JP2000333437A - Linear motor - Google Patents

Linear motor

Info

Publication number
JP2000333437A
JP2000333437A JP11136819A JP13681999A JP2000333437A JP 2000333437 A JP2000333437 A JP 2000333437A JP 11136819 A JP11136819 A JP 11136819A JP 13681999 A JP13681999 A JP 13681999A JP 2000333437 A JP2000333437 A JP 2000333437A
Authority
JP
Japan
Prior art keywords
armature
coil
linear motor
pitch
coil layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11136819A
Other languages
Japanese (ja)
Other versions
JP3550678B2 (en
Inventor
Toru Shikayama
透 鹿山
Tadahiro Miyamoto
恭祐 宮本
Nobuyuki Irie
信幸 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP13681999A priority Critical patent/JP3550678B2/en
Priority to PCT/JP2000/004001 priority patent/WO2001099261A1/en
Priority claimed from PCT/JP2000/004001 external-priority patent/WO2001099261A1/en
Publication of JP2000333437A publication Critical patent/JP2000333437A/en
Application granted granted Critical
Publication of JP3550678B2 publication Critical patent/JP3550678B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Linear Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure good insulation between armature coils and facilitate assembling work and reduce ripples in the driving force. SOLUTION: A linear motor comprises a secondary-side part holder, installed with a secondary-side part constituted of a plurality of field magnetic poles and an armature part holder installed with an armature part 4, which is disposed facing the secondary-side part via a space and has a plurality of concentratedly wound armature coils 6. The secondary-side part and the armature part 4 are disposed facing each other, in parallel in the advancing direction. The field magnetic poles of the secondary-side part are disposed in the advancing direction of the movable part at a pitch Pm, so that two adjacent poles are of different polarities. The armature coils 6 are also disposed in the advancing direction of the movable part at a pitch Pc. The pole pitch Pm and the coil pitch Pc are such that the relationship Pc=5/3×Pm is satisfied.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、推力リプルや可動
子のヨーイング、ピッチングの小さいことが要求される
一定速送り用や、高速位置決め用のリニアモータに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a linear motor for constant-speed feed and high-speed positioning, which requires a small thrust ripple and a small yaw and pitch of a mover.

【0002】[0002]

【従来の技術】従来のリニアモータには、集中巻の電機
子コイルを重ねずに配置したものがあるが、これらはコ
ギング力が発生しないために、速度リプルの小さいこと
が要求される用途に適している。また、集中巻にしたコ
イルを重ねずに配置する簡単な構造であるため絶縁が容
易であり、200Vといった電圧の用途にも適用が可能
となっている。従来のリニアモータを図9ないし図11
に示す。図9は、リニアモータの可動子の進行方向から
見た正断面図、図10は図9におけるA−A線に沿う平
断面図、図11は電機子部を示す側面図である。図9な
いし図11において、リニアモータ1は、可動部2と固
定部3とから構成されている。可動部2は、いわゆるコ
アレスタイプの電機子部4と、前記電機子部4を取り付
けた電機子部支持体5とからなっている。前記電機子部
4は、複数個、例えば6個の集中巻にした電機子コイル
6を進行方向に一列に配置し、樹脂7でモールドして構
成している。また、前記電機子コイル6は、3相3コイ
ル4極を基本構成としており、電機子コイル6のコイル
ピッチPcは、4/3×Pmとなっている。6個の電機
子コイル6は紙面上において左からU、W、V相の順に
並べられている。前記集中巻の電機子コイル6の形状
は、図11に示すように、2次側部8a、8bと対向し
た主に推力を発生する2つのコイル辺6が平行した形状
となっている。そして、これらの6個の電機子コイル6
を進行方向に一列に配置している。また、固定部3は、
永久磁石からなるいわゆる界磁極としての2次側部8
a、8bと、前記2次側部8a、8bを取り付けたいわ
ゆるバックヨークとしての2次側部支持体9a、9bと
を有している。前記2次側部8a、8bを構成する永久
磁石は、隣接する永久磁石と異極になるようにPmピッ
チごとに配置され、また、対向する永久磁石どうしが異
極になるように並べて配置されている。なお、前記2次
側部8a、8bと前記電機子部4は、互いに向かい合っ
て進行方向に平行に配置され、2つの2次側部支持体9
a、9bは、支持部材10によって連結して支持されて
いる。
2. Description of the Related Art Conventional linear motors have a configuration in which concentrated winding armature coils are arranged without being overlapped. However, since these coils do not generate a cogging force, they are used for applications requiring a small speed ripple. Are suitable. Further, since the coil has a simple structure in which concentrated coils are arranged without being overlapped, insulation is easy, and application to a voltage of 200 V or the like is possible. FIGS. 9 to 11 show a conventional linear motor.
Shown in 9 is a front cross-sectional view of the linear motor viewed from the moving direction of the mover, FIG. 10 is a plan cross-sectional view along the line AA in FIG. 9, and FIG. 11 is a side view showing an armature portion. 9 to 11, the linear motor 1 includes a movable section 2 and a fixed section 3. The movable part 2 is composed of a so-called coreless type armature part 4 and an armature part support 5 to which the armature part 4 is attached. The armature unit 4 is configured by arranging a plurality of, for example, six, concentratedly wound armature coils 6 in a line in the traveling direction and molding them with a resin 7. The armature coil 6 has a three-phase, three-coil, four-pole basic configuration, and the coil pitch Pc of the armature coil 6 is 4/3 × Pm. The six armature coils 6 are arranged in the order of U, W, and V phases from the left on the paper. As shown in FIG. 11, the concentrated winding armature coil 6 has a shape in which two coil sides 6 that mainly generate thrust and are opposed to the secondary sides 8a and 8b are parallel to each other. And these six armature coils 6
Are arranged in a line in the traveling direction. In addition, the fixing part 3
Secondary side portion 8 as a so-called field pole made of a permanent magnet
a, 8b, and secondary side supports 9a, 9b as so-called back yokes to which the secondary sides 8a, 8b are attached. The permanent magnets constituting the secondary side portions 8a and 8b are arranged at every Pm pitch so as to have a different polarity from the adjacent permanent magnets, and are arranged side by side so that the opposing permanent magnets have the different polarity. ing. The secondary side portions 8a and 8b and the armature portion 4 are arranged facing each other in parallel to the traveling direction, and two secondary side support members 9 are provided.
a and 9b are connected and supported by a support member 10.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来技
術では次のような問題があった。 (1) 異相の電機子コイルが隣接するため、200Vとい
った高電圧で使用する場合、絶縁不良を起こす恐れがあ
る。 (2) 絶縁性を上げるためには、電機子コイル間に絶縁物
を挿入する必要があり、組立に手間がかかって、製造コ
ストが高くなる。 (3) 集中巻の電機子コイルを用いているため、推力リプ
ルが発生する。 本発明は、このような問題を解消するためになされたも
ので、電機子コイル間の絶縁が良好で、組立て易く、か
つ推力リプルが非常に小さいリニアモータを提供するこ
とを目的とするものである。
However, the prior art has the following problems. (1) Since armature coils of different phases are adjacent to each other, when used at a high voltage such as 200 V, insulation failure may occur. (2) In order to increase the insulation, it is necessary to insert an insulator between the armature coils, which requires time and labor for assembling and increases the manufacturing cost. (3) Thrust ripples occur due to the use of concentrated winding armature coils. The present invention has been made to solve such a problem, and an object of the present invention is to provide a linear motor having good insulation between armature coils, easy to assemble, and having very small thrust ripple. is there.

【0004】[0004]

【課題を解決するための手段】上記問題を解決するた
め、本発明は、複数の界磁極からなる2次側部を取り付
けた2次側部支持体と、前記2次側部に空隙を介して対
向するとともに、複数個の集中巻した電機子コイルを有
する電機子部を取り付けた電機子部支持体とを有し、前
記2次側部と前記電機子部とが、互いに向かい合って進
行方向に平行に配置されているリニアモータにおいて、
前記2次側部の界磁極を、Pmピッチごとに隣と異極に
なるように可動部の進行方向に配置するとともに、前記
複数個の電機子コイルを、Pcピッチごとに可動部の進
行方向に並べて配置し、前記コイルピッチPcを、Pc
=5/3×Pm としたものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a secondary side support having a secondary side composed of a plurality of field poles attached thereto, and an air gap formed in the secondary side. And an armature portion support body to which an armature portion having a plurality of concentratedly wound armature coils is attached, and the secondary side portion and the armature portion face each other in the traveling direction. In a linear motor arranged in parallel to
The field poles of the secondary side are arranged in the traveling direction of the movable section so as to be different from the adjacent poles at every Pm pitch, and the plurality of armature coils are arranged at every Pc pitch in the traveling direction of the movable section. And the coil pitch Pc is set to Pc
= 5/3 × Pm.

【0005】[0005]

【発明の実施の形態】以下、本発明の実施例を図に基づ
いて説明する。なお、本発明におけるリニアモータの基
本構造は、電機子部を除き、従来技術におけるリニアモ
ータの構造と略同じであり、図9ないし図11と同一も
しくは相当する部材は、同一符号を付し説明を省略す
る。 [第1の実施例]図1は本発明の第1の実施例における
電機子コイルの配置を示す電機子部の側面図である。図
1に示すように、電機子部4は、進行方向に一列に配備
した集中巻の電機子コイル6を樹脂7でモールドして構
成している。前記電機子コイル6は、3相で6コイルか
ら構成されており、2次側部の界磁極のピッチをPmと
した場合、集中巻の電機子コイル6のコイルピッチPc
を Pc=5/3×Pm として、ピッチごとに可動部の進行方向に並べて配置し
ている。これらの6個の電機子コイル6の並べ方は、紙
面において左から、順方向巻のU相コイル、逆方向巻の
V相コイル、順方向巻のW相コイル、逆方向巻のU相コ
イル、順方向巻のV相コイル、逆方向巻のW相コイルの
順としている。なお、前記コイルピッチPcを電気角で
表すと、5/3×180=300度となる。1個の電機
子コイル6について、コイル幅Wc/磁石ピッチPmに
対する巻線係数と所定の推力発生時の損失の関係を図2
に示す。図2において、A1、A2は、コイル幅Wcに
対する空心幅(コイル中央部の空間の幅)の割合が0.
6の電機子コイル6を用いたもの、B1、B2は、コイ
ル幅Wcに対する空心幅の割合が0.4の電機子コイル
6を用いたもの、また、C1、C2は、コイル幅Wcに
対する空心幅の割合が0.2の電機子コイル6を用いた
ものを示している。本発明では、コイルピッチPcを5
/3×Pmとしているので、Wc/Pmは5/3以下で
考える必要がある。巻線係数はWc/Pmが4/3近辺
で最大となっている。コイル幅Wcを拡げることによっ
て巻数を増やすことができるので、損失はWc/Pmが
4/3よりも大きなところで最小にすることができる。
しかし、Wc/Pmが5/3に近づくにつれ、コイル間
が狭くなるため、電機子コイル6間の絶縁が問題とな
る。本発明では、界磁極ピッチPmの大きさと絶縁必要
間隔によって、コイル幅Wcを決めることができる。例
えば、界磁極ピッチPmを18mmとし、損失を小さく
できるWc/Pmを4/3とした場合、 コイルピッチ Pc=5/3×18mm=30mm コイル幅 Wc=4/3×18mm=24mm コイル間隔 Wg=Pc−Wc=30mm−24mm=6mm となる。つまり、電機子コイル6と電機子コイル6との
間隔は6mmも開くことになる。従来技術の場合は、こ
のコイル間隔が非常に狭くなるために、高電圧仕様のと
き絶縁を確保できない問題があったが、本発明の場合
は、6mmも電機子コイル6間が開くことになるので、
そこに何ら絶縁物を挿入せずとも、絶縁を確実に確保す
ることができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. The basic structure of the linear motor according to the present invention is substantially the same as the structure of the linear motor according to the prior art except for the armature portion, and the same or corresponding members as those in FIGS. Is omitted. [First Embodiment] FIG. 1 is a side view of an armature portion showing an arrangement of armature coils according to a first embodiment of the present invention. As shown in FIG. 1, the armature unit 4 is configured by molding a concentrated winding armature coil 6 arranged in a line in the traveling direction with a resin 7. The armature coil 6 is composed of six coils in three phases. When the pitch of the field poles on the secondary side is Pm, the coil pitch Pc of the concentrated winding armature coil 6
Are set as Pc = 5/3 × Pm, and are arranged side by side in the traveling direction of the movable portion for each pitch. The arrangement of these six armature coils 6 is, from the left in the drawing, a forward winding U-phase coil, a reverse winding V-phase coil, a forward winding W-phase coil, a reverse winding U-phase coil, The V-phase coil is wound in the forward direction, and the W-phase coil is wound in the reverse direction. When the coil pitch Pc is represented by an electrical angle, 5/3 × 180 = 300 degrees. FIG. 2 shows the relationship between the winding coefficient with respect to the coil width Wc / magnet pitch Pm and the loss when a predetermined thrust is generated for one armature coil 6.
Shown in In FIG. 2, A1 and A2 indicate that the ratio of the air core width (the width of the space at the center of the coil) to the coil width Wc is 0.
6 using the armature coil 6, B1 and B2 using the armature coil 6 having the ratio of the air core width to the coil width Wc of 0.4, and C1 and C2 using the armature coil 6 for the coil width Wc. An example using an armature coil 6 having a width ratio of 0.2 is shown. In the present invention, the coil pitch Pc is set to 5
Since it is set to / 3 × Pm, it is necessary to consider Wc / Pm at 5/3 or less. The winding coefficient is maximum when Wc / Pm is around 4/3. Since the number of turns can be increased by increasing the coil width Wc, the loss can be minimized where Wc / Pm is greater than 4/3.
However, as Wc / Pm approaches 5/3, the distance between the coils becomes narrower, and insulation between the armature coils 6 becomes a problem. In the present invention, the coil width Wc can be determined by the size of the field pole pitch Pm and the required insulation interval. For example, when the field pole pitch Pm is 18 mm and Wc / Pm that can reduce the loss is 4/3, the coil pitch Pc = 5/3 × 18 mm = 30 mm Coil width Wc = 4/3 × 18 mm = 24 mm Coil interval Wg = Pc-Wc = 30 mm-24 mm = 6 mm. That is, the distance between the armature coils 6 is as large as 6 mm. In the case of the prior art, there was a problem that the insulation could not be ensured at the time of high voltage specification because the coil interval was very narrow, but in the case of the present invention, the gap between the armature coils 6 was as large as 6 mm. So
Even if no insulator is inserted therein, insulation can be reliably ensured.

【0006】[第2の実施例]次に第2の実施例につい
て説明する。図3は可動部の進行方向から見たリニアモ
ータの正断面図、図4は電機子部のコイル配置を示す図
である。第2の実施例の固定部3は、第1の実施例と同
じ構造である。第1の実施例と違う点は、電機子部4の
構造である。電機子部4は、集中巻の電機子コイル6を
進行方向に一列に配備したコイル層を2層にし、コイル
層間に非磁性材の絶縁物11を挿入し、全体を樹脂7で
モールドして構成している。紙面左側の第1のコイル層
6a、紙面右側の第2のコイル層6bは、それぞれ界磁
極のピッチをPmとした場合、集中巻の電機子コイル6
のコイルピッチPcを Pc=5/3×Pm として、ピッチごとに可動部の進行方向に並べて配置し
ている。さらに、第1のコイル層と第2のコイル層は、
5/6×Pmのずれ量Sで、可動部の進行方向にずれて
配置されている。これを電気角で表すと5/6×180
=150度となる。したがって、電機子部4の第1のコ
イル層6aは、紙面において左から順方向巻のU相コイ
ル、逆方向巻のV相コイル、順方向巻のW相コイルの順
に並び、第2のコイル層は、逆方向巻のU相コイル、順
方向巻のV相コイル、逆方向巻のW相コイルの順に並ん
で配置される。このように構成されたものは、前記第1
の実施例と同様の効果がある。また、電機子部4を側面
から見ると(2次側部側からみると)、異相のコイル同
士が重なる所が現れる。つまり、電機子部4において、
電機子部4と2次側部8a、8b間のエアギャップの厚
み方向に相帯が分布されるため、永久磁石などの界磁極
の磁化のバラツキや位置ずれなどにより発生する推力リ
プルを低減することができる。
[Second Embodiment] Next, a second embodiment will be described. FIG. 3 is a front sectional view of the linear motor viewed from the traveling direction of the movable unit, and FIG. 4 is a diagram illustrating a coil arrangement of the armature unit. The fixing part 3 of the second embodiment has the same structure as that of the first embodiment. The difference from the first embodiment is the structure of the armature section 4. The armature unit 4 is composed of two coil layers in which the concentrated winding armature coils 6 are arranged in a line in the traveling direction, a nonmagnetic insulator 11 is inserted between the coil layers, and the whole is molded with a resin 7. Make up. The first coil layer 6a on the left side of the drawing and the second coil layer 6b on the right side of the drawing each have a concentrated winding armature coil 6 when the pitch of the field poles is Pm.
The coil pitch Pc is set to Pc = 5/3 × Pm, and is arranged in the traveling direction of the movable portion for each pitch. Further, the first coil layer and the second coil layer are
They are displaced in the traveling direction of the movable part with a displacement S of 5/6 × Pm. This can be expressed as an electrical angle of 5/6 × 180.
= 150 degrees. Therefore, the first coil layer 6a of the armature portion 4 is arranged in the order of a U-phase coil wound in the forward direction, a V-phase coil wound in the reverse direction, and a W-phase coil wound in the forward direction from the left on the paper, and The layers are arranged in the order of a U-phase coil wound in the reverse direction, a V-phase coil wound in the forward direction, and a W-phase coil wound in the reverse direction. The one configured in this manner is the first type.
There is an effect similar to that of the embodiment. Further, when the armature portion 4 is viewed from the side surface (when viewed from the secondary side portion), a portion where coils of different phases overlap each other appears. That is, in the armature section 4,
Since the phase zones are distributed in the thickness direction of the air gap between the armature portion 4 and the secondary side portions 8a and 8b, thrust ripples generated due to variations in the magnetization of the field poles such as permanent magnets and displacements are reduced. be able to.

【0007】[第3の実施例]次に第3の実施例を図5
に基づいて説明する。この第3の実施例は、第2の実施
例において、その電機子部4の電機子コイル6の配置方
法を変えたものである。第1のコイル層、第2のコイル
層の各コイル配置は同じであるが、第1のコイル層と第
2のコイル層を2/3×Pm(電気角120度)だけず
らして配置している。第1のコイル層は、紙面において
左から順方向巻のU相コイル、逆方向巻のV相コイル、
順方向巻のW相コイルの順に並び、第2のコイル層は、
左から順方向巻のV相コイル、逆方向巻のW相コイル、
順方向巻のU相コイルの順に並んで配置される。第3の
実施例も、第2の実施例と同様の効果を得ることができ
るが、第3の実施例は、第1のコイル層6aと第2のコ
イル層6bのずれを電気角で120度に小さくしている
ので、電機子部4の長さを小さくできるメリットがあ
る。
[Third Embodiment] Next, a third embodiment will be described with reference to FIG.
It will be described based on. The third embodiment is different from the second embodiment in that the method of arranging the armature coil 6 of the armature portion 4 is changed. The coil arrangement of the first coil layer and the second coil layer is the same, but the first coil layer and the second coil layer are displaced by 2/3 × Pm (electrical angle 120 degrees). I have. The first coil layer includes a U-phase coil wound in a forward direction, a V-phase coil wound in a reverse direction, and
Arranged in the order of the forward winding W-phase coil, the second coil layer is
V-phase coil wound in the forward direction from the left, W-phase coil wound in the reverse direction,
The coils are arranged in the order of the U-phase coils wound in the forward direction. In the third embodiment, the same effect as in the second embodiment can be obtained. However, in the third embodiment, the displacement between the first coil layer 6a and the second coil layer 6b is reduced by 120 electrical degrees. Since the length of the armature portion 4 is reduced, there is an advantage that the length of the armature portion 4 can be reduced.

【0008】[第4の実施例]次に第4の実施例を、図
6に基づいて説明する。この第4の実施例は、第2、3
の実施例において、その電機子部4のコイル配置方法を
変えたものである。第1のコイル層6a、第2のコイル
層6bの各コイル配置は同じであるが、第1のコイル層
6aと第2のコイル層6bを1/3×Pm(電気角60
度)だけずらして配置している。第1のコイル層6a
は、左から順方向巻のU相コイル、逆方向巻のV相コイ
ル、順方向巻のW相コイルの順に並び、第2のコイル層
6bは、左から逆方向巻のW相コイル、順方向巻のU相
コイル、逆方向巻のV相コイルの順に並んで配置され
る。この第4の実施例も、前述の第2、第3の実施例と
同様の効果を得ることができるが、第4の実施例は、第
1のコイル層6aと第2のコイル層6bのずれを電気角
で60度に小さくしているので、電機子部4の長さをさ
らに小さくできるメリットがある。
[Fourth Embodiment] Next, a fourth embodiment will be described with reference to FIG. The fourth embodiment is similar to the second and third embodiments.
In this embodiment, the method of arranging the coils of the armature section 4 is changed. Each coil arrangement of the first coil layer 6a and the second coil layer 6b is the same, but the first coil layer 6a and the second coil layer 6b are formed by 1 / × Pm (electrical angle 60 °).
(Degree). First coil layer 6a
Are arranged in the order of a U-phase coil wound in the forward direction from the left, a V-phase coil wound in the reverse direction, and a W-phase coil wound in the forward direction. The second coil layer 6b is formed of a W-phase coil wound in the reverse direction from the left. The direction-winding U-phase coil and the reverse-winding V-phase coil are arranged in this order. The fourth embodiment can also obtain the same effects as those of the above-described second and third embodiments, but the fourth embodiment has the same effects as the first and second coil layers 6a and 6b. Since the displacement is reduced to 60 degrees in electrical angle, there is an advantage that the length of the armature portion 4 can be further reduced.

【0009】[第5の実施例]次に第5の実施例を、図
7および図8に基づいて説明する。第5の実施例は、前
述の第1の実施例ないし第4の実施例において、その電
機子部4のコイル幅とコイルピッチを変えたものであ
る。まず、すべてのコイルのコイル幅Wcを、 Wc=4/3×Pm としている。このような大きさのコイル幅Wcは、大き
な推力を発生させることができる。そして、耐高電圧仕
様でない用途には、図7に示すように、コイルピッチP
cを Pc=4/3×Pm として構成し、耐高電圧仕様には、図8に示すように、
コイルピッチPcを Pc=5/3×Pm として構成する。コイルピッチPcは、5/3×Pmと
するよりも、4/3×Pmとした方が電機子部の長さを
小さくすることができるため、用途に応じてコイルピッ
チPcを変えて構成する。これにより、リニアモータを
低コストで製造することができる。
Fifth Embodiment Next, a fifth embodiment will be described with reference to FIGS. The fifth embodiment differs from the first to fourth embodiments in that the coil width and coil pitch of the armature portion 4 are changed. First, the coil width Wc of all the coils is set to Wc = 4/3 × Pm. Such a large coil width Wc can generate a large thrust. For applications that do not have high withstand voltage specifications, as shown in FIG.
c is configured as Pc = 4/3 × Pm, and as shown in FIG.
The coil pitch Pc is configured as Pc = 5/3 × Pm. The coil pitch Pc is set to 4/3 × Pm rather than 5/3 × Pm, so that the length of the armature portion can be reduced. Therefore, the coil pitch Pc is changed according to the application. . Thereby, a linear motor can be manufactured at low cost.

【0010】[第6の実施例]前記第2の実施例から第
5の実施例においては、第1のコイル層6aと第2のコ
イル層6bの間に絶縁物11を挿入しているが、前記絶
縁物11を、前記第1のコイル層6aと第2のコイル層
6bの結線をパターン化したプリント基板で構成しても
よい。この場合は、電機子コイル6間の結線処理を簡単
化することができる。
Sixth Embodiment In the second to fifth embodiments, the insulator 11 is inserted between the first coil layer 6a and the second coil layer 6b. The insulator 11 may be constituted by a printed circuit board in which the connection between the first coil layer 6a and the second coil layer 6b is patterned. In this case, the connection processing between the armature coils 6 can be simplified.

【0011】なお、本発明は上記各実施例の構成に限る
ことはなく、次のような構成にしてもよい。 (a) 電機子部と2次側部は、いずれが固定子あるいは可
動子でも構わない。 (b) 永久磁石形のリニアモータだけでなく、電磁石形の
リニアモータでもよく、また、インダクション形のリニ
アモータや、リラクタンス形のリニアモータなど電機子
を有するものであればどのようなリニアモータでもよ
い。 (c) 電機子部はコアレスタイプでなく、コアを有するタ
イプのものでもよい。
The present invention is not limited to the configuration of each of the above embodiments, but may be configured as follows. (a) Either the armature portion or the secondary side portion may be a stator or a mover. (b) Not only a permanent magnet linear motor but also an electromagnet linear motor may be used, and any linear motor having an armature such as an induction linear motor or a reluctance linear motor may be used. Good. (c) The armature portion may be of a type having a core instead of a coreless type.

【0012】[0012]

【発明の効果】以上述べたように、本発明によれば次の
ような効果がある。 (1) 集中巻にした電機子コイルを、所定の間隔を離して
配置しているので、200Vの高電圧仕様においても、
十分な絶縁ができる。 (2) 電機子コイル間に絶縁物を挿入する必要がなく、組
立てが簡単であり、製造コストを低減することができ
る。 (3) 電機子部の左右両面に電機子コイルをずらして配置
しているので、相帯を分布させることができ、永久磁石
などの界磁極の磁化のバラツキや位置ずれによる推力リ
プルを低減することができる。
As described above, the present invention has the following effects. (1) Since the armature coils wound in a concentrated manner are arranged at a predetermined interval, even in a high voltage specification of 200 V,
Sufficient insulation can be provided. (2) There is no need to insert an insulator between the armature coils, the assembly is simple, and the manufacturing cost can be reduced. (3) Since the armature coils are displaced on both the left and right sides of the armature part, the phase bands can be distributed, and the thrust ripple due to the variation in the magnetization of the field poles such as permanent magnets and the displacement is reduced. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例を示すコイル配置図であ
る。
FIG. 1 is a coil layout diagram showing a first embodiment of the present invention.

【図2】1個の電機子コイルにおける、コイル幅Wc/
磁石ピッチPmに対する巻線係数と損失の関係を示すグ
ラフである。
FIG. 2 shows the coil width Wc / in one armature coil.
It is a graph which shows the relationship between a winding pitch and loss with respect to magnet pitch Pm.

【図3】本発明の第2の実施例におけるリニアモータの
正断面図である。
FIG. 3 is a front sectional view of a linear motor according to a second embodiment of the present invention.

【図4】本発明の第2の実施例を示すコイル配置図であ
る。
FIG. 4 is a coil layout diagram showing a second embodiment of the present invention.

【図5】本発明の第3の実施例を示すコイル配置図であ
る。
FIG. 5 is a coil layout diagram showing a third embodiment of the present invention.

【図6】本発明の第4の実施例を示すコイル配置図であ
る。
FIG. 6 is a coil layout diagram showing a fourth embodiment of the present invention.

【図7】本発明の第5の実施例を示すコイル配置図であ
る。
FIG. 7 is a coil layout diagram showing a fifth embodiment of the present invention.

【図8】本発明の第5の実施例を示すコイル配置図であ
る。
FIG. 8 is a coil layout diagram showing a fifth embodiment of the present invention.

【図9】従来技術におけるリニアモータを示す正断面図
である。
FIG. 9 is a front sectional view showing a linear motor according to the related art.

【図10】図8におけるA−A線に沿う平断面図であ
る。
FIG. 10 is a plan sectional view taken along the line AA in FIG. 8;

【図11】従来技術におけるコイル配置図である。FIG. 11 is a coil layout diagram according to the related art.

【符号の説明】[Explanation of symbols]

1 リニアモータ、 2 可動部、 3 固定部、 4 電機子部、 5 電機子部支持体、 6 電機子コイル、 7 樹脂、 8a、8b 2次側部、 9a、9b 2次側部支持体、 10 支持部材、 11 絶縁物 1 linear motor, 2 movable part, 3 fixed part, 4 armature part, 5 armature part support, 6 armature coil, 7 resin, 8a, 8b secondary part, 9a, 9b secondary part support, 10 support member, 11 insulator

フロントページの続き Fターム(参考) 5H604 AA08 BB11 CC01 CC02 CC04 CC20 PB02 PE06 QB04 5H641 BB06 BB18 BB19 GG02 GG03 GG05 GG07 GG11 GG12 HH02 HH03 Continuation of the front page F term (reference) 5H604 AA08 BB11 CC01 CC02 CC04 CC20 PB02 PE06 QB04 5H641 BB06 BB18 BB19 GG02 GG03 GG05 GG07 GG11 GG12 HH02 HH03

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 複数の界磁極からなる2次側部を取り付
けた2次側部支持体と、 前記2次側部に空隙を介して対向するとともに、複数個
の集中巻した電機子コイルを有する電機子部を取り付け
た電機子部支持体とを有し、 前記2次側部と前記電機子部とが、互いに向かい合って
進行方向に平行に配置されているリニアモータにおい
て、 前記2次側部の界磁極を、Pmピッチごとに隣と異極に
なるように可動部の進行方向に配置するとともに、 前記複数個の電機子コイルを、Pcピッチごとに可動部
の進行方向に並べて配置し、 前記コイルピッチPcを、 Pc=5/3×Pm としたことを特徴とするリニアモータ。
A secondary side support having a secondary side comprising a plurality of field poles mounted thereon, and a plurality of concentratedly wound armature coils opposed to the secondary side via a gap. A linear motor having an armature support having an armature mounted thereon, wherein the secondary side and the armature are arranged facing each other and parallel to the traveling direction. The field poles of the section are arranged in the traveling direction of the movable section so as to be different from the adjacent poles at every Pm pitch, and the plurality of armature coils are arranged side by side in the traveling direction of the movable section at every Pc pitch. A linear motor, wherein the coil pitch Pc is Pc = 5/3 × Pm.
【請求項2】 前記電機子部の電機子コイルを、第1コ
イル層と第2コイル層の2層で構成したことを特徴とす
る請求項1に記載のリニアモータ。
2. The linear motor according to claim 1, wherein said armature coil of said armature portion is constituted by two layers of a first coil layer and a second coil layer.
【請求項3】 nを整数としたとき、前記第1コイル層
と第2コイル層を、 n/6×Pm だけずらして配置したことを特徴とする請求項2に記載
のリニアモータ。
3. The linear motor according to claim 2, wherein, when n is an integer, the first coil layer and the second coil layer are displaced by n / 6 × Pm.
【請求項4】 前記電機子コイルの幅Wcを、 Wc=4/3×Pm としたことを特徴とする請求項1から3のいずれかの項
に記載のリニアモータ。
4. The linear motor according to claim 1, wherein a width Wc of the armature coil is set to Wc = 4/3 × Pm.
【請求項5】 前記第1コイル層と第2コイル層の間
に、非磁性材の絶縁物を挿入したことを特徴とする請求
項2から4のいずれかの項に記載のリニアモータ。
5. The linear motor according to claim 2, wherein an insulator made of a non-magnetic material is inserted between the first coil layer and the second coil layer.
【請求項6】 前記絶縁物を、第1コイル層と第2コイ
ル層の結線をパターン化したプリント基板で構成したこ
とを特徴とする請求項5に記載のリニアモータ。
6. The linear motor according to claim 5, wherein the insulator is constituted by a printed circuit board in which connection between a first coil layer and a second coil layer is patterned.
JP13681999A 1999-05-18 1999-05-18 Linear motor Expired - Fee Related JP3550678B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP13681999A JP3550678B2 (en) 1999-05-18 1999-05-18 Linear motor
PCT/JP2000/004001 WO2001099261A1 (en) 1999-05-18 2000-06-19 Linear motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP13681999A JP3550678B2 (en) 1999-05-18 1999-05-18 Linear motor
PCT/JP2000/004001 WO2001099261A1 (en) 1999-05-18 2000-06-19 Linear motor

Publications (2)

Publication Number Publication Date
JP2000333437A true JP2000333437A (en) 2000-11-30
JP3550678B2 JP3550678B2 (en) 2004-08-04

Family

ID=26344909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13681999A Expired - Fee Related JP3550678B2 (en) 1999-05-18 1999-05-18 Linear motor

Country Status (1)

Country Link
JP (1) JP3550678B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003032939A (en) * 2001-07-11 2003-01-31 Matsushita Electric Ind Co Ltd Electric motor
JP2003209964A (en) * 2001-12-14 2003-07-25 Gisulfo Baccini Linear motor and manufacturing method therefor
JP2003230265A (en) * 2001-12-14 2003-08-15 Gisulfo Baccini Linear motor and manufacturing method therefor
JP2006262656A (en) * 2005-03-18 2006-09-28 Mitsubishi Electric Corp Electric motor
JP2006523800A (en) * 2003-04-14 2006-10-19 スウェディッシュ シーベイスト エナジー アクチボラグ Wave power generation assembly with electromagnetic damping means
JP2010213546A (en) * 2009-03-12 2010-09-24 Yaskawa Electric Corp Canned linear motor armature and canned linear motor
CN102651599A (en) * 2011-02-23 2012-08-29 株式会社安川电机 Linear motor
WO2012176236A1 (en) * 2011-06-22 2012-12-27 三菱電機株式会社 Linear motor
CN104995417A (en) * 2012-09-12 2015-10-21 詹尼西斯集团有限公司 Parallel kinematic mechanism and bearings and actuators thereof
CN105071574A (en) * 2015-08-17 2015-11-18 成都茂源科技有限公司 High-speed polyphase electrically-excitated synchronous linear motor
JP2016512946A (en) * 2013-03-19 2016-05-09 ジャン ソクホJANG, Sukho Electric generator combined with electric power generation using a coil plate having a split coil body and a reciprocating magnet plate having a split magnet
JP2019508001A (en) * 2016-02-12 2019-03-22 エーエスエムエル ネザーランズ ビー.ブイ. Electromagnetic motor and stage device
US11303175B2 (en) 2016-02-12 2022-04-12 Asml Netherlands B.V. Multiphase linear motor, multiphase planar motor, stage, lithographic apparatus and device manufacturing method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003032939A (en) * 2001-07-11 2003-01-31 Matsushita Electric Ind Co Ltd Electric motor
JP2003209964A (en) * 2001-12-14 2003-07-25 Gisulfo Baccini Linear motor and manufacturing method therefor
JP2003230265A (en) * 2001-12-14 2003-08-15 Gisulfo Baccini Linear motor and manufacturing method therefor
JP4512874B2 (en) * 2001-12-14 2010-07-28 アフコ・コマンディタール・フエンノートシャップ Linear motor and method of manufacturing the linear motor
JP2006523800A (en) * 2003-04-14 2006-10-19 スウェディッシュ シーベイスト エナジー アクチボラグ Wave power generation assembly with electromagnetic damping means
JP2006262656A (en) * 2005-03-18 2006-09-28 Mitsubishi Electric Corp Electric motor
JP2010213546A (en) * 2009-03-12 2010-09-24 Yaskawa Electric Corp Canned linear motor armature and canned linear motor
CN102651599A (en) * 2011-02-23 2012-08-29 株式会社安川电机 Linear motor
CN103650306A (en) * 2011-06-22 2014-03-19 三菱电机株式会社 Linear motor
JP5372298B2 (en) * 2011-06-22 2013-12-18 三菱電機株式会社 Linear motor
WO2012176236A1 (en) * 2011-06-22 2012-12-27 三菱電機株式会社 Linear motor
KR101370230B1 (en) 2011-06-22 2014-03-25 미쓰비시덴키 가부시키가이샤 Linear motor
CN103650306B (en) * 2011-06-22 2015-09-30 三菱电机株式会社 Linear motor
CN104995417A (en) * 2012-09-12 2015-10-21 詹尼西斯集团有限公司 Parallel kinematic mechanism and bearings and actuators thereof
JP2015531461A (en) * 2012-09-12 2015-11-02 ジェネシス グループ インコーポレイテッド Parallel motion mechanism and parallel motion mechanism bearing and actuator
JP2016512946A (en) * 2013-03-19 2016-05-09 ジャン ソクホJANG, Sukho Electric generator combined with electric power generation using a coil plate having a split coil body and a reciprocating magnet plate having a split magnet
CN105071574A (en) * 2015-08-17 2015-11-18 成都茂源科技有限公司 High-speed polyphase electrically-excitated synchronous linear motor
CN105071574B (en) * 2015-08-17 2017-07-11 成都茂源科技有限公司 A kind of high speed multiphase electrical excitation linear synchronous motor
JP2019508001A (en) * 2016-02-12 2019-03-22 エーエスエムエル ネザーランズ ビー.ブイ. Electromagnetic motor and stage device
US11303175B2 (en) 2016-02-12 2022-04-12 Asml Netherlands B.V. Multiphase linear motor, multiphase planar motor, stage, lithographic apparatus and device manufacturing method
US11837931B2 (en) 2016-02-12 2023-12-05 Asml Netherlands B.V. Multiphase linear motor, multiphase planar motor, stage, lithographic apparatus and device manufacturing method

Also Published As

Publication number Publication date
JP3550678B2 (en) 2004-08-04

Similar Documents

Publication Publication Date Title
JP3745884B2 (en) Motor structure and manufacturing method thereof
JP3344645B2 (en) Motor using permanent magnet
US6160327A (en) Winding for linear motors without slots
WO2014174572A1 (en) Permanent magnet type motor
JP3550678B2 (en) Linear motor
JP2004357368A (en) Motor using permanent magnet
TW200838096A (en) Gap winding motor
JP6723349B2 (en) Permanent magnet type motor
US6800968B1 (en) Linear motor
JPH11262236A (en) Linear motor
JP2002209371A (en) Linear motor
JP3941314B2 (en) Coreless linear motor
JPH023393B2 (en)
JP2001119919A (en) Linear motor
JPH11178310A (en) Linear motor
JP4433523B2 (en) Coreless linear motor
JP2785406B2 (en) Linear servo motor
JP3817967B2 (en) Linear motor
JP2002101636A (en) Linear motor
JPH11308850A (en) Linear motor
JP3824060B2 (en) Linear motor
KR100492303B1 (en) Linear motor
JPH10174420A (en) Smooth coil-winding type linear motor
JP2002034230A (en) Armature of linear motor
JP2002034229A (en) Coreless linear motor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees