炭素源、更に
硫酸アンモニウム、炭酸アンモニウム、リン酸アンモニ
ウム、酢酸アンモニウム、或いは、ペプトン、酵母エキ
ス、コーンスティープリカー、カゼイン加水分解物、ふ
すま、肉エキス等の窒素源、更にカリウム塩、マグネシ
ウム塩、ナトリウム塩、リン酸塩、マンガン塩、鉄塩、
亜鉛塩等の無機塩を添加したものを用いることができ
る。更に、β−キシロシダーゼ及び/又はβ−グルコシ
ダーゼを生産蓄積せしめるために培地に各種の誘導物質
を添加することができる。
As the medium that can be used, any medium can be used as long as a microorganism capable of producing β-xylosidase and / or β-glucosidase can grow. For example, glucose, sucrose, soluble starch, glycerin, dextrin, molasses, carbon sources such as organic acids, and also ammonium sulfate, ammonium carbonate, ammonium phosphate, ammonium acetate, or peptone, yeast extract, corn steep liquor, casein hydrolysis , Bran, meat extract and other nitrogen sources, as well as potassium salts, magnesium salts, sodium salts, phosphates, manganese salts, iron salts,
What added an inorganic salt, such as a zinc salt, can be used. Furthermore, various inducers can be added to the medium in order to produce and accumulate β-xylosidase and / or β-glucosidase.

【0023】培地のpHは例えば約3〜8、好ましくは約
5〜6程度に調製し、培養温度は通常約10〜50℃、好ま
しくは約30℃程度で、1〜15日間、好ましくは4〜7日
間程度好気的条件下で培養する。培養法としては例えば
振盪培養法、ジャーファーメンターによる好気的深部培
養法が利用できる。しかしながら、上述した各種の培養
条件などは当然のことながら、培養する対象である微生
物や細胞により適宜変更され、本発明に使用できるβ−
キシロシダーゼ及び/又はβ−グルコシダーゼが生産さ
れる条件であれば、その条件等は限定されない。
The pH of the medium is adjusted, for example, to about 3 to 8, preferably about 5 to 6, and the culture temperature is usually about 10 to 50 ° C., preferably about 30 ° C., for 1 to 15 days, preferably 4 to 15 days. Culture under aerobic condition for about 7 days. As the culture method, for example, a shaking culture method or an aerobic submerged culture method using a jar fermenter can be used. However, the above-mentioned various culture conditions and the like are, of course, appropriately changed depending on the microorganism or cell to be cultured, and β-
The conditions and the like are not limited as long as xylosidase and / or β-glucosidase are produced.

【0024】得られた培養液からβ−キシロシダーゼ又
はβ−グルコシダーゼを単離精製するには、遠心分離、
UF濃縮、塩析、イオン交換樹脂等の各種クロマトグラ
フィーを組み合わせ、常法により処理して、精製したβ
−キシロシダーゼ又はβ−グルコシダーゼを得ることが
できる。
To isolate and purify β-xylosidase or β-glucosidase from the obtained culture, centrifugation,
Purified β was obtained by combining various chromatographies such as UF concentration, salting out, ion exchange resin, etc.
-Xylosidase or β-glucosidase can be obtained.

【0025】本発明の酵素組成物はこのようにして培養
した培養液そのままでも利用できる。もちろん本培養液
は本発明の使用目的に応じてその精製度合いを適宜変更
することができる。
The enzyme composition of the present invention can be used as it is in the culture solution cultured as described above. Of course, the degree of purification of the main culture solution can be appropriately changed depending on the purpose of use of the present invention.

【0026】次いで、本発明の酵素組成物を用いた各種
の用途について述べる。本発明に使用できる酵素組成物
は、各種成分、例えば植物材料の香気、色、生理活性含
有量等を増強したり、これらの成分の抽出効率を調節す
ることに使用できる。従って、より香気の高い食物、飲
料やより香りの高いスパイスや香料、香水などの製造に
利用でき、更に前述の製造時における処理において適宜
利用することにより、好ましくない香りの早期放出にも
使用できる。また、色に関しては植物材料、食物、飲料
の色合い改善、発色、あるいは色素の製造に利用でき
る。
Next, various uses using the enzyme composition of the present invention will be described. The enzyme composition that can be used in the present invention can be used to enhance various components, for example, the aroma, color, and physiologically active content of plant materials, and to adjust the extraction efficiency of these components. Therefore, it can be used for the production of more fragrant foods, beverages and higher fragrance spices and fragrances, perfumes, etc., and can also be used for the early release of undesirable fragrances by appropriately using it in the above-mentioned production process . As for the color, it can be used for improving the color tone of plant materials, foods and beverages, coloring, or producing pigments.

【0027】更には、香気成分と同様に、品質上好まし
くない色素前駆体の分解除去にも使用でき、生理活性に
関しては生薬、ハーブ、その他植物性成分の薬理成分や
有用生理活性成分の増強やあるいは好ましくない成分の
分解除去に使用できる。
Further, like the fragrance component, it can be used for decomposing and removing a pigment precursor which is unfavorable in quality. Alternatively, it can be used for decomposing and removing undesirable components.

【0028】即ち、各種のプリメベロシドとその類似体
である二糖配糖体成分に本発明のβ−キシロシダーゼ及
び/又はβ−グルコシダーゼを作用させることによって
前述の作用をもたらすことが可能である。
That is, the above-mentioned action can be obtained by causing the β-xylosidase and / or β-glucosidase of the present invention to act on various primeverosides and disaccharide glycoside components which are analogs thereof.

【0029】本発明の対象とするプリメベロシド又はそ
の類似体を含有する物としては、本発明に使用できるβ
−キシロシダーゼ及び/又はβ−グルコシダーゼを含む
酵素組成物の作用を受けるものであればいかなるもので
あってもよく、例えば、食品、化粧品、医薬品、医薬部
外品、農薬、飼料等であり、より具体的には各種香気を
有する食品、トイレタリー製品、木工製品や畳などの植
物性材料から作られる工業製品などの製造にも利用でき
る。
The substance containing primeveroside or an analog thereof which is an object of the present invention includes β
-Any substance that is affected by the enzyme composition containing xylosidase and / or β-glucosidase may be used, for example, food, cosmetics, pharmaceuticals, quasi-drugs, agricultural chemicals, feeds, and the like. Specifically, it can be used for the production of foods having various flavors, toiletry products, industrial products made from plant materials such as woodwork products and tatami mats, and the like.

【0030】本発明の方法が好ましく利用される対象と
しては、香気成分を有する食品が挙げられる。具体的に
述べるとウーロン茶、ジャスミン茶等の製造において、
例えば「萎調」の工程で使用したり、紅茶(CTC法に
よるティーパック用紅茶など)の香気増強、ワインの香
気増強に利用できる。また、化粧品の香気保持や香水の
香気保持、医薬品における香気の改善や薬理効果の改善
にも利用できる。
An object to which the method of the present invention is preferably used is a food having a flavor component. Specifically, in the production of oolong tea, jasmine tea, etc.,
For example, it can be used in the step of "atrophy" or used to enhance the aroma of black tea (eg, tea pack black tea by the CTC method) and the aroma of wine. It can also be used for preserving the fragrance of cosmetics and fragrance, improving the fragrance of pharmaceuticals, and improving the pharmacological effect.

【0031】更に、色素の製造においても有用である。
例えば、西洋茜からのルベリトリン酸からの染料アリザ
リンの抽出に用いることによって、従来よりも効率よく
色素の抽出を行うことができる。
Further, it is useful in the production of dyes.
For example, by using the dye alizarin from ruberitic acid from Western Akane, the pigment can be more efficiently extracted than before.

【0032】本発明に使用できる酵素組成物の利用方法
としては、その対象とするものの形態によりその添加方
法、添加量、反応方法などを適宜変更することができ
る。
As a method of using the enzyme composition which can be used in the present invention, the addition method, the addition amount, the reaction method and the like can be appropriately changed depending on the form of the object.

【0033】具体的な利用方法としては、香気前駆体を
含有する植物抽出物あるいは醗酵産物に酵素組成物を加
えてインキュベートする。その条件は、酵素組成物が香
気、色素、生理活性成分前駆体に作用し香気、色素、生
理活性成分を遊離できる条件であれば特に限定されない
が、その条件については当業者が多大な労力を費やすこ
となく設定できる。この条件の基で、当該成分濃度を上
昇させることができる。
As a specific application method, an enzyme composition is added to a plant extract or fermentation product containing an aroma precursor and incubated. The conditions are not particularly limited as long as the enzyme composition acts on the fragrance, the dye, and the bioactive ingredient precursor to release the fragrance, the dye, and the bioactive ingredient, but those skilled in the art require a great deal of labor for the conditions. Can be set without spending. Under these conditions, the concentration of the component can be increased.

【0034】また、本発明の酵素を植物中に存在する香
気、色素、生理活性成分濃度の上昇にも利用できる。即
ち、植物はこれら成分の前駆体を有しているため、植物
に有効量の酵素組成物を与え、当該植物中の前駆体が加
水分解できる条件下で栽培することにより植物の香気、
色素、生理活性成分を上昇させることができる。また、
本発明の酵素組成物を利用することにより、対象となる
植物中の香気、色素、生理活性成分等の生成時期を調節
することができる。
The enzyme of the present invention can also be used for increasing the concentration of aroma, pigment, and physiologically active component present in plants. That is, since the plant has precursors of these components, an effective amount of the enzyme composition is given to the plant, and the fragrance of the plant is obtained by cultivating the plant under conditions in which the precursor in the plant can be hydrolyzed.
Dyes and physiologically active ingredients can be increased. Also,
By using the enzyme composition of the present invention, it is possible to control the generation time of a fragrance, a pigment, a physiologically active component, and the like in a target plant.

【0035】本発明による、酵素組成物を配糖体に作用
せしめ、配糖体より単糖単位で糖を遊離する方法の反応
条件は、上記反応が起こる条件であれば特に限定されな
い。反応は、水溶液状態で行っても、酢酸メチルエステ
ル、エタノール、メタノール等の有機溶媒中で行って
も、また、これらの混合溶媒中で行ってもよく、基質ま
たは酵素が固体で媒質が液体の固液不均一系の状態でも
よいが、好ましくは、水溶液状態で行う。配糖体の濃度
は、好ましくは1M程度、より好ましくは0.1M以下、最も
好ましくは4mM以下で反応に付することが好ましい。そ
れぞれの酵素の使用量は、配糖体に対して好ましくは1
質量%以上、さらに好ましくは、10質量%以上で使用す
る(好ましくは0.01〜1ユニット/mg基質、さらに
好ましくは0.1〜1ユニット/mg基質)。反応温度と
しては、好ましくは0から65℃、さらに好ましくは20か
ら65℃、最も好ましくは30から50℃であり、反応時間と
しては、好ましくは、1時間から3日間である。
The reaction conditions of the method of the present invention in which the enzyme composition is allowed to act on glycosides and the sugars are released from the glycosides in monosaccharide units are not particularly limited as long as the above reaction occurs. The reaction may be carried out in an aqueous solution state, in an organic solvent such as methyl acetate, ethanol, or methanol, or in a mixed solvent thereof, wherein the substrate or enzyme is solid and the medium is liquid. The solid-liquid heterogeneous state may be used, but it is preferably carried out in an aqueous solution state. The concentration of the glycoside is preferably about 1 M, more preferably 0.1 M or less, and most preferably 4 mM or less. The amount of each enzyme used is preferably 1 to glycoside.
It is used in an amount of at least 10% by mass, more preferably at least 10% by mass (preferably 0.01-1 unit / mg substrate, more preferably 0.1-1 unit / mg substrate). The reaction temperature is preferably 0 to 65 ° C, more preferably 20 to 65 ° C, most preferably 30 to 50 ° C, and the reaction time is preferably 1 hour to 3 days.

【0036】以下、本発明を実施例によりさらに詳細に
説明するが、本発明は以下の実施例に限定されるもので
はないことはいうまでもない。
Hereinafter, the present invention will be described in more detail with reference to Examples, but it goes without saying that the present invention is not limited to the following Examples.

【0037】[0037]

【実施例】実施例1 ペクチナーゼG(商品名:天野製薬株式会社製、Asperg
illus pulverulentus由来)3.6kgを20mMリン酸緩衝液
(pH6.0)に溶解し17.5Lとした。硫酸アンモニウム7.0
kg(65%飽和)を加え、攪拌後遠心分離し、上清17.8L
を回収した。この上清にさらに硫酸アンモニウム3.65kg
(95%飽和)を加え、攪拌後遠心分離し、上清16.7Lを
回収した。この上清を分子量6,000カットの限外ろ過膜
で210mlに濃縮後、凍結乾燥を行った。この凍結乾燥品
について、β−キシロシダーゼ活性及びβ−グルコシダ
ーゼ活性を測定した。
EXAMPLES Example 1 Pectinase G (trade name: Asperg, manufactured by Amano Pharmaceutical Co., Ltd.)
illus pulverulentus) (3.6 kg) was dissolved in 20 mM phosphate buffer (pH 6.0) to make 17.5 L. Ammonium sulfate 7.0
kg (65% saturation), centrifuge after stirring, and 17.8 L of supernatant
Was recovered. Add 3.65 kg of ammonium sulfate to the supernatant
(95% saturation), and the mixture was stirred and centrifuged to collect 16.7 L of the supernatant. The supernatant was concentrated to 210 ml with an ultrafiltration membrane having a molecular weight of 6,000 cuts, and then lyophilized. The lyophilized product was measured for β-xylosidase activity and β-glucosidase activity.

【0038】その結果、β−キシロシダーゼ活性は7.12
単位/mg、β−グルコシダーゼ活性は0.12単位/mgであ
った。
As a result, β-xylosidase activity was 7.12
Unit / mg, β-glucosidase activity was 0.12 unit / mg.

【0039】上記凍結乾燥品50mgを25mM bis-Tris緩衝
液(pH7.1)10mlに溶解し、25mM bis-Tris緩衝液(pH7.
1)で平衡化した陰イオン交換 Mono-Pカラム(5×200m
m)に展開し、Polybuffer(ファルマシア社製)で溶出
し、β−キシロシダーゼの部分精製酵素標品を得た。そ
の結果、β−キシロシダーゼ活性は82.2単位/ml、β−
グルコシダーゼ活性は1.01単位/mlであった。
50 mg of the above freeze-dried product was dissolved in 10 ml of 25 mM bis-Tris buffer (pH 7.1), and the solution was dissolved in 25 mM bis-Tris buffer (pH 7.
Anion exchange Mono-P column (5 x 200m) equilibrated in 1)
m) and eluted with Polybuffer (Pharmacia) to obtain a partially purified enzyme preparation of β-xylosidase. As a result, β-xylosidase activity was 82.2 units / ml,
Glucosidase activity was 1.01 units / ml.

【0040】実施例2 ペクチナーゼG(天野製薬株式会社製、Aspergillus pu
lverulentus由来)1.2gを20mMリン酸緩衝液(pH6.0)12
mlに溶解し、遠心分離した。この上清に12mlに100%飽
和硫酸アンモニウム/20mMリン酸緩衝液(pH6.0)28ml
を加え(70%飽和)、攪拌後遠心分離し、析出する沈殿
物を回収した。この沈殿物に35%飽和硫酸アンモニウム
/20mMリン酸緩衝液(pH6.0)12mlに溶解し、遠心分離
後の上清を回収した。この上清について、β−グルコシ
ダーゼ活性及びβ−キシロシダーゼ活性を測定した。
Example 2 Pectinase G (manufactured by Amano Pharmaceutical Co., Ltd., Aspergillus pu
lverulentus) 1.2 g in 20 mM phosphate buffer (pH 6.0) 12
Dissolved in ml and centrifuged. 28 ml of 100% saturated ammonium sulfate / 20 mM phosphate buffer (pH 6.0) is added to 12 ml of the supernatant.
Was added (70% saturation), and the mixture was stirred and centrifuged to collect a precipitate. This precipitate was dissolved in 12 ml of 35% saturated ammonium sulfate / 20 mM phosphate buffer (pH 6.0), and the supernatant after centrifugation was recovered. The β-glucosidase activity and β-xylosidase activity of this supernatant were measured.

【0041】その結果、β−グルコシダーゼ活性は66.6
単位/ml、β−キシロシダーゼ活性は2.42単位/mlであ
った。
As a result, β-glucosidase activity was 66.6
Unit / ml, β-xylosidase activity was 2.42 units / ml.

【0042】上記上清10mlを、35%飽和硫酸アンモニウ
ム/20mMリン酸緩衝液(pH6.0)で平衡化したフェニル
セファロースカラム(16×100mm)に展開し、20mMリン
酸緩衝液(pH6.0)で溶出し、β−グルコシダーゼの部
分精製酵素標品を得た。その結果、β−グルコシダーゼ
活性は24.1単位/ml、β−キシロシダーゼ活性は0.18単
位/mlであった。
10 ml of the above supernatant was developed on a phenyl sepharose column (16 × 100 mm) equilibrated with 35% saturated ammonium sulfate / 20 mM phosphate buffer (pH 6.0), and the solution was added to a 20 mM phosphate buffer (pH 6.0). And a partially purified enzyme preparation of β-glucosidase was obtained. As a result, the β-glucosidase activity was 24.1 units / ml, and the β-xylosidase activity was 0.18 units / ml.

【0043】実施例3 実施例1で得られた部分精製のβ−キシロシダーゼ(β
−Xyl)をβ−キシロシダーゼ活性5.0単位/mlにな
るように20mM酢酸緩衝液(pH5.5)で希釈し調製した。
更に、実施例2で得られた部分精製のβ−グルコシダー
ゼ(β−Glc)をβ−グルコシダーゼ活性5.0単位/m
lになるように20mM酢酸緩衝液(pH5.5)で希釈し調製し
た。これらの酵素溶液及びpNP-プリメベロシドを用い
て、β−キシロシダーゼ単独反応、β−グルコシダーゼ
単独反応、β−キシロシダーゼ単独反応後に各時間後に
β−グルコシダーゼを加える反応を以下のように行い、
pNP遊離量を比較した。
Example 3 The partially purified β-xylosidase obtained in Example 1 (β
-Xyl) was prepared by diluting with β-xylosidase activity 5.0 units / ml with 20 mM acetate buffer (pH 5.5).
Further, the partially purified β-glucosidase (β-Glc) obtained in Example 2 was converted to a β-glucosidase activity of 5.0 units / m 2.
The solution was diluted with a 20 mM acetate buffer (pH 5.5) to a volume of 1 l. Using these enzyme solutions and pNP-primeveroside, a β-xylosidase alone reaction, a β-glucosidase alone reaction, and a reaction of adding β-glucosidase after each hour after the β-xylosidase alone reaction are performed as follows,
The amount of released pNP was compared.

【0044】β−キシロシダーゼ単独反応は20mM酢酸緩
衝液(pH5.5)で10mMに調製されたpNP-プリメベロシド
溶液0.2mlと部分精製β−キシロシダーゼ0.2mlを混合
し、5分後に0.05mlサンプリングし、20mM酢酸緩衝液
(pH5.5) 0.025ml、0.5M炭酸ナトリウム0.075mlを加
え混合し420nmの吸光度を測定した(5分反応)。同じく
5分後に0.15mlサンプリングし、20mM酢酸緩衝液(pH5.
5)を0.075ml加え、反応を継続した。さらに5、15分後
に0.1mlサンプリングし、0.5M炭酸ナトリウム0.1mlを加
え混合し420nmの吸光度を測定した(10、20分反応)。
The β-xylosidase alone reaction was performed by mixing 0.2 ml of a pNP-primeveroside solution adjusted to 10 mM with a 20 mM acetate buffer (pH 5.5) and 0.2 ml of partially purified β-xylosidase, sampling 0.05 ml after 5 minutes, 0.025 ml of 20 mM acetate buffer (pH 5.5) and 0.075 ml of 0.5 M sodium carbonate were added and mixed, and the absorbance at 420 nm was measured (reaction for 5 minutes). Same
Five minutes later, 0.15 ml of a sample was sampled, and a 20 mM acetate buffer solution (pH 5.
0.075 ml of 5) was added, and the reaction was continued. Further, after 5 and 15 minutes, 0.1 ml of the sample was sampled, 0.1 ml of 0.5 M sodium carbonate was added and mixed, and the absorbance at 420 nm was measured (reaction for 10 and 20 minutes).

【0045】β−グルコシダーゼ単独反応は20mM酢酸緩
衝液(pH5.5)で10mMに調製されたpNP-プリメベロシド
溶液0.15mlと部分精製β−グルコシダーゼ0.15mlを混合
し、5分後に0.05mlサンプリングし、20mM酢酸緩衝液
(pH5.5) 0.025ml、0.5M炭酸ナトリウム0.075mlを加え
混合し420nmの吸光度を測定した(5分反応)。同じく
5分後に0.2mlサンプリングし、20mM酢酸緩衝液(pH5.
5)を0.1ml加え、反応を継続した。さらに5、15分後に
0.1mlサンプリングし、0.5M炭酸ナトリウム0.1mlを加え
混合し420nmの吸光度を測定した(10、20分反応)。
In the β-glucosidase single reaction, 0.15 ml of a pNP-primeveroside solution adjusted to 10 mM with 20 mM acetate buffer (pH 5.5) and 0.15 ml of partially purified β-glucosidase were mixed, and after 5 minutes, 0.05 ml was sampled. 0.025 ml of 20 mM acetate buffer (pH 5.5) and 0.075 ml of 0.5 M sodium carbonate were added and mixed, and the absorbance at 420 nm was measured (reaction for 5 minutes). Similarly, after 5 minutes, 0.2 ml was sampled, and a 20 mM acetate buffer solution (pH 5.
5) was added and the reaction was continued. After another 5, 15 minutes
0.1 ml was sampled, 0.1 ml of 0.5 M sodium carbonate was added and mixed, and the absorbance at 420 nm was measured (reaction for 10 and 20 minutes).

【0046】β−キシロシダーゼ単独反応した後にβ−
グルコシダーゼを加える反応は、β−キシロシダーゼ単
独反応5分後に0.15mlサンプリングし、部分精製β−グ
ルコシダーゼ0.075ml加え、反応を継続した。さらに
5、15分後に0.1mlサンプリングし、0.5M炭酸ナトリウ
ム0.1mlを加え混合し420nmの吸光度を測定した(10、20
分反応)。
After the β-xylosidase alone reaction,
In the reaction for adding glucosidase, 0.15 ml was sampled 5 minutes after the β-xylosidase alone reaction, 0.075 ml of partially purified β-glucosidase was added, and the reaction was continued. Further, after 5 and 15 minutes, 0.1 ml of a sample was sampled, 0.1 ml of 0.5 M sodium carbonate was added and mixed, and the absorbance at 420 nm was measured (10, 20).
Minute reaction).

【0047】いずれの反応についてもあらかじめ熱処理
(100℃、10分)した試料について同様の実験を行い、
ブランク値とした。その結果を表1に示す。
The same experiment was performed on the sample which had been heat-treated (100 ° C., 10 minutes) in advance for each reaction.
Blank values were used. Table 1 shows the results.

【0048】[0048]

【表1】 [Table 1]

【0049】表より明らかなように、β−キシロシダー
ゼ単独反応した後にβ−グルコシダーゼを加える反応に
おいて、各酵素単独よりもpNPの遊離量が増大した。こ
のことより、β−キシロシダーゼによりpNP-プリメベロ
シドがpNP-グルコシド、キシロースに分解され、β−グ
ルコシダーゼによりβ−グルコシダーゼの基質であるpN
P-グルコシドがpNP、グルコースに分解される事が確認
された。
As is clear from the table, in the reaction of adding β-glucosidase after the reaction of β-xylosidase alone, the amount of released pNP was larger than that of each enzyme alone. From this, pNP-primeveroside is decomposed into pNP-glucoside and xylose by β-xylosidase, and β-glucosidase is used as a substrate of βN-glucosidase.
It was confirmed that P-glucoside was decomposed into pNP and glucose.

【0050】実施例4 実施例1で得られた部分精製β−キシロシダーゼを活性
5.0単位/mlになるように20mM酢酸緩衝液(pH5.5)で希
釈し調製した。更に、実施例2で得られた部分精製β−
グルコシダーゼを活性5.0単位/mlになるように20mM酢
酸緩衝液(pH5.5)で希釈し調製した。この酵素溶液を
用いて、活性比としてβ−キシロシダーゼ活性:β−グ
ルコシダーゼ活性が、10:0、9:1、8:2、7:
3、6:4、5:5、4:6、3:7、2:8、1:
9、0:10になるように試料を調製した。
Example 4 Activity of partially purified β-xylosidase obtained in Example 1
It was prepared by diluting with 20 mM acetate buffer (pH 5.5) to 5.0 units / ml. Furthermore, the partially purified β-
Glucosidase was prepared by diluting it with a 20 mM acetate buffer (pH 5.5) to an activity of 5.0 units / ml. Using this enzyme solution, the activity ratio of β-xylosidase activity: β-glucosidase activity was 10: 0, 9: 1, 8: 2, 7:
3, 6: 4, 5: 5, 4: 6, 3: 7, 2: 8, 1:
A sample was prepared so as to be 9, 0:10.

【0051】各試料0.05mlと20mM酢酸緩衝液(pH5.5)
で10mMに調製されたpNP-プリメベロシド溶液0.05mlとを
混合し、37℃、20分間インキュベートした。0.5M炭酸ナ
トリウムを0.1ml加え混合し、420nmの吸光度を測定し
た。あらかじめ熱処理(100℃、10分)した試料につい
て同様の実験を行い、ブランク値とした。その結果を表
2に示す。
0.05 ml of each sample and 20 mM acetate buffer (pH 5.5)
Was mixed with 0.05 ml of a pNP-primeveroside solution adjusted to 10 mM in the above, and incubated at 37 ° C. for 20 minutes. 0.1 ml of 0.5 M sodium carbonate was added and mixed, and the absorbance at 420 nm was measured. The same experiment was performed on a sample that had been heat-treated (100 ° C., 10 minutes) in advance, and a blank value was obtained. Table 2 shows the results.

【0052】[0052]

【表2】 [Table 2]

【0053】表より明らかなようにpNPの遊離量が一番
高かったβ−キシロシダーゼ活性:β−グルコシダーゼ
活性の混合比は5:5、即ち1:1の時であった。
As is clear from the table, the mixture ratio of β-xylosidase activity: β-glucosidase activity at which the amount of released pNP was highest was 5: 5, that is, 1: 1.

【0054】実施例5 香り成分前駆体であるオイゲニルプリメベロシドの調整
法 山茶花の新葉約2kgを100℃、10分で熱水抽出し、抽出
液をダイアイオンHP20(三菱化学社製)をつめたカ
ラムに掛け、オイゲニルプリメベシドを吸着させた。カ
ラムをベッドボリュームの約2倍の脱イオン水、20%メ
タノールで洗浄した後、100%メタノールで吸着したオ
イゲニルプリメベロシドを回収した。回収されたオイゲ
ニルプリメベロシドを含むメタノール溶液をその後濃縮
し、オイゲニルプリメベロシドを結晶化させ、ガラスフ
ィルターにて回収した。
Example 5 Method for Preparing Eugenyl Primeveroside, a Precursor of Scent Components About 2 kg of fresh leaves of mountain tea was extracted with hot water at 100 ° C. for 10 minutes, and the extracted solution was Diaion HP20 (manufactured by Mitsubishi Chemical Corporation). ) Was applied to the column, and eugenyl primebeside was adsorbed. After washing the column with about twice the bed volume with deionized water and 20% methanol, eugenyl primeveroside adsorbed with 100% methanol was recovered. The recovered methanol solution containing eugenyl primeveroside was then concentrated to crystallize eugenyl primeveroside, and collected by a glass filter.

【0055】実施例6 実施例1、2で得られた部分精製β−キシロシダーゼ及
び部分精製β−グルコシダーゼを用いて、20mM酢酸緩衝
液(pH5.5)で希釈しβ−キシロシダーゼ活性:β−グ
ルコシダーゼ活性=1:1の試料を調製した。即ちβ−
キシロシダーゼ活性10.0単位/ml及びβ−グルコシダー
ゼ活性10.0単位/mlの試料を調製した。
Example 6 The partially purified β-xylosidase and partially purified β-glucosidase obtained in Examples 1 and 2 were diluted with a 20 mM acetate buffer (pH 5.5) to give β-xylosidase activity: β-glucosidase. A sample having an activity = 1: 1 was prepared. That is, β-
Samples with xylosidase activity 10.0 units / ml and β-glucosidase activity 10.0 units / ml were prepared.

【0056】この試料の酵素溶液0.5mlと20mM酢酸緩衝
液(pH5.5)で10mMに調製されたオイゲニル-プリメベ
ロシド溶液0.5mlとを混合し、37℃でインキュベートし
た。6、24時間後のサンプルをそれぞれ回収し、熱処理
(100℃、10分)により反応停止後、内部標準物質とし
てペンタノールを加え、ガスクロマトグラフィー(島津
製作所製)に供した。その結果6、24時間共にオイゲノ
ールの検出時間にピークが確認された。また、時間の経
過と共にオイゲノール遊離量が増加していることが確認
された。
0.5 ml of the enzyme solution of this sample and 0.5 ml of eugenyl-primeveroside solution adjusted to 10 mM with 20 mM acetate buffer (pH 5.5) were mixed and incubated at 37 ° C. The samples after 6 and 24 hours were collected, respectively, and after stopping the reaction by heat treatment (100 ° C., 10 minutes), pentanol was added as an internal standard substance and subjected to gas chromatography (manufactured by Shimadzu Corporation). As a result, a peak was confirmed in the eugenol detection time for both 6 and 24 hours. It was also confirmed that the amount of eugenol released increased with the passage of time.

【0057】酵素溶液をあらかじめ熱処理(100℃、10
分)し、同様の実験を行ったものについては6、24時間
共にオイゲノールは検出されなかった。
The enzyme solution was previously heat-treated (100 ° C., 10 ° C.
Eugenol was not detected in both cases for 6 and 24 hours.

【0058】官能試験(パネラー10名)により調べたと
ころ、6,24時間共にオイゲノール特有の香りが確認さ
れた。時間の経過と共にオイゲノール特有の香り増強さ
れていることが確認された。あらかじめ熱処理(100
℃、10分)したものについは、オイゲノール特有の香り
は感じられなかった
An organoleptic test (10 panelists) revealed that scent peculiar to eugenol was observed for both 6 and 24 hours. It was confirmed that the fragrance peculiar to eugenol was enhanced over time. Heat treatment (100
℃, 10 minutes) did not feel the scent unique to eugenol

【0059】このことより、天然基質であるプリメベロ
ース配糖体についても、β−キシロシダーゼ及びβ−グ
ルコシダーゼを含む酵素組成物の作用によりアグリコン
遊離が確認された。
From the above, it was confirmed that aglycone release was also caused by the action of the enzyme composition containing β-xylosidase and β-glucosidase in the case of primeverose glycoside, which is a natural substrate.

【0060】実施例7 実施例6で得られた酵素溶液1mlとブドウ果汁(市販
品:果汁100%、濃縮還元)1mlとを混合し37℃にて一
晩(14時間)インキュベートし、香りを調べたところ、
酵素剤の代わりに酢酸緩衝液を加えたものに比べ明らか
に香りが増強された。またこの作用は酵素溶液を100℃
で10分間加熱処理したものでは見いだせなかった。
Example 7 1 ml of the enzyme solution obtained in Example 6 and 1 ml of grape juice (commercially available product: 100% fruit juice, concentrated and reduced) were mixed and incubated at 37 ° C. overnight (14 hours) to give a fragrance. When I checked,
The aroma was clearly enhanced as compared with the case where acetate buffer was added instead of the enzyme preparation. Also, this action is performed by heating the enzyme solution to 100 ℃.
No heat treatment was found for 10 minutes.

【0061】実施例8 実施例6で得られた酵素溶液1mlと市販オレンジ果汁
(還元濃縮液)1mlとを混合し、37℃で24時間でインキ
ュベートし、香りの生成を官能試験により調べた。その
結果、オレンジ果汁の香りの増強効果が認められた。酵
素溶液を熱処理(100℃、10分)したものでは、このよ
うな効果は認められなかった。
Example 8 1 ml of the enzyme solution obtained in Example 6 and 1 ml of commercially available orange juice (reduced concentrated solution) were mixed, incubated at 37 ° C. for 24 hours, and the generation of aroma was examined by a sensory test. As a result, the effect of enhancing the aroma of orange juice was recognized. Heat treatment (100 ° C., 10 minutes) of the enzyme solution did not show such an effect.

【0062】[0062]

【発明の効果】本発明により、β−キシロシダーゼ及び
/又はβ−グルコシダーゼを含む酵素組成物は、β−プ
リメベロシド及び/又は類似する二糖配糖体を単糖単位
で切断し、アグリコン遊離作用を有することが明らかと
なり、本発明に使用できる酵素組成物は微生物を給源と
して供給することができ、各種食品、医薬品、医薬部外
品などに広く使用できる。例えば食品などにおいてその
香気、色素、生理活性成分を増強あるいは減弱すること
ができる。
Industrial Applicability According to the present invention, an enzyme composition containing β-xylosidase and / or β-glucosidase cleaves β-primeveroside and / or a similar disaccharide glycoside at a monosaccharide unit to inhibit aglycone releasing action. It is clear that the enzyme composition can be used in the present invention, and the enzyme composition can be supplied from microorganisms as a source and can be widely used in various foods, pharmaceuticals, quasi-drugs, and the like. For example, it can enhance or attenuate the flavor, pigment, and physiologically active ingredient in foods and the like.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】酵素組成物を配糖体に作用せしめ、当該配
糖体より単糖単位で糖を遊離する方法。
1. A method of reacting an enzyme composition with a glycoside to release sugar from the glycoside in monosaccharide units.
【請求項2】配糖体が二糖配糖体である請求項1記載の
方法。
2. The method according to claim 1, wherein the glycoside is a disaccharide glycoside.
【請求項3】二糖配糖体がβ−プリメベロシド及び/又
は類似する二糖配糖体である、請求項2記載の方法。
3. The method according to claim 2, wherein the disaccharide glycoside is β-primeveroside and / or a similar disaccharide glycoside.
【請求項4】酵素組成物が微生物及び/又は植物より得
ることができる請求項1乃至請求項3記載の方法。
4. The method according to claim 1, wherein the enzyme composition can be obtained from a microorganism and / or a plant.
【請求項5】酵素組成物がβ−キシロシダーゼ及び/又
はβ−グルコシダーゼを含有してなる請求項1乃至請求
項3記載の方法。
5. The method according to claim 1, wherein the enzyme composition contains β-xylosidase and / or β-glucosidase.
【請求項6】二糖配糖体が香気成分前駆体、色素成分前
駆体又は生理活性成分前駆体である請求項1乃至請求項
5記載の方法。
6. The method according to claim 1, wherein the disaccharide glycoside is a precursor of a fragrance component, a precursor of a dye component or a precursor of a physiologically active component.
【請求項7】香気成分前駆体、色素成分前駆体又は生理
活性成分前駆体が植物由来である請求項6記載の方法。
7. The method according to claim 6, wherein the aroma component precursor, the pigment component precursor or the physiologically active component precursor is derived from a plant.
JP2000074565A 1999-03-19 2000-03-16 Isolation of saccharide from glycoside Withdrawn JP2000333693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000074565A JP2000333693A (en) 1999-03-19 2000-03-16 Isolation of saccharide from glycoside

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-75575 1999-03-19
JP7557599 1999-03-19
JP2000074565A JP2000333693A (en) 1999-03-19 2000-03-16 Isolation of saccharide from glycoside

Publications (1)

Publication Number Publication Date
JP2000333693A true JP2000333693A (en) 2000-12-05

Family

ID=26416717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000074565A Withdrawn JP2000333693A (en) 1999-03-19 2000-03-16 Isolation of saccharide from glycoside

Country Status (1)

Country Link
JP (1) JP2000333693A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005039301A1 (en) * 2003-10-23 2007-02-15 高砂香料工業株式会社 Fresh tea leaf powder, processed product, extract, oil and aroma obtained from fresh tea leaf powder
JP2009501529A (en) * 2005-07-15 2009-01-22 アマノ エンザイム ユーエスエー カンパニー,リミテッド Enzyme compositions that enhance the flavor of food and beverages

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005039301A1 (en) * 2003-10-23 2007-02-15 高砂香料工業株式会社 Fresh tea leaf powder, processed product, extract, oil and aroma obtained from fresh tea leaf powder
JP4680062B2 (en) * 2003-10-23 2011-05-11 高砂香料工業株式会社 Fresh tea leaf powder, extract obtained from fresh tea leaf powder, and method for producing aroma component-containing material
JP2009501529A (en) * 2005-07-15 2009-01-22 アマノ エンザイム ユーエスエー カンパニー,リミテッド Enzyme compositions that enhance the flavor of food and beverages
JP4920684B2 (en) * 2005-07-15 2012-04-18 アマノ エンザイム ユーエスエー カンパニー,リミテッド Enzyme compositions that enhance the flavor of food and beverages

Similar Documents

Publication Publication Date Title
US6140487A (en) DNA encoding kojibiose phosphorylase obtainable from thermoanaerobium, ' its preparation and uses
Bhatia et al. Microbial β-glucosidases: cloning, properties, and applications
US4590160A (en) Process for production of β-glycosyl stevioside derivatives
US5922580A (en) Non-reducing saccharide-forming enzyme, its preparation and uses
US5739024A (en) Maltohexaose and maltoheptaose-forming amylase, and its preparation and uses
CN101605905B (en) Method for glycosylation of flavonoid
US6087131A (en) β-glucosidase from filamentous fungi, and uses thereof
US7223570B2 (en) Branched cyclic tetrasaccharide, process for producing the same, and use
DE69735123T2 (en) Trehalose phosphorylase, their preparation and use
JP2008187927A (en) New phenol glycosidase
JP2000333693A (en) Isolation of saccharide from glycoside
KR100647404B1 (en) Trehalose phosphorylase, preparation method and use thereof
Brimer et al. Amygdalin degradation by Mucor circinelloides and Penicillium aurantiogriseum: mechanisms of hydrolysis
US20030027291A1 (en) Method of releasing saccharide from glycoside
Kusakabe et al. Preparation of β-1, 4-mannobiose from white copra meal by a mannanase from Penicillium purpurogenum
JPH0118709B2 (en)
Rosenfield et al. Metabolic Studies on Intermediates in the myo-Inositol Oxidation Pathway in Lilium longiflorum Pollen: III. Polysaccharidic Origin of Labeled Glucose
Suzuki et al. Formation of β-galactosyl compounds of pyridoxine in growing culture of Sporobolomyces singularis
WO1999001564A1 (en) Process for the modification of toxic and/or off-flavoured compounds
JPH05176785A (en) Production of arbutin
Maruo et al. Enzymatic synthesis of high purity maltotetraose using moranoline (1-deoxynojirimycin)
KR19990045692A (en) Method for preparing 1-menthyl-alpha-di-glucopyranoside
JP2001292791A (en) Method for producing n-acetyllactosmine
CN113308506A (en) Method for synthesizing dihydromyricetin-7-glucoside through biocatalysis
JPH04252133A (en) Theanderose-containing breads

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040611

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050901

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20061003