JP2000328179A - Cold tool steel - Google Patents
Cold tool steelInfo
- Publication number
- JP2000328179A JP2000328179A JP11128624A JP12862499A JP2000328179A JP 2000328179 A JP2000328179 A JP 2000328179A JP 11128624 A JP11128624 A JP 11128624A JP 12862499 A JP12862499 A JP 12862499A JP 2000328179 A JP2000328179 A JP 2000328179A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- content
- tool steel
- temperature
- hardness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Articles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、プレス型、曲げ
型、抜き型、絞り型、ダイ、パンチ等に用いる冷間工具
鋼に関する。The present invention relates to a cold tool steel used for a press die, a bending die, a punch die, a drawing die, a die, a punch and the like.
【0002】[0002]
【従来の技術】通常、プレス型、曲げ型、抜き型、絞り
型、ダイ、パンチ等に用いられる冷間工具鋼は、焼入れ
焼戻し処理を施して60HRC前後の硬さに調質して使
用されることが多い。焼入れ処理時の加熱保持温度は、
大きくは炭素工具鋼(SK)、特殊工具鋼(SKS)、
冷間ダイス鋼(SKD)などの鋼種系列ごとに、さらに
は各組成ごとに炭化物の固溶状況や結晶粒成長挙動等に
応じて最適な加熱条件が決められ、それぞれに適した熱
処理が行われてきた。2. Description of the Related Art Cold tool steels used for press dies, bending dies, punching dies, drawing dies, dies, punches, etc. are usually used after being subjected to a quenching and tempering treatment to a hardness of about 60 HRC. Often. The heating holding temperature during quenching is
Largely, carbon tool steel (SK), special tool steel (SKS),
Optimal heating conditions are determined for each steel type series, such as cold die steel (SKD), and for each composition, depending on the solid solution state of carbides, crystal grain growth behavior, etc., and appropriate heat treatment is performed. Have been.
【0003】例えば、炭素工具鋼SK1では760〜8
20℃、少量のCr、W、V等を含む特殊工具鋼SKS
3では800〜850℃、多量のCrを含むSKD11
では1000〜1050℃といったように、それぞれの
鋼種系によって適正焼入れ温度域が大きく異なる。For example, in carbon tool steel SK1, 760 to 8
Special tool steel SKS containing 20 ° C, small amount of Cr, W, V, etc.
3, SKD11 containing a large amount of Cr at 800-850 ° C.
The appropriate quenching temperature range varies greatly depending on the type of steel, such as 1000 to 1050 ° C.
【0004】そのため、工具の熱処理ラインで様々な鋼
種の熱処理を行うには、鋼種ごとの焼入れ温度管理が重
要となる。また、鋼の組成によってきめ細かい焼入れ温
度管理が必要である。このように焼入れ温度別に組み入
れを調整して熱処理を行う必要があり、組み入れの時間
待ちや炉温の調整などのために、従来、熱処理工程は実
際に熱処理にかかる時間の他に、多くの無駄な時間がか
かるものであった。[0004] Therefore, in order to perform heat treatment of various steel types in a tool heat treatment line, quenching temperature control for each steel type is important. In addition, fine quenching temperature control is required depending on the composition of the steel. In this way, it is necessary to adjust the quenching temperature and perform the heat treatment.Because of the waiting time for the quenching and the adjustment of the furnace temperature, the conventional heat treatment process requires much time in addition to the actual heat treatment time. It took a long time.
【0005】また、冷間工具鋼は、焼入れ後、低温焼戻
し脆性を生じないように150〜200℃で焼戻しが行
われるが、この焼戻しによっては、ほとんど硬さや靭性
を調整することはできないので、炉温のばらつき等で焼
入れ温度調整がうまくいかなかった場合には、熱処理後
の硬さや靭性値などが目標値から外れ、再熱処理を要す
るなどの問題もあった。[0005] Further, after quenching, cold tool steel is tempered at 150 to 200 ° C so as not to cause low-temperature temper embrittlement. However, hardening and toughness can hardly be adjusted by this tempering. If the quenching temperature was not adjusted properly due to variations in the furnace temperature, the hardness and toughness after the heat treatment deviated from the target values, and there was a problem that re-heat treatment was required.
【0006】[0006]
【発明が解決しようとする課題】本発明は、適正な焼入
れ温度の範囲が広く、焼入れ温度の変化によって、硬
さ、靭性などの強度特性が劣化することがないので、特
殊工具鋼用の焼入れ温度から冷間ダイス鋼用の焼入れ温
度までの広い温度範囲の温度で焼入れ加熱しても安定し
た高い硬さと、優れた靭性とを有する鋼を提供すること
を目的とする。DISCLOSURE OF THE INVENTION The present invention has a wide range of appropriate quenching temperature, and the quenching temperature does not deteriorate the strength characteristics such as hardness and toughness. It is an object of the present invention to provide a steel having stable high hardness and excellent toughness even when quenched and heated at a temperature in a wide temperature range from a temperature to a quenching temperature for cold die steel.
【0007】[0007]
【課題を解決するための手段】上記問題を解決するため
に種々検討を重ねた結果、本発明の冷間工具鋼の化学組
成を有する鋼において、適量のV、Nbを添加して、安
定なMC炭化物を鋼のγ相中に適量、微細に形成するこ
とにより、結晶粒の成長が阻止され、高い焼入れ温度に
加熱して焼き入れした場合でも、高い硬さと、優れた靭
性とを示すという知見を得た。As a result of various studies to solve the above-mentioned problems, it has been found that, in the steel having the chemical composition of the cold work tool steel of the present invention, a suitable amount of V and Nb is added to obtain a stable steel. By forming an appropriate amount and fine MC carbides in the γ phase of steel, the growth of crystal grains is prevented, and even when quenched by heating to a high quenching temperature, it shows high hardness and excellent toughness. Obtained knowledge.
【0008】すなわち、本発明の冷間工具鋼は、(1)
質量%で、C :0.5〜1.6%、Si:3.0%以
下、Mn:0.2〜2.0%、Ni:4.0%以下、C
r:0.2〜4.0%、2Mo+W:0.1〜8.0
%、V :0.05〜3.0%、Nb:0.02〜2.
0%を含有し、残部Feおよび不可避不純物からなり、
800〜1100℃の温度に加熱保持したときに未固溶
MC炭化物が質量%で0.1〜5%存在することを特徴
とする。That is, the cold work tool steel of the present invention comprises (1)
In mass%, C: 0.5 to 1.6%, Si: 3.0% or less, Mn: 0.2 to 2.0%, Ni: 4.0% or less, C:
r: 0.2 to 4.0%, 2Mo + W: 0.1 to 8.0
%, V: 0.05-3.0%, Nb: 0.02-2.
0%, the balance being Fe and unavoidable impurities,
When heated and held at a temperature of 800 to 1100 ° C., 0.1 to 5% by mass of undissolved MC carbide is present.
【0009】(2)上記化学成分に加えて、さらに、T
i:0.01〜2.0%、Ta:0.02〜2.0%、
Zr:0.01〜2.0%のいずれか1種または2種以
上を含有し、残部Feおよび不可避不純物からなり、8
00〜1100℃の温度に加熱保持したときに未固溶M
C炭化物が質量%で0.1〜5%存在することを特徴と
する。(2) In addition to the above chemical components, T
i: 0.01 to 2.0%, Ta: 0.02 to 2.0%,
Zr: contains any one or more of 0.01 to 2.0%, the balance being Fe and inevitable impurities,
Undissolved M when heated and maintained at a temperature of 00 to 1100 ° C
It is characterized in that C carbides are present in an amount of 0.1 to 5% by mass.
【0010】(3)上記(1)または(2)のいずれか
の化学成分に加えて、さらに、S :0.03〜0.4
%、Ca:0.0002〜0.02%、Te:0.00
5〜0.05%、Pb:0.05〜0.50%、Se:
0.02〜0.20%、Bi:0.015〜0.15%
のいずれか1種または2種以上を含有し、残部Feおよ
び不可避不純物からなり、800〜1100℃の温度に
加熱保持したときに未固溶MC炭化物が質量%で0.1
〜5%存在することを特徴とする。(3) In addition to the chemical component of (1) or (2), S: 0.03 to 0.4
%, Ca: 0.0002 to 0.02%, Te: 0.00
5 to 0.05%, Pb: 0.05 to 0.50%, Se:
0.02 to 0.20%, Bi: 0.015 to 0.15%
Containing at least one of the following, and the balance consisting of Fe and unavoidable impurities. When heated and held at a temperature of 800 to 1100 ° C., undissolved MC carbide is 0.1% by mass.
-5%.
【0011】[0011]
【発明の実施の形態】以下、本発明の冷間工具鋼におい
て化学成分の含有率を限定する理由について説明する。 C:0.5〜1.6% Cは、鋼の硬さを高めるとともに、MC炭化物を形成
し、これを微細に分散させて加熱の結晶粒粗大化を防止
し、さらに、焼戻しによって二次炭化物を生成し、鋼の
耐摩耗性を向上するために添加する。C含有率が0.5
%未満では冷間工具鋼として必要な硬さが得られないの
でC含有率の下限を0.5%とする。また、過剰にCを
含有すると粗大な一次炭化物を生成する原因となり、靭
性が低下するのでC含有率の上限を1.6%とする。DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for limiting the content of chemical components in the cold tool steel of the present invention will be described below. C: 0.5 to 1.6% C increases the hardness of the steel and forms MC carbides, which are finely dispersed to prevent coarsening of the crystal grains during heating, and furthermore, secondary to tempering. Generates carbides and is added to improve the wear resistance of steel. C content is 0.5
%, The required hardness as a cold tool steel cannot be obtained, so the lower limit of the C content is set to 0.5%. In addition, if C is excessively contained, coarse primary carbides are generated, and toughness is reduced. Therefore, the upper limit of the C content is set to 1.6%.
【0012】Si:3.0%以下 Siは、パーライト焼入れ性およびベイナイト焼入れ性
の向上、ならびに焼戻し硬さを増大するために添加する
元素であるが、過度に含有すると靭性が低下するので含
有率の上限を3.0%とする。Si: 3.0% or less Si is an element added to improve the pearlite hardenability and the bainite hardenability and to increase the tempering hardness. However, excessive content lowers the toughness. Is set to 3.0%.
【0013】Mn:0.2〜2.0% Mnは、パーライト焼入れ性およびベイナイト焼入れ性
を向上するために添加する。Mn含有率が0.2%未満
では焼入れ性の向上が得られないのでMn含有率の下限
を0.2%とする。また、過度に含有すると残留オース
テナイト生成の原因となり、靭性を低下するのでMn含
有率の上限を2.0%とする。Mn: 0.2-2.0% Mn is added to improve pearlite hardenability and bainite hardenability. If the Mn content is less than 0.2%, hardenability cannot be improved, so the lower limit of the Mn content is set to 0.2%. If the content is excessive, the generation of retained austenite causes the toughness to be reduced. Therefore, the upper limit of the Mn content is set to 2.0%.
【0014】Ni:4.0%以下 NIは、焼入れ性を向上するために添加する。Ni含有
率が4.0%を超えると残留オーステナイトが増加して
必要な硬さを確保することが困難となり、また被削性が
低下するのでNi含有率の上限は4.0%とする。Ni: 4.0% or less NI is added to improve hardenability. If the Ni content exceeds 4.0%, the retained austenite increases and it becomes difficult to secure the required hardness, and the machinability decreases. Therefore, the upper limit of the Ni content is set to 4.0%.
【0015】Cr:0.2〜4.0% Crは、焼入れ性および焼戻し硬さを向上するために添
加する。Cr含有率が0.2%未満ではその効果が小さ
いので、Cr含有率の下限を0.2%とする。しかし、
4.0%を超えて含有すると、硬さの高い炭化物が多く
なることにより鋼の被削性が低下するので、Cr含有率
の上限は4.0%とする。Cr: 0.2-4.0% Cr is added to improve hardenability and temper hardness. If the Cr content is less than 0.2%, the effect is small, so the lower limit of the Cr content is set to 0.2%. But,
If the content exceeds 4.0%, the machinability of the steel decreases due to the increase in carbide having high hardness, so the upper limit of the Cr content is set to 4.0%.
【0016】2Mo+W:0.1〜8.0% MoおよびWは、いずれもベイナイト焼入れ性を向上
し、焼戻し硬さを増大するために添加する。Moおよび
Wの1種または2種を、W当量=2×(Mo含有率)+
(W含有率)として0.1〜8.0%含有させる。W当
量が0.1%より少ないと前記効果が十分でないのでW
当量の下限を0.1%とする。W当量が8.0%を超え
ると難固溶の一次炭化物が増大して鋼の靭性を低下する
ので、W当量の上限を8.0%とする。2Mo + W: 0.1-8.0% Mo and W are both added to improve the bainite hardenability and increase the tempering hardness. One or two types of Mo and W are obtained by adding W equivalent = 2 × (Mo content) +
0.1 to 8.0% (W content) is contained. If the W equivalent is less than 0.1%, the effect is not sufficient.
The lower limit of the equivalent is 0.1%. If the W equivalent exceeds 8.0%, the primary carbides that are hardly dissolved increase and the toughness of the steel decreases, so the upper limit of the W equivalent is set to 8.0%.
【0017】V:0.05〜3.0% Vは、焼入れ加熱時に結晶粒が成長粗大化することを防
止するために添加する必須元素である。前記効果を発揮
するためには、0.05%以上含有する必要がある。し
かし、3.0%を超えて含有すると、難固溶の一次炭化
物量が増大して鋼の靭性、被削性が低下するので、V含
有率の上限を3.0%とする。V: 0.05-3.0% V is an essential element added to prevent crystal grains from growing and coarsening during quenching and heating. In order to exhibit the above effects, it is necessary to contain 0.05% or more. However, if the content exceeds 3.0%, the amount of hardly soluble primary carbides increases and the toughness and machinability of the steel decrease, so the upper limit of the V content is set to 3.0%.
【0018】Nb:0.02〜2.0% Nbは、Vと同様に、焼入れ加熱時に結晶粒が成長粗大
化することを防止するために添加する必須元素である。
Nb含有率が0.02%未満では結晶粒成長の抑止効果
がないのでNb含有率の下限を0.02%とする。しか
し、2.0%を超えて含有すると、難固溶の一次炭化物
量が増大して鋼の靭性、被削性が低下するので、Nb含
有率の上限を2.0%とする。Nb: 0.02 to 2.0% Nb is an essential element added to prevent crystal grains from growing and coarsening during quenching and heating, like V.
If the Nb content is less than 0.02%, there is no effect of suppressing crystal grain growth, so the lower limit of the Nb content is set to 0.02%. However, when the content exceeds 2.0%, the amount of hardly soluble primary carbides increases and the toughness and machinability of the steel decrease, so the upper limit of the Nb content is set to 2.0%.
【0019】Ti:0.01〜2.0%、Ta:0.0
2〜2.0%、Zr:0.01〜2.0% Ti、Ta、Zrは、いずれも一次炭化物を形成して焼
入れ加熱時に結晶粒の成長を抑制するために、いずれか
1種または2種以上を含有させることができる。前記各
元素の含有率が少ないと前記効果がないので、含有率の
下限を、それぞれTi、Zrについては0.01%、T
aは0.02%とする。前記各元素を過剰に含有すると
難固溶の一次炭化物量が増大して鋼の靭性、被削性を低
下するので、含有率の上限をそれぞれ2.0%とする。Ti: 0.01-2.0%, Ta: 0.0
2 to 2.0%, Zr: 0.01 to 2.0% Ti, Ta, and Zr each form a primary carbide to suppress the growth of crystal grains during quenching and heating. Two or more can be contained. If the content of each element is small, the effect is not obtained. Therefore, the lower limit of the content is set to 0.01% for Ti and Zr and T for Zr, respectively.
a is set to 0.02%. If each of these elements is excessively contained, the amount of hardly soluble primary carbides increases and the toughness and machinability of the steel decrease. Therefore, the upper limit of each content is set to 2.0%.
【0020】S :0.03〜0.4%、Ca:0.0
002〜0.02%、Te:0.005〜0.05%、
Pb:0.05〜0.50%、Se:0.02〜0.2
0%、Bi:0.015〜0.15% S、Ca、Te、Pb、Se、Biは、鋼の被削性を改
善するために、いずれか1種または2種以上を添加する
ことができる。前記各元素の含有率が少ないと前記効果
がないので、含有率の下限を、それぞれS:0.03
%、Ca:0.0002%Te:0.005%、Pb:
0.05%、Se:0.02%、Bi:0.015%と
する。S: 0.03-0.4%, Ca: 0.0
002-0.02%, Te: 0.005-0.05%,
Pb: 0.05-0.50%, Se: 0.02-0.2
0%, Bi: 0.015 to 0.15% In order to improve the machinability of steel, one or more of S, Ca, Te, Pb, Se, and Bi may be added. it can. If the content of each element is small, the effect is not obtained. Therefore, the lower limit of the content is set to S: 0.03, respectively.
%, Ca: 0.0002% Te: 0.005%, Pb:
0.05%, Se: 0.02%, Bi: 0.015%.
【0021】しかし、Sは、過剰に含有すると鋼の熱間
加工性、靭性および硬さを低下させるので含有率の上限
を0.4%とする。また、Ca含有率が過剰であると鋼
の靭性が低下するので含有率の上限を0.02%とす
る。Te含有率が過剰であると鋼の熱間加工性、靭性が
低下するので含有率の上限を0.05%とする。Pb含
有率が過剰であると鋼の熱間衝撃性が低下するので含有
率の上限を0.50%とする。Se含有率が過剰である
と鋼の靭性が低下するので含有率の上限を0.10%と
する。Biも過剰に含有すると鋼の靭性を損なうので含
有率の上限を0.15%とする。However, if S is excessively contained, the hot workability, toughness and hardness of steel are reduced, so the upper limit of the content is set to 0.4%. Further, if the Ca content is excessive, the toughness of the steel decreases, so the upper limit of the content is set to 0.02%. If the Te content is excessive, the hot workability and toughness of the steel decrease, so the upper limit of the content is set to 0.05%. If the Pb content is excessive, the hot impact resistance of steel decreases, so the upper limit of the content is set to 0.50%. If the Se content is excessive, the toughness of the steel decreases, so the upper limit of the content is set to 0.10%. If Bi is excessively contained, the toughness of the steel is impaired. Therefore, the upper limit of the content is set to 0.15%.
【0022】本発明の冷間工具鋼は、従来の冷間工具鋼
に対すると同様の熱処理設備を用いて熱処理することが
できる。焼入れ加熱温度は800〜1100℃とする。
この温度範囲で加熱することにより、γ相中に質量%で
0.1%〜5%のMC炭化物を微細に分散したものとす
ることができる。焼入れ加熱温度が800℃未満では炭
化物の溶け込みが不十分で、高い硬さとすることがで
ず、また、焼入れ加熱温度が1100℃を超えると、結
晶粒の成長を阻止するMC炭化物が固溶してしまい、結
晶粒が成長し、鋼が脆化する。The cold tool steel of the present invention can be heat-treated using the same heat treatment equipment as for conventional cold tool steel. The quenching heating temperature is 800 to 1100 ° C.
By heating in this temperature range, MC carbide of 0.1% to 5% by mass% can be finely dispersed in the γ phase. If the quenching heating temperature is less than 800 ° C., the carbides are insufficiently penetrated and the hardness cannot be increased, and if the quenching heating temperature exceeds 1100 ° C., MC carbides that inhibit the growth of crystal grains form a solid solution. As a result, crystal grains grow and the steel becomes brittle.
【0023】[0023]
【実施例】高周波誘導炉によって表1に示す鋼を溶解
し、1t鋼塊を製造した。該鋼塊に700℃×3時間加
熱後放冷の低温焼なましを施して皮削りし、加熱温度1
100℃で鍛伸し、直径100mmの棒鋼とした。該棒
鋼を850℃×4時間加熱後10℃/hの冷却速度で6
50℃まで徐冷し、以後空冷の球状化焼なましを施して
球状化焼なまし材とした。EXAMPLES The steel shown in Table 1 was melted by a high-frequency induction furnace to produce a 1-ton steel ingot. After heating the steel ingot at 700 ° C. for 3 hours, the steel ingot was subjected to a low-temperature annealing of standing to cool, and the skin was shaved.
It was forged at 100 ° C. to obtain a steel bar having a diameter of 100 mm. After heating the steel bar at 850 ° C. for 4 hours, the steel bar was cooled at a cooling rate of 10 ° C./h for 6 hours.
The material was gradually cooled to 50 ° C., and thereafter subjected to air-cooled spheroidizing annealing to obtain a spheroidizing annealing material.
【0024】[0024]
【表1】 [Table 1]
【0025】前記球状化焼なまし材のD/4位置から、
硬さおよび結晶粒度測定用試験片、シャルピー試験片、
炭化物抽出用試験片の各試験片粗材を切出し、800℃
〜1100℃×0.5時間加熱後油冷の焼入れ後、20
0℃×2時間の焼戻しを施してから精加工し、各試験に
供した。From the D / 4 position of the spheroidized annealing material,
Specimen for measuring hardness and grain size, Charpy specimen,
Cut out each test piece coarse material of the test piece for carbide extraction, 800 ° C
After heating at ~ 1100 ° C for 0.5 hour and oil cooling,
After tempering at 0 ° C. × 2 hours, it was finely processed and subjected to each test.
【0026】硬さ試験:10mm×10mm×10mm
の試験片を用い、横断面についてロックウエル硬さ計C
スケールで硬さを測定した。Hardness test: 10 mm × 10 mm × 10 mm
Rockwell hardness tester C
The hardness was measured on a scale.
【0027】結晶粒度測定:硬さ試験片と同一試験片に
ついて、JIS G 0551にに定める結晶粒度測定
法に従って結晶粒度を測定した。10視野の結晶粒度番
号の平均値をもって代表値とした。Measurement of crystal grain size: The same test piece as the hardness test piece was measured for crystal grain size according to the crystal grain size measurement method specified in JIS G 0551. The average value of the crystal grain size numbers in 10 visual fields was used as a representative value.
【0028】シャルピー衝撃試験:鍛伸方向から切出し
た10mm×10mm×55mmの10Rノッチシャル
ピー試験片を用いてシャルピー試験を行い、シャルピー
値を求めた。Charpy impact test: A Charpy test was performed using a 10R notch Charpy test piece of 10 mm × 10 mm × 55 mm cut out from the forging direction to obtain a Charpy value.
【0029】炭化物抽出試験:10mm×10mm×1
0mmの試験片を用い、2%塩酸+2%クエン酸水溶液
を電解液として電解抽出を行い、抽出残渣としてMC炭
化物を分離して質量を測定し、MC炭化物の質量%を算
出した。採取した炭化物はX線回折による同定を行い、
MC炭化物であることを確認した。Carbide extraction test: 10 mm × 10 mm × 1
Using a test piece of 0 mm, electrolytic extraction was performed using 2% hydrochloric acid + 2% citric acid aqueous solution as an electrolytic solution, and MC carbide was separated as an extraction residue, the mass was measured, and the mass% of MC carbide was calculated. The collected carbide is identified by X-ray diffraction,
It was confirmed to be MC carbide.
【0030】各試験の結果を表1に示す。表1から明ら
かなように、V,Nbを含まないか、またはVのみしか
含まない比較例1〜4では、焼入れ温度1100℃で焼
入れしたもの(比較例1、3)は、焼入れ温度800℃
で焼入れしたもの(比較例2、4)に比べてMC炭化物
量が急激に減って0.1%以下となり、結晶粒は成長
し、シャルピー値も著しく低下している。Nb含有率が
過大な比較例5では、焼入れ温度800℃および110
0℃のいずれの場合にも5%以上の多量のMC炭化物を
含み、結晶粒度は微細であるがシャルピー値は低くなっ
ている。Table 1 shows the results of each test. As is clear from Table 1, in Comparative Examples 1-4 containing no V or Nb or containing only V, those quenched at a quenching temperature of 1100 ° C (Comparative Examples 1 and 3) had a quenching temperature of 800 ° C.
The amount of MC carbide is sharply reduced to 0.1% or less as compared with those quenched by the method (Comparative Examples 2 and 4), the crystal grains grow, and the Charpy value is significantly reduced. In Comparative Example 5 in which the Nb content was excessive, the quenching temperature was
In each case at 0 ° C., a large amount of 5% or more MC carbide was contained, and although the crystal grain size was fine, the Charpy value was low.
【0031】これに対して、本発明の実施例において
は、800℃および1100℃のいずれの温度で焼入れ
してもMC炭化物量は0.5〜5%の範囲内にあり、結
晶粒度は微細であり、硬さは60HRC前後の高い値を
示し、シャルピー値も高い値を示している。On the other hand, in the embodiment of the present invention, the amount of MC carbide is in the range of 0.5 to 5% and the crystal grain size is fine even when quenched at either 800 ° C. or 1100 ° C. The hardness shows a high value of around 60 HRC, and the Charpy value also shows a high value.
【0032】[0032]
【発明の効果】以上に説明したように、本発明によれ
ば、焼入れ温度が800〜1100℃と広範な焼入れ温
度で処理しても結晶粒の成長を来すことなく、安定して
高い硬さと優れた靭性を有する冷間工具鋼を提供するこ
とができる。これにより、工具の熱処理ラインで熱処理
を行う際に、鋼種ごと、鋼組成ごとに煩雑な焼入れ温度
の管理を行う必要がなく、熱処理の組み入れのための時
間待ちや、炉温の調整などが不要となり、熱処理工程の
能率向上に寄与するところが大きい。As described above, according to the present invention, even if the treatment is performed at a quenching temperature in a wide range of 800 to 1100 ° C., crystal grains do not grow and the hardening is stable. And a cold tool steel having excellent toughness can be provided. This eliminates the need for complicated quenching temperature management for each type of steel and each steel composition when performing heat treatment in the tool heat treatment line, eliminating the need to wait for the heat treatment and adjusting the furnace temperature. This greatly contributes to improving the efficiency of the heat treatment process.
Claims (3)
0〜1100℃の温度に加熱保持したときに未固溶MC
炭化物が質量%で0.1〜5%存在することを特徴とす
る冷間工具鋼。1. In mass%, C: 0.5 to 1.6%, Si: 3.0% or less, Mn: 0.2 to 2.0%, Ni: 4.0% or less, Cr: 0 0.2 to 4.0%, 2Mo + W: 0.1 to 8.0%, V: 0.05 to 3.0%, Nb: 0.02 to 2.0%, and the balance from Fe and unavoidable impurities Becomes 80
Undissolved MC when heated and maintained at a temperature of 0 to 1100 ° C
Cold tool steel characterized in that 0.1 to 5% by mass of carbide is present.
する請求項1記載の冷間工具鋼。2. In addition to the above chemical components, any one of the following: Ti: 0.01 to 2.0%, Ta: 0.02 to 2.0%, Zr: 0.01 to 2.0% The cold tool steel according to claim 1, wherein the cold tool steel contains one or more kinds.
する請求項1または請求項2のいずれか一項記載の冷間
工具鋼。3. In addition to the above chemical components, S: 0.03 to 0.4%, Ca: 0.0002 to 0.02%, Te: 0.005 to 0.05%, Pb: 0 0.05 to 0.50%; Se: 0.02 to 0.20%; Bi: 0.015 to 0.15%. The cold tool steel according to claim 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11128624A JP2000328179A (en) | 1999-05-10 | 1999-05-10 | Cold tool steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11128624A JP2000328179A (en) | 1999-05-10 | 1999-05-10 | Cold tool steel |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000328179A true JP2000328179A (en) | 2000-11-28 |
Family
ID=14989409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11128624A Pending JP2000328179A (en) | 1999-05-10 | 1999-05-10 | Cold tool steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000328179A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2870546A1 (en) * | 2004-05-21 | 2005-11-25 | Industeel Creusot | STEEL WITH HIGH MECHANICAL RESISTANCE AND WEAR |
WO2010092067A1 (en) * | 2009-02-10 | 2010-08-19 | Gebr. Schmachtenberg Gmbh | Steel alloy |
CN107460410A (en) * | 2017-08-04 | 2017-12-12 | 安徽省宁国市亚晨碾磨铸件有限责任公司 | A kind of excavator steel alloy bucket tooth and its manufacturing process |
CN107460411A (en) * | 2017-09-08 | 2017-12-12 | 江苏精工特种材料有限公司 | High silicomanganese high speed steel material and preparation method thereof |
JP2018109235A (en) * | 2012-05-07 | 2018-07-12 | ヴァルス ベジッツ ゲーエムベーハー | Low temperature high hardness steel with excellent machinability |
CN108486489A (en) * | 2018-04-20 | 2018-09-04 | 安徽省宁国市亚晨碾磨铸件有限责任公司 | A kind of antifriction metal (AFM) composite bucket tooth and its production technology |
CN114318133A (en) * | 2021-03-22 | 2022-04-12 | 武汉钜能科技有限责任公司 | Wear-resistant tool steel |
-
1999
- 1999-05-10 JP JP11128624A patent/JP2000328179A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2870546A1 (en) * | 2004-05-21 | 2005-11-25 | Industeel Creusot | STEEL WITH HIGH MECHANICAL RESISTANCE AND WEAR |
WO2005123975A2 (en) * | 2004-05-21 | 2005-12-29 | Industeel Creusot | Steel with high mechanical strength and wear resistance |
WO2005123975A3 (en) * | 2004-05-21 | 2006-12-21 | Industeel Creusot | Steel with high mechanical strength and wear resistance |
US7794651B2 (en) | 2004-05-21 | 2010-09-14 | Industeel Creusot | Steel having high mechanical strength and wear resistance |
US8097207B2 (en) | 2004-05-21 | 2012-01-17 | Industeel Creusot | Steel having high mechanical strength and wear resistance |
WO2010092067A1 (en) * | 2009-02-10 | 2010-08-19 | Gebr. Schmachtenberg Gmbh | Steel alloy |
JP2018109235A (en) * | 2012-05-07 | 2018-07-12 | ヴァルス ベジッツ ゲーエムベーハー | Low temperature high hardness steel with excellent machinability |
CN107460410A (en) * | 2017-08-04 | 2017-12-12 | 安徽省宁国市亚晨碾磨铸件有限责任公司 | A kind of excavator steel alloy bucket tooth and its manufacturing process |
CN107460411A (en) * | 2017-09-08 | 2017-12-12 | 江苏精工特种材料有限公司 | High silicomanganese high speed steel material and preparation method thereof |
CN108486489A (en) * | 2018-04-20 | 2018-09-04 | 安徽省宁国市亚晨碾磨铸件有限责任公司 | A kind of antifriction metal (AFM) composite bucket tooth and its production technology |
CN114318133A (en) * | 2021-03-22 | 2022-04-12 | 武汉钜能科技有限责任公司 | Wear-resistant tool steel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1597404B1 (en) | Fine-grained martensitic stainless steel and method thereof | |
AU2009355404B2 (en) | High-toughness abrasion-resistant steel and manufacturing method therefor | |
JP3300500B2 (en) | Method for producing hot forging steel excellent in fatigue strength, yield strength and machinability | |
CN111479945B (en) | Wear-resistant steel having excellent hardness and impact toughness and method for manufacturing same | |
JP2002363708A (en) | Martensitic stainless steel | |
JPH10273756A (en) | Cold tool made of casting, and its production | |
JP3738004B2 (en) | Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method | |
JP3241897B2 (en) | Non-heat treated steel for hot forging with excellent tensile strength, fatigue strength and machinability | |
JP2000328179A (en) | Cold tool steel | |
JP2004285430A (en) | Method for producing forged product | |
JPH0978199A (en) | Cold tool steel with high hardness and high toughness | |
US20240271240A1 (en) | Martensitic stainless steel with improved strength and corrosion resistance, and manufacturing method therefor | |
JP2000160286A (en) | High-strength and high-toughness non-heat treated steel excellent in drilling machinability | |
JP4232242B2 (en) | High strength high toughness non-tempered steel | |
JPH0978184A (en) | Case hardening steel excellent ion cold workability and crystalline grain coarsening characteristic | |
JP4121416B2 (en) | Non-tempered hot forged parts for machine structure and manufacturing method thereof | |
JP4277112B2 (en) | Tool steel with excellent short-time hardenability by electric heating or induction heating | |
CN114790530B (en) | High-plasticity ultrahigh-strength steel plate and manufacturing method thereof | |
JP2001234278A (en) | Cold tool steel excellent in machinability | |
JPH0617122A (en) | Production of non-heattreated steel excellent in durability ratio | |
WO2023167226A1 (en) | Alloy tool steel for hot working | |
JP2784128B2 (en) | Precipitation hardening type hot work tool steel | |
KR960007427B1 (en) | Making method of cold rolling austenite stainless steel sheet | |
JPH01205029A (en) | Manufacture of high-cr ferritic steel stock for high-temperature use | |
JP2950713B2 (en) | Non-heat treated steel for hot forging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060330 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080331 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080730 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20081119 |