JP2000331955A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JP2000331955A
JP2000331955A JP11137997A JP13799799A JP2000331955A JP 2000331955 A JP2000331955 A JP 2000331955A JP 11137997 A JP11137997 A JP 11137997A JP 13799799 A JP13799799 A JP 13799799A JP 2000331955 A JP2000331955 A JP 2000331955A
Authority
JP
Japan
Prior art keywords
mercaptan
electrode
semiconductor device
film
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11137997A
Other languages
Japanese (ja)
Inventor
Soji Omura
宗司 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Quantum Devices Ltd
Original Assignee
Fujitsu Quantum Devices Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Quantum Devices Ltd filed Critical Fujitsu Quantum Devices Ltd
Priority to JP11137997A priority Critical patent/JP2000331955A/en
Publication of JP2000331955A publication Critical patent/JP2000331955A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent or relax the fact where electrodes which comprise an Au (gold) or whose main component are Au chemically react to cause an accident with a semiconductor device, with a simple means. SOLUTION: The surfaces of a source electrode 2, drain electrode 3, and gate electrode 4 which are formed of Au or contain Au are covered with any of methyl-mercaptan, etyl-mercaptan, propyl-mercaptan, and isoproplyl mercaptan, a plurality of kinds of selected material, or a self-aggregation film which is generated by chemically adsorping a component dissociated from those all kinds of material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Au(金)或いは
Auを主成分とする電極や配線の電気化学的な腐食障害
を防止した半導体装置及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device which prevents electrochemical corrosion of electrodes or wirings mainly composed of Au (gold) or Au and a method of manufacturing the same.

【0002】一般に、GaAs−FET(field
effect transistor)などの半導体装
置では、ソース電極或いはドレイン電極の材料として、
Auをベースにした金属が用いられている。
Generally, a GaAs-FET (field)
In a semiconductor device such as an effect transistor, a material of a source electrode or a drain electrode is
Au-based metals have been used.

【0003】また、前記半導体装置では、半導体や電極
の表面を有害な化学物質を含む水分から保護する為、S
iN膜やポリイミド膜などで多重に被覆することも行わ
れている。
In the semiconductor device, the surface of a semiconductor or an electrode is protected from moisture containing harmful chemical substances.
Multiple coating with an iN film or a polyimide film is also performed.

【0004】然しながら、前記したような絶縁膜に依っ
て半導体装置の表面を被覆した場合には、下地に吸着さ
れていた水分を表面と被覆膜との界面に閉じ込めること
となり、しかも、絶縁膜の表面や被覆率が乏しい箇所か
ら浸透する水分を阻止することは困難である。
However, when the surface of the semiconductor device is covered with the insulating film as described above, the moisture adsorbed on the underlayer is confined at the interface between the surface and the covering film, and furthermore, the insulating film is formed. It is difficult to prevent moisture that penetrates from the surface of the surface or a portion where the coverage is poor.

【0005】図3は標準的なGaAs−FETを説明す
る為の要部切断側面図であり、図に於いて、1はGaA
s基板、2はAuGe/Ni/Auからなるソース電
極、3は同じくAuGe/Ni/Auからなるドレイン
電極、4はTi/Pt/Auからなるゲート電極、5は
SiNからなる表面保護膜、6はポリイミドからなる表
面保護膜、E1 はソース・ドレイン間に加える電圧Vds
を発生する電源、E2 はゲート・ソース間に加える電圧
gsを発生する電源をそれぞれ示している。
FIG. 3 is a cutaway side view of a main part for explaining a standard GaAs-FET. In FIG.
s substrate, 2 a source electrode made of AuGe / Ni / Au, 3 a drain electrode also made of AuGe / Ni / Au, 4 a gate electrode made of Ti / Pt / Au, 5 a surface protection film made of SiN, 6 voltage V ds adding a surface protective film made of polyimide, E 1 between the source and drain
, And E 2 denotes a power supply that generates a voltage V gs applied between the gate and the source.

【0006】図示したFETの各電極に同じく図示した
電圧が印加された状態に在るものとし、若し、大気中か
らハロゲン元素、例えば塩素(Cl)を含む水分が浸透
した場合には、陽極であるドレイン電極3に於いてAu
の溶解反応を生ずることになる。即ち、 Au+4Cl- →AuCl4 - +3e- なる反応が起こる。
[0006] It is assumed that the same voltage is applied to each electrode of the illustrated FET, and if moisture containing a halogen element, for example, chlorine (Cl) permeates from the atmosphere, an anode is formed. Au on the drain electrode 3
Will result in a dissolution reaction. That is, a reaction of Au + 4Cl → AuCl 4 + 3e occurs.

【0007】前記のようにして溶出したAuのイオン
は、電位の傾斜に沿ってゲート電極4へと移動し、そこ
で還元されて固体のAuに戻ることになるのであるが、
その固体のAuは図に矢印で指示してあるようにドレイ
ン電極3方向に向かって析出することになる。即ち、 AuCl2 +e- Au+2Cl- なる反応が起こる。
The Au ions eluted as described above move to the gate electrode 4 along the potential gradient, and are reduced there to return to solid Au.
The solid Au precipitates toward the drain electrode 3 as indicated by the arrow in the figure. That is, a reaction of AuCl 2 + e Au + 2Cl occurs.

【0008】前記析出されたAuは成長し、ゲート電極
4及びドレイン電極3間を短絡する状態になってFET
を破壊に導くことになる。
[0008] The deposited Au grows and short-circuits between the gate electrode 4 and the drain electrode 3 to form an FET.
Will lead to destruction.

【0009】[0009]

【発明が解決しようとする課題】本発明では、Au或い
はAuを主成分とする電極が化学反応を起こして半導体
装置に事故を発生させることを簡単な手段で防止或いは
緩和できるようにする。
SUMMARY OF THE INVENTION According to the present invention, it is possible to prevent or alleviate the occurrence of an accident in a semiconductor device due to a chemical reaction of Au or an electrode containing Au as a main component by simple means.

【0010】[0010]

【課題を解決するための手段】本発明では、Au或いは
Auを主成分とする電極が水分を介して化学反応を起こ
すことを抑制する為、Auと結合力が強い有機分子を電
極表面に薄膜化して緻密に吸着させ、この薄膜有機分子
に依ってAuが水と接触することを阻止することが基本
になっている。
According to the present invention, in order to prevent Au or an electrode containing Au as a main component from causing a chemical reaction through moisture, an organic molecule having a strong bonding force with Au is applied to a thin film on the surface of the electrode. The basic principle is to prevent Au from coming into contact with water due to the thin film organic molecules.

【0011】前記したところから、本発明に依る半導体
装置及びその製造方法に於いては、 (1)Au又はAuを含む電極(例えばソース電極2、
ドレイン電極3、ゲート電極4:図1参照)の表面がメ
チルメルカプタン、エチルメルカプタン、プロピルメル
カプタン、イソプロピルメルカプタンの何れかの物質、
或いは、選択された複数種類の前記物質、或いは、全て
の種類の前記物質から解離した成分を化学的に吸着して
生成された自己集合膜で覆われてなることを特徴とする
か、或いは、
As described above, in the semiconductor device and the method of manufacturing the same according to the present invention, (1) Au or an electrode containing Au (for example, the source electrode 2,
The surface of the drain electrode 3 and the gate electrode 4: see FIG. 1) is methyl mercaptan, ethyl mercaptan, propyl mercaptan, or isopropyl mercaptan;
Alternatively, it is characterized by being covered with a self-assembled film generated by chemically adsorbing components dissociated from a plurality of selected types of substances, or all types of the substances, or

【0012】(2)Au又はAuを含む電極(例えばソ
ース電極2、ドレイン電極3、ゲート電極4:図1参照
以下同様)が形成された半導体基板(例えばGaAs
基板1)をメチルメルカプタン、エチルメルカプタン、
プロピルメルカプタン、イソプロピルメルカプタンの何
れかの物質、或いは、選択された複数種類の前記物質、
或いは、全ての種類の前記物質を含む有機溶媒(例えば
溶液7)中に浸漬して前記電極表面に前記物質から解離
した成分を化学的に吸着させて自己集合膜を成膜するこ
とを特徴とするか、或いは、
(2) A semiconductor substrate (for example, GaAs) on which Au or an electrode containing Au (for example, a source electrode 2, a drain electrode 3, and a gate electrode 4: see FIG. 1; the same applies hereinafter) is formed.
Substrate 1) was replaced with methyl mercaptan, ethyl mercaptan,
Propyl mercaptan, any substance of isopropyl mercaptan, or a plurality of selected substances,
Alternatively, a self-assembled film is formed by immersing in an organic solvent (for example, solution 7) containing all kinds of the substance to chemically adsorb components dissociated from the substance on the electrode surface. Do or

【0013】(3)前記(2)に於いて、半導体基板を
前記有機溶媒中に浸漬する工程に代えて半導体基板の少
なくとも電極を前記物質を含む有機溶媒の蒸気に曝すこ
とを特徴とするか、或いは、
(3) The method according to (2), wherein at least an electrode of the semiconductor substrate is exposed to vapor of an organic solvent containing the substance instead of immersing the semiconductor substrate in the organic solvent. Or

【0014】(4)前記(2)又は(3)に於いて、前
記有機溶媒がメチルアルコール、エチルアルコール、プ
ロピルアルコール、イソプロピルアルコールの何れか、
或いは、選択された複数種類の混合液、或いは、全ての
種類の混合液であることを特徴とする。
(4) In the above (2) or (3), the organic solvent is any one of methyl alcohol, ethyl alcohol, propyl alcohol and isopropyl alcohol,
Alternatively, it is characterized in that it is a selected plural kinds of mixed liquids or all kinds of mixed liquids.

【0015】前記手段を採ることに依り、Auの腐食が
原因となる短絡故障が発生する時間は略1桁程度延長す
ることができ、また、有機分子の薄膜は、分子の化学吸
着現象を利用して形成するので、電極の加工形状や表面
のラフネスに影響されることなく均質且つ緻密であるこ
とから、Auの腐食を良好に抑止することができる。
By adopting the above-mentioned means, the time for the occurrence of a short-circuit failure caused by corrosion of Au can be extended by about one digit, and the thin film of organic molecules utilizes the chemical adsorption phenomenon of molecules. Since the electrode is formed uniformly and densely without being affected by the processed shape of the electrode and the roughness of the surface, it is possible to favorably suppress the corrosion of Au.

【0016】[0016]

【発明の実施の形態】図1及び図2は本発明に於ける一
実施の形態を説明する為の半導体装置及び処理装置(図
1のみ)を表す要部切断側面図であり、以下、これ等の
図を参照しつつ説明する。尚、図3に於いて用いた記号
と同記号は同部分を表すか或いは同じ意味を持つものと
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1 and 2 are cutaway side views of a main part showing a semiconductor device and a processing apparatus (only FIG. 1) for explaining an embodiment of the present invention. The description will be made with reference to the drawings such as FIG. Note that the same symbols as those used in FIG. 3 represent the same parts or have the same meanings.

【0017】図1(A)参照 1−(1) リソグラフィ技術に於けるレジスト・プロセスを適用す
ることに依り、GaAs基板1のソース電極形成予定領
域及びドレイン電極形成予定領域に開口をもつレジスト
膜を形成する。
FIG. 1 (A) 1- (1) A resist film having openings in a source electrode formation region and a drain electrode formation region of a GaAs substrate 1 by applying a resist process in lithography technology. To form

【0018】1−(2) 真空蒸着法を適用することに依り、厚さ1000〔Å〕
/100〔Å〕〜200〔Å〕/2000〔Å〕である
AuGe膜/Ni膜/Au膜を形成する。
1- (2) Thickness 1000 [Å] by applying a vacuum deposition method
An AuGe film / Ni film / Au film having a thickness of / 100 [Å] to 200 [Å] / 2000 [Å] is formed.

【0019】1−(3) レジスト剥離液中に浸漬して工程1−(1)で形成した
レジスト膜を溶解除去するリフト・オフ法を適用するこ
とに依り、AuGe膜/Ni膜/Au膜からなるソース
電極2及びドレイン電極3を形成する。
1- (3) AuGe film / Ni film / Au film by applying a lift-off method of dissolving and removing the resist film formed in step 1- (1) by dipping in a resist stripping solution The source electrode 2 and the drain electrode 3 are formed.

【0020】1−(4) リソグラフィ技術に於けるレジスト・プロセスを適用す
ることに依り、GaAs基板1のゲート電極形成予定領
域に開口をもつレジスト膜を形成する。
1- (4) A resist film having an opening in a region where a gate electrode is to be formed on the GaAs substrate 1 is formed by applying a resist process in the lithography technique.

【0021】1−(5) 真空蒸着法を適用することに依り、厚さ500〔Å〕/
1000〔Å〕/3000〔Å〕であるTi膜/Pt膜
/Au膜を形成する。
1- (5) A thickness of 500 [Å] /
A Ti film / Pt film / Au film of 1000 [Å] / 3000 [Å] is formed.

【0022】1−(6) レジスト剥離液中に浸漬して工程1−(4)で形成した
レジスト膜を溶解除去するリフト・オフ法を適用するこ
とに依り、Ti膜/Pt膜/Au膜からなるゲート電極
4を形成する。
1- (6) Ti film / Pt film / Au film by applying a lift-off method of dissolving and removing the resist film formed in step 1- (4) by dipping in a resist stripping solution Is formed.

【0023】図1(B)参照 1−(7) 容器8に例えばエチルアルコール(C2 5 OH)及び
エチルメルカプタン(C2 5 SH)を混合容量比率が
1:0.05となるように混合した溶液7を満たして半
導体装置を5〔分〕間程度浸漬する。
1- (7) For example, ethyl alcohol (C 2 H 5 OH) and ethyl mercaptan (C 2 H 5 SH) are mixed in the container 8 so that the mixing volume ratio becomes 1: 0.05. And the semiconductor device is immersed for about 5 minutes.

【0024】1−(8) 溶液7から取り出した半導体装置を恒温槽中に収容し、
例えば窒素ガスを流入させて100〔℃〕程度の温度を
保持して10〔分〕間の乾燥を行う。
1- (8) The semiconductor device taken out of the solution 7 is housed in a thermostat,
For example, drying is performed for 10 minutes while maintaining a temperature of about 100 ° C. by flowing nitrogen gas.

【0025】図2参照 2−(1) 化学気相堆積(chemical vapor dep
osition:CVD)法を適用することに依り、厚
さが例えば1000〔Å〕のSiNからなる表面保護膜
5を形成する。
See FIG. 2 2- (1) Chemical vapor deposition
The surface protective film 5 made of SiN having a thickness of, for example, 1000 [Å] is formed by applying the position (CVD) method.

【0026】2−(2) スピン・コート法を適用することに依り、厚さが例えば
2〔μm〕のポリイミドからなる表面保護膜6を形成す
る。
2- (2) A surface protection film 6 made of polyimide having a thickness of, for example, 2 [μm] is formed by applying the spin coating method.

【0027】前記工程を経ることで、ソース電極2、ド
レイン電極3、ゲート電極4に於ける表面のAuとメル
カプタンとは、 Au+C2 5 SH→AuSC2 5 +1/2H2 の化学反応を起こし、Auの表面に吸着されていた水分
や酸素は離脱し、メルカプタン中の硫黄(S)が介在し
た強い結合力をもつ緻密な自己集合膜が生成される。
Through the above steps, Au on the surface of the source electrode 2, the drain electrode 3, and the gate electrode 4 and the mercaptan react by Au + C 2 H 5 SH → Au SC 2 H 5 + / H 2 chemical reaction. Then, moisture and oxygen adsorbed on the Au surface are released, and a dense self-assembled film having a strong bonding force mediated by sulfur (S) in the mercaptan is generated.

【0028】Auの表面に自己集合膜を生成させる薬品
は限られていて、メチルメルカプタン、エチルメルカプ
タン、プロピルメルカプタン、イソプロピルメルカプタ
ンの何れかの物質、或いは、前記各物質から選択された
複数種類の物質、或いは、前記全ての種類の物質を用い
ることができる。
The chemicals for forming a self-assembled film on the surface of Au are limited, and any one of methyl mercaptan, ethyl mercaptan, propyl mercaptan, and isopropyl mercaptan, or a plurality of substances selected from the above substances Alternatively, all the above-mentioned types of substances can be used.

【0029】この自己集合膜は、例えばAuSC2 5
からなる5分子〜6分子程度の厚さをもつ薄膜、即ち、
20〔Å〕以下の薄膜であり、化学的に極めて安定であ
ることから、その後の工程中に変質したり、或いは、剥
離するなどの不都合は生じない。尚、自己集合膜は、A
uとメチルメルカプタンとを用いた場合にAuSC2
5 となるが、例えば、Auとエチルメルカプタンとを用
いた場合には、AuSにエチル基がついた構成になる。
This self-assembled film is made of, for example, AuSC 2 H 5
A thin film having a thickness of about 5 to 6 molecules,
Since it is a thin film having a thickness of 20 [以下] or less and is chemically extremely stable, there is no inconvenience such as deterioration or peeling during the subsequent steps. In addition, the self-assembled film is A
AuSC 2 H when u and methyl mercaptan are used.
The value is 5 , for example, when Au and ethyl mercaptan are used, the structure is such that AuS has an ethyl group.

【0030】自己集合膜のAuに対する吸着効果を確認
する為、前記実施の形態で説明したGaAs−FETに
ついて耐蝕性の評価試験を行った。
In order to confirm the adsorption effect of the self-assembled film on Au, a corrosion resistance evaluation test was performed on the GaAs-FET described in the above embodiment.

【0031】ここで、FETに与えた負荷条件は、 専用恒温槽中に於ける温度:85〔℃〕 専用恒温槽中に於ける相対湿度:85〔%〕 ドレイン/ソース間電圧Vds:10〔V〕 ゲート/ソース間電圧Vgs:−4〔V〕 である。Here, the load conditions given to the FET were as follows: temperature in a dedicated thermostat: 85 [° C.] Relative humidity in a dedicated thermostat: 85 [%] Drain-source voltage V ds : 10 [V] Gate / source voltage V gs : −4 [V].

【0032】試料は本発明に依るものが10個、従来の
技術に依るものが10個であり、試料であるFETに
は、上記のような電圧を印加して電気的に短絡した場合
に故障と断定し、それまでの時間を測定した。
There are 10 samples according to the present invention and 10 samples according to the prior art. The FET, which is a sample, fails when the above-described voltage is applied and it is electrically short-circuited. And the time until that was measured.

【0033】その測定に依って、 従来の技術に依る試料の故障発生時間:82〔時間〕〜
136〔時間〕 本発明に依る試料の故障発生時間:963〔時間〕〜1
215〔時間〕 の結果が得られ、本発明に依る処理を施すことで、故障
が発生するまでの時間は凡そ1桁程度延長されることが
確認された。
According to the measurement, the failure occurrence time of the sample according to the prior art: 82 hours!
136 [hours] Failure occurrence time of the sample according to the present invention: 963 [hours] to 1
215 [hours] were obtained, and it was confirmed that by performing the processing according to the present invention, the time until a failure occurred was extended by about one digit.

【0034】本発明は、自己集合膜を生成する薬品との
関係で、Au又はAuを含む電極の場合に有効なのであ
るが、Auを含む電極の場合、Auが50〔原子%〕以
上の場合に有効性が顕著に現れる。
The present invention is effective in the case of Au or an electrode containing Au in relation to a chemical that forms a self-assembled film, but in the case of an electrode containing Au, when Au is 50 [atomic%] or more. The effect appears remarkably.

【0035】また、有機溶媒に対するメルカプタン類の
含有濃度は0.01〔容量%〕以上であることが好まし
い。
The concentration of the mercaptan in the organic solvent is preferably at least 0.01% by volume.

【0036】本発明は、前記説明した実施の形態に限定
されることなく、特許請求の範囲に記載された範囲内で
多くの改変を実現することができ、例えば、メルカプタ
ンの相対濃度は、エチルアルコールに対して0.05容
量〔%〕としたが、これはメルカプタンの刺激臭を緩和
できる範囲で適宜に選定して良い。
The present invention is not limited to the above-described embodiment, but can realize many modifications within the scope of the claims. For example, the relative concentration of mercaptan may be ethyl The volume was set to 0.05% [%] with respect to alcohol, but this may be appropriately selected as long as the pungent odor of mercaptan can be reduced.

【0037】[0037]

【発明の効果】本発明に依る半導体装置及びその製造方
法では、Au又はAuを含む電極の表面がメチルメルカ
プタン、エチルメルカプタン、プロピルメルカプタン、
イソプロピルメルカプタンの何れかの物質、或いは、選
択された複数種類の物質、或いは、前記全ての種類の物
質から解離した成分が化学的に吸着して生成される自己
集合膜で覆われる。
According to the semiconductor device and the method for manufacturing the same of the present invention, the surface of Au or an electrode containing Au is formed of methyl mercaptan, ethyl mercaptan, propyl mercaptan,
It is covered with a self-assembled film formed by chemically adsorbing any substance of isopropyl mercaptan, a plurality of selected substances, or a component dissociated from all the substances.

【0038】前記構成を採ることに依り、Auの腐食が
原因となる短絡故障が発生する時間は略1桁程度延長す
ることができ、また、有機分子の薄膜は、分子の化学吸
着現象を利用して形成するので、電極の加工形状や表面
のラフネスに影響されることなく均質且つ緻密であるこ
とから、Auの腐食を良好に抑止することができる。
By adopting the above configuration, the time for the occurrence of the short-circuit failure caused by the corrosion of Au can be extended by about one digit, and the thin film of the organic molecule utilizes the chemical adsorption phenomenon of the molecule. Since the electrode is formed uniformly and densely without being affected by the processed shape of the electrode and the roughness of the surface, it is possible to favorably suppress the corrosion of Au.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に於ける一実施の形態を説明する為の半
導体装置及び処理装置を表す要部切断側面図である。
FIG. 1 is a cutaway side view showing a main part of a semiconductor device and a processing apparatus for explaining an embodiment of the present invention.

【図2】本発明に於ける一実施の形態を説明する為の半
導体装置を表す要部切断側面図である。
FIG. 2 is a fragmentary side view showing a semiconductor device for explaining an embodiment of the present invention;

【図3】標準的なGaAs−FETを説明する為の要部
切断側面図である。
FIG. 3 is a fragmentary side view for explaining a standard GaAs-FET.

【符号の説明】[Explanation of symbols]

1 GaAs基板 2 AuGe/Ni/Auからなるソース電極 3 AuGe/Ni/Auからなるドレイン電極 4 Ti/Pt/Auからなるゲート電極 5 SiNからなる表面保護膜 6 ポリイミドからなる表面保護膜 7 溶液 8 容器 E1 ソース・ドレイン間に加える電圧Vdsを発生する
電源 E2 ゲート・ソース間に加える電圧Vgsを発生する電
Reference Signs List 1 GaAs substrate 2 Source electrode composed of AuGe / Ni / Au 3 Drain electrode composed of AuGe / Ni / Au 4 Gate electrode composed of Ti / Pt / Au 5 Surface protective film composed of SiN 6 Surface protective film composed of polyimide 7 Solution 8 Container E 1 Power supply that generates voltage V ds applied between source and drain E 2 Power supply that generates voltage V gs applied between gate and source

フロントページの続き Fターム(参考) 4M104 AA05 BB09 BB11 BB15 CC01 CC03 DD34 DD43 DD68 DD89 EE06 EE12 EE17 EE18 GG12 HH20 5F033 GG02 HH07 HH13 HH18 MM08 PP19 QQ00 QQ41 RR06 RR21 RR22 SS00 SS11 SS21 XX18 XX31 5F102 FA00 GB01 GC01 GD01 GJ05 GS02 GT03 GT04 GV06 HC11 HC19 Continued on front page F-term (reference) 4M104 AA05 BB09 BB11 BB15 CC01 CC03 DD34 DD43 DD68 DD89 EE06 EE12 EE17 EE18 GG12 HH20 5F033 GG02 HH07 HH13 HH18 MM08 PP19 QQ00 QQ41 RR06 RR21 RR22 SS00 GS01 SS01 SS01 SS01 GB01 GT03 GT04 GV06 HC11 HC19

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】Au又はAuを含む電極の表面がメチルメ
ルカプタン、エチルメルカプタン、プロピルメルカプタ
ン、イソプロピルメルカプタンの何れかの物質、或い
は、選択された複数種類の前記物質、或いは、全ての種
類の前記物質から解離した成分を化学的に吸着して生成
された自己集合膜で覆われてなることを特徴とする半導
体装置。
1. The method according to claim 1, wherein the surface of the electrode containing Au or Au is selected from the group consisting of methyl mercaptan, ethyl mercaptan, propyl mercaptan, and isopropyl mercaptan, a plurality of selected substances, and all kinds of the substances. A semiconductor device comprising a self-assembled film formed by chemically adsorbing a component dissociated from a substrate.
【請求項2】Au又はAuを含む電極が形成された半導
体基板をメチルメルカプタン、エチルメルカプタン、プ
ロピルメルカプタン、イソプロピルメルカプタンの何れ
かの物質、或いは、選択された複数種類の前記物質、或
いは、全ての種類の前記物質を含む有機溶媒中に浸漬し
て前記電極表面に前記物質から解離した成分を化学的に
吸着させて自己集合膜を成膜することを特徴とする半導
体装置の製造方法。
2. The method according to claim 1, wherein the semiconductor substrate on which Au or an electrode containing Au is formed is made of any one of methyl mercaptan, ethyl mercaptan, propyl mercaptan, and isopropyl mercaptan, or a plurality of selected materials, or all of them. A method of manufacturing a semiconductor device, comprising immersing in a kind of an organic solvent containing the substance to chemically adsorb components dissociated from the substance on the electrode surface to form a self-assembled film.
【請求項3】半導体基板を前記有機溶媒中に浸漬する工
程に代えて半導体基板の少なくとも電極を前記物質を含
む有機溶媒の蒸気に曝すことを特徴とする請求項2記載
の半導体装置の製造方法。
3. The method of manufacturing a semiconductor device according to claim 2, wherein, instead of immersing the semiconductor substrate in the organic solvent, at least electrodes of the semiconductor substrate are exposed to a vapor of an organic solvent containing the substance. .
【請求項4】前記有機溶媒がメチルアルコール、エチル
アルコール、プロピルアルコール、イソプロピルアルコ
ールの何れか、或いは、選択された複数種類の混合液、
或いは、全ての種類の混合液であることを特徴とする請
求項2又は請求項3記載の半導体装置の製造方法。
4. The method according to claim 1, wherein the organic solvent is any one of methyl alcohol, ethyl alcohol, propyl alcohol, and isopropyl alcohol, or a mixture of a plurality of types selected from the group consisting of:
4. The method for manufacturing a semiconductor device according to claim 2, wherein the liquid is a mixture of all types.
JP11137997A 1999-05-19 1999-05-19 Semiconductor device and manufacture thereof Pending JP2000331955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11137997A JP2000331955A (en) 1999-05-19 1999-05-19 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11137997A JP2000331955A (en) 1999-05-19 1999-05-19 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JP2000331955A true JP2000331955A (en) 2000-11-30

Family

ID=15211661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11137997A Pending JP2000331955A (en) 1999-05-19 1999-05-19 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JP2000331955A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098581A (en) * 2006-10-16 2008-04-24 Matsushita Electric Ind Co Ltd Semiconductor device and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098581A (en) * 2006-10-16 2008-04-24 Matsushita Electric Ind Co Ltd Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
Steppan et al. A review of corrosion failure mechanisms during accelerated tests: electrolytic metal migration
US6346151B1 (en) Method and apparatus for electroless plating a contact pad
Bastide et al. Controlling the work function of GaAs by chemisorption of benzoic acid derivatives
DE69725871T2 (en) ORGANIC-INORGANIC SEMICONDUCTOR HYBRID STRUCTURES AND SENSORS BASED ON THEM
Whelan et al. Corrosion inhibition by self-assembled monolayers for enhanced wire bonding on Cu surfaces
JP2581268B2 (en) Semiconductor substrate processing method
US20170365474A1 (en) Depositing a passivation layer on a graphene sheet
US20100163108A1 (en) Electrochemically active organic thin film, method for producing the same, and device using the same
TW200917312A (en) Substrate for mass spectrometry, mass spectrometry, and mass spectrometer
CN109557162B (en) Sensing device and ion detection method
Ripka et al. Electrochemical Migration in Thick‐Film IC‐S
DE10228772A1 (en) Reduction of the contact resistance in organic field effect transistors with palladium contacts by using nitriles and isonitriles
US11167981B2 (en) Semiconductor device and method of producing a semiconductor device
JP4982899B2 (en) Microelectrode and manufacturing method thereof
JP2000331955A (en) Semiconductor device and manufacture thereof
Hagio Electrode Reaction of GaAs Metal Semiconductor Field‐Effect Transistors in Deionized Water
JP4590527B2 (en) Thin film electrode substrate manufacturing method
US20070166842A1 (en) Method for modifying circuit within substrate
Zeng et al. CVD Polycrystalline Graphene as Sensing Film of Extended-Gate ISFET for Low-Drift pH Sensor
JPH08241882A (en) Method of monitoring quality of solution
EP4135004A1 (en) Sample support, ionization method, and mass spectrometry method
US20020197854A1 (en) Selective deposition of materials for the fabrication of interconnects and contacts on semiconductor devices
TW202235364A (en) Coating of nanowires
Muramoto et al. Open-circuit voltage and short-circuit current characteristics of moisture absorbed polyimide thin films with different electrode materials
RU2073853C1 (en) Method of manufacture of gas transducer sensing element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050908

A131 Notification of reasons for refusal

Effective date: 20050913

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20051026

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051129