JP2000327826A - Polypropylene resin eaxpanded molding and manufacture thereof - Google Patents
Polypropylene resin eaxpanded molding and manufacture thereofInfo
- Publication number
- JP2000327826A JP2000327826A JP27966299A JP27966299A JP2000327826A JP 2000327826 A JP2000327826 A JP 2000327826A JP 27966299 A JP27966299 A JP 27966299A JP 27966299 A JP27966299 A JP 27966299A JP 2000327826 A JP2000327826 A JP 2000327826A
- Authority
- JP
- Japan
- Prior art keywords
- polypropylene resin
- resin particles
- foaming
- temperature
- foamed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Processes Of Treating Macromolecular Substances (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、発泡用改質ポリ
プロピレン系樹脂粒子、発泡性ポリプロピレン系樹脂粒
子、ポリプロピレン系樹脂発泡粒子、ポリプロピレン系
樹脂発泡成形体およびこれらの製造方法に関するもので
ある。さらに詳しくは、密度が小さく均一な発泡粒子を
得ることを可能とする発泡用改質ポリプロピレン系樹脂
粒子および発泡性ポリプロピレン系樹脂粒子、ポリプロ
ピレン系樹脂発泡粒子およびポリプロピレン系樹脂発泡
成形体ならびにそれらの製造方法に関するものである。
この発明の発泡性ポリプロピレン系樹脂粒子は、発泡す
るまでの保管時間が経過しても発泡密度の変化が少ない
という特長を有し、該樹脂粒子由来の発泡成形体は、実
質的に無架橋であって、リサイクル性に優れ、かつ嵩密
度が低く、水蒸気に対する耐熱性を改善できるという特
長を有する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a modified polypropylene resin particle for foaming, an expandable polypropylene resin particle, a foamed polypropylene resin particle, a foamed polypropylene resin molded article, and a method for producing the same. More specifically, modified polypropylene resin particles for foaming and expandable polypropylene resin particles, polypropylene resin foam particles and polypropylene resin foam molded articles capable of obtaining uniform foam particles having a low density, and their production. It is about the method.
The expandable polypropylene-based resin particles of the present invention have the feature that the change in the expansion density is small even after the storage time until foaming has elapsed, and the expanded molded article derived from the resin particles is substantially non-crosslinked. In addition, it has excellent recyclability, low bulk density, and improved heat resistance to water vapor.
【0002】[0002]
【従来の技術と発明が解決しようとする課題】型内成形
による発泡成形体の基材樹脂としてポリスチレン系樹
脂、ポリエチレン系樹脂あるいはポリプロピレン系樹脂
が汎用されている。ところが、ポリスチレン系樹脂を基
材樹脂として用いた場合には、得られる発泡成形体が脆
く、耐薬品性にも劣るという問題がある。この問題を解
決するものとして、ポリエチレン系樹脂を基材とした発
泡成形体が提案されているが、このような樹脂を基材と
して用いた場合には、柔軟かつ強靱な発泡成形体が得ら
れるけれども、低密度化のためには架橋工程が必須であ
り、その結果、リサイクル性が劣るという欠点がある。2. Description of the Related Art A polystyrene resin, a polyethylene resin or a polypropylene resin has been widely used as a base resin for a foamed molded article by in-mold molding. However, when a polystyrene-based resin is used as the base resin, there is a problem that the obtained foamed molded article is brittle and has poor chemical resistance. As a solution to this problem, a foamed molded article based on a polyethylene resin has been proposed, but when such a resin is used as a substrate, a flexible and tough foamed molded article can be obtained. However, a cross-linking step is indispensable for lowering the density, and as a result, there is a disadvantage that the recyclability is poor.
【0003】ポリプロピレン系樹脂を基材とした場合に
は、実質的に無架橋でありながら低密度化が可能である
(特公昭56−1344号公報)反面、ポリプロピレン
系樹脂の軟化温度が高いため、発泡・成形時の加工温度
が高くなり、発泡機及び成形機等の設備費が高額となる
上、金型の耐久性が著しく悪くなるという欠点がある。
また、ポリプロピレン系樹脂は、例えばポリエチレンや
可塑剤などの含有量を調節することにより、得られる発
泡体の水蒸気に対する耐熱性をある程度改善することは
できるものの、大幅に改善することは不可能であった。
さらに、ポリプロピレン系樹脂に軟質性を付与するため
に、ポリプロピレンとポリエチレン、ポリブタジエン等
の易架橋性ポリマーとの架橋(特公昭60−28856
号公報)や、ポリプロピレンの架橋(特公昭60−16
8632号公報および特公平3−48936号公報)等
が提案されているが、特にエチレン成分が多くなると、
発泡体の低密度化のために架橋工程が必須となるためリ
サイクル性に劣るという問題がある。When a polypropylene-based resin is used as a base material, the density can be reduced while being substantially non-crosslinked (Japanese Patent Publication No. 56-1344), but the softening temperature of the polypropylene-based resin is high. In addition, the processing temperature at the time of foaming / molding becomes high, so that the equipment cost of the foaming machine and the molding machine becomes expensive, and the durability of the mold is remarkably deteriorated.
Further, by adjusting the content of, for example, polyethylene or a plasticizer, the heat resistance of the resulting foam to steam can be improved to some extent, but it is impossible to greatly improve the polypropylene-based resin. Was.
Further, in order to impart softness to the polypropylene resin, crosslinking of polypropylene with an easily crosslinkable polymer such as polyethylene and polybutadiene (Japanese Patent Publication No. 60-28856).
No., JP-A-60-16) and cross-linking of polypropylene
No. 8632 and Japanese Patent Publication No. 3-48936), but especially when the ethylene component is increased,
Since a cross-linking step is required to reduce the density of the foam, there is a problem that the recyclability is poor.
【0004】上記の樹脂はいずれもガスバリア性が低い
ため、発泡剤を含有させても短時間で発泡剤が逸散して
しまうという性質がある。そのため、これらの樹脂から
得られる発泡体は密度が高く不均一になりやすい。ま
た、これらの樹脂から得られる発泡性樹脂粒子を大気中
に取り出して開放後、時間が経過してから発泡させた場
合は、経過時間が長くなるにつれて発泡粒子の密度が急
激に高くなるという問題がある。発泡性ポリオレフィン
樹脂粒子の製造方法として、特公平2−59171号公
報では球状の発泡性ポリオレフィン樹脂粒子を製造する
方法が提案されているが、この方法では発泡用の樹脂粒
子に発泡剤を含浸させるときに、樹脂粒子と発泡剤との
両方を該樹脂粒子の融点−5℃以上〜融点+10℃以下
に加熱するため、高温・高圧に耐え得る含浸設備が必要
となり、設備費が高額になるという問題がある。また、
この発泡性樹脂粒子を、大気中に取り出して開放後、時
間が経過してから発泡させた場合は、密度の高い発泡体
となりやすく、樹脂粒子を熱処理した効果が低くなる。[0004] Since all of the above resins have low gas barrier properties, even if a foaming agent is contained, the resin has the property that the foaming agent escapes in a short time. Therefore, foams obtained from these resins have high densities and tend to be non-uniform. Further, when the foamable resin particles obtained from these resins are taken out into the atmosphere and opened, and then foamed after a lapse of time, the density of the foamed particles rapidly increases as the lapsed time increases. There is. As a method for producing expandable polyolefin resin particles, Japanese Patent Publication No. 59171/1990 proposes a method for producing spherical expandable polyolefin resin particles. In this method, resin particles for foaming are impregnated with a blowing agent. Sometimes, both the resin particles and the foaming agent are heated to the melting point of the resin particles −5 ° C. or higher to the melting point + 10 ° C. or lower, so that impregnation equipment that can withstand high temperature and high pressure is required, and the equipment cost increases. There's a problem. Also,
When the foamable resin particles are taken out into the atmosphere and opened, and then foamed after a lapse of time, a foam having a high density is easily formed, and the effect of heat treatment of the resin particles is reduced.
【0005】また、特公平3−2890号公報には球状
のポリオレフィン樹脂粒子の製造方法が記載されている
が、この公報には、該樹脂粒子を大気中に取り出して開
放後、時間が経過した後に発泡しても密度が高くなるの
を抑えることが可能な発泡性樹脂粒子や、樹脂粒子の結
晶性をコントロールすることに関しては何も開示されて
いない。低密度の発泡粒子を製造する方法として、発泡
剤を含浸した樹脂粒子を低圧の雰囲気下に放出するドカ
ン法(特公昭59−23731号公報)等の方法が一般
に知られているが、この方法では低密度の発泡粒子を製
造することができる反面、均一な密度の発泡粒子が得ら
れにくいという問題があった。また、この方法では、樹
脂粒子のビカット軟化温度以上の温度で、樹脂粒子に発
泡剤を含浸させるため、高圧に耐え得る含浸設備が必要
となり、設備費用が高額になるという問題がある。ま
た、樹脂粒子どうしが合着し易くなり、固/液比を上げ
ることができず、1バッチの製造で得られる発泡粒子の
量は満足できるものではなかった。さらに、この方法に
より得られる発泡粒子は、走査型示差熱量測定で得られ
るDSC曲線の主吸熱ピーク温度が樹脂粒子の主吸熱ピ
ーク温度と同一であるために、水蒸気に対する耐熱性を
コントロールすることは不可能であった。Further, Japanese Patent Publication No. 3-2890 discloses a method for producing spherical polyolefin resin particles. However, in this publication, after the resin particles have been taken out into the atmosphere and opened, time has elapsed. There is no disclosure of expandable resin particles capable of suppressing an increase in density even after foaming or control of crystallinity of the resin particles. As a method for producing low-density foamed particles, there is generally known a method such as a docan method (Japanese Patent Publication No. 59-23731) in which resin particles impregnated with a blowing agent are released under a low-pressure atmosphere. Thus, although low-density foamed particles can be produced, there is a problem that foamed particles having a uniform density are difficult to obtain. In addition, in this method, since the resin particles are impregnated with a foaming agent at a temperature equal to or higher than the Vicat softening temperature of the resin particles, an impregnation facility capable of withstanding high pressure is required, and there is a problem that the facility cost is high. In addition, the resin particles tended to coalesce, the solid / liquid ratio could not be increased, and the amount of foamed particles obtained in one batch production was not satisfactory. Furthermore, since the main endothermic peak temperature of the DSC curve obtained by the scanning differential calorimetry is the same as the main endothermic peak temperature of the resin particles, the expanded particles obtained by this method cannot control the heat resistance to water vapor. It was impossible.
【0006】[0006]
【課題を解決するための手段】上述のような現状に鑑
み、本発明者らは鋭意研究した結果、ポリプロピレン系
樹脂粒子をその主吸熱ピーク温度からそれより15℃高
い温度までの範囲内で熱処理を行い発泡用改質ポリプロ
ピレン系樹脂粒子を得ること、およびポリプロピレン系
樹脂粒子のビカット軟化温度よりも低い温度で発泡用改
質ポリプロピレン系樹脂粒子に発泡剤を含浸させること
により、発泡するまでの保管時間が経過しても発泡粒子
の密度の変化が少ない発泡性ポリプロピレン系樹脂粒子
を得ることを見出した。そしてそのような発泡性ポリプ
ロピレン系樹脂粒子を用いて予備発泡させると、実質的
に無架橋であって、リサイクル性に優れ、嵩密度が低
く、水蒸気に対する耐熱性をコントロールできるポリプ
ロピレン系樹脂発泡粒子およびポリプロピレン系樹脂発
泡成形体が得られることを見出した。なお、この発明で
いう熱処理前のポリプロピレン系樹脂粒子の主吸熱ピー
ク温度とは、走査型示差熱量測定で得られるDSC曲線
において吸熱ピークを示したときの温度であり、吸熱ピ
ークが1つしかないときはそのピークの温度を、吸熱ピ
ークが複数ある場合は最も高いピークを示すときの温度
をいう。Means for Solving the Problems In view of the above-mentioned current situation, the present inventors have made intensive studies and as a result, heat treated polypropylene resin particles within a range from the main endothermic peak temperature to a temperature 15 ° C. higher than the main endothermic peak temperature. To obtain modified polypropylene resin particles for foaming, and storage until foaming by impregnating the foamed modified polypropylene resin particles with a foaming agent at a temperature lower than the Vicat softening temperature of the polypropylene resin particles. It has been found that foamable polypropylene resin particles having little change in the density of the foamed particles even after a lapse of time are obtained. And when pre-expanded using such expandable polypropylene-based resin particles, it is substantially non-crosslinked, has excellent recyclability, has a low bulk density, and can control the heat resistance to water vapor. It has been found that a polypropylene resin foam molded article can be obtained. The main endothermic peak temperature of the polypropylene resin particles before the heat treatment in the present invention is a temperature at which an endothermic peak is shown in a DSC curve obtained by a scanning differential calorimetry, and there is only one endothermic peak. At that time, the temperature of the peak is used, and when there are a plurality of endothermic peaks, the temperature at which the highest peak is shown is referred to.
【0007】かくして本発明によれば、エチレンおよび
(または)他のα−オレフィンとのプロピレン共重合体
を主成分とするポリプロピレン系樹脂粒子を熱処理して
得られる発泡用改質ポリプロピレン系樹脂粒子であっ
て、走査型示差熱量測定で得られるDSC曲線の主吸熱
ピーク温度が熱処理前のポリプロピレン系樹脂粒子の主
吸熱ピーク温度よりも5℃以上高いことを特徴とする発
泡用改質ポリプロピレン系樹脂粒子が提供される。Thus, according to the present invention, there is provided a modified polypropylene resin particle for foaming obtained by heat-treating a polypropylene resin particle containing a propylene copolymer with ethylene and / or another α-olefin as a main component. A modified polypropylene resin particle for foaming, wherein the main endothermic peak temperature of the DSC curve obtained by the scanning differential calorimetry is higher by at least 5 ° C. than the main endothermic peak temperature of the polypropylene resin particle before the heat treatment. Is provided.
【0008】また、上記の発泡用改質ポリプロピレン系
樹脂粒子に発泡剤を含浸させてなることを特徴とする発
泡性ポリプロピレン系樹脂粒子が提供される。また、上
記の発泡性ポリプロピレン系樹脂粒子を予備発泡させて
なることを特徴とするポリプロピレン系樹脂発泡粒子が
提供される。また、上記のポリプロピレン系樹脂発泡粒
子を用いて、発泡剤を含むガス雰囲気下での加圧および
予備発泡を1回または複数回行うことにより得られるこ
とを特徴とするポリプロピレン系樹脂発泡粒子が提供さ
れる。また、上記のポリプロピレン系樹脂発泡粒子を型
内成形して得られることを特徴とするポリプロピレン系
樹脂発泡成形体が提供される。さらに、本発明によれ
ば、エチレンおよび(または)他のα−オレフィンとの
プロピレン共重合体を主成分とするポリプロピレン系樹
脂粒子を、該ポリプロピレン系樹脂粒子の走査型示差熱
量測定で得られるDSC曲線の主吸熱ピーク温度からそ
れより15℃高い温度までの範囲内で熱処理することを
特徴とする発泡用改質ポリプロピレン系樹脂粒子の製造
方法が提供される。また、上記の方法で得られる発泡用
改質ポリプロピレン系樹脂粒子に、熱処理前のポリプロ
ピレン系樹脂粒子のビカット軟化温度よりも低い温度で
発泡剤を含浸させることを特徴とする発泡性ポリプロピ
レン系樹脂粒子の製造方法が提供される。また、上記の
方法で得られる発泡性ポリプロピレン系樹脂粒子を予備
発泡させることを特徴とするポリプロピレン系樹脂発泡
粒子の製造方法が提供される。また、上記の方法で得ら
れるポリプロピレン系樹脂発泡粒子を発泡剤を含むガス
雰囲気下での加圧および予備発泡を1回または複数回行
うことを特徴とするポリプロピレン系樹脂発泡粒子の製
造方法が提供される。また、上記の方法で得られるポリ
プロピレン系樹脂発泡粒子を型内成形することを特徴と
するポリプロピレン系樹脂発泡成形体の製造方法が提供
される。[0008] The present invention also provides expandable polypropylene resin particles obtained by impregnating the above-mentioned foamed modified polypropylene resin particles with a foaming agent. Further, the present invention provides foamed polypropylene resin particles obtained by prefoaming the foamable polypropylene resin particles. Further, the present invention provides foamed polypropylene-based resin particles obtained by performing one or more times of pressurization and preliminary foaming under a gas atmosphere containing a foaming agent using the above-described foamed polypropylene-based resin particles. Is done. Further, there is provided a foamed polypropylene resin article obtained by molding the above-mentioned foamed polypropylene resin particles in a mold. Further, according to the present invention, a DSC obtained by scanning a polypropylene-based resin particle having a propylene copolymer with ethylene and / or another α-olefin as a main component by scanning differential calorimetry of the polypropylene-based resin particle is used. A process for producing modified polypropylene resin particles for foaming, characterized in that heat treatment is performed within a range from the main endothermic peak temperature of the curve to a temperature 15 ° C. higher than the temperature. Further, expandable polypropylene-based resin particles obtained by impregnating the foamed modified polypropylene-based resin particles obtained by the above method with a blowing agent at a temperature lower than the Vicat softening temperature of the polypropylene-based resin particles before heat treatment. Is provided. Further, there is provided a method for producing expanded polypropylene resin particles, wherein the expandable polypropylene resin particles obtained by the above method are pre-expanded. Further, there is provided a method for producing expanded polypropylene resin particles, wherein the expanded polypropylene resin particles obtained by the above method are subjected to pressurization and preliminary expansion once or plural times in a gas atmosphere containing a blowing agent. Is done. Further, there is provided a method for producing a foamed polypropylene resin article, which comprises molding the foamed polypropylene resin particles obtained by the above method in a mold.
【0009】[0009]
【発明の実施の形態】この発明において使用されるポリ
プロピレン系樹脂粒子は、エチレンおよび(または)他
のα−オレフィンとのプロピレン共重合体を主成分と
し、この共重合体中のエチレンおよび(または)他のα
−オレフィンの含量は0.1〜20重量%が好ましく、
0.5〜10重量%がさらに好ましい。エチレンおよび
(または)他のα−オレフィンの含量が0.1重量%未
満ではポリプロピレン樹脂に近似となり、得られる発泡
成形体の柔軟性が低下するばかりでなく、発泡成形温度
が高くなり、発泡機および成形機の金型の耐久性の点で
好ましくない。また、エチレンおよび(または)他のα
−オレフィンの含量が20重量%を超えると、発泡成形
体の低密度化のためには架橋工程が必須となり、その結
果、リサイクル性の点で好ましくない。DETAILED DESCRIPTION OF THE INVENTION The polypropylene resin particles used in the present invention are mainly composed of a propylene copolymer with ethylene and / or another α-olefin, and the ethylene and / or (or ) Other α
The olefin content is preferably 0.1-20% by weight,
0.5-10% by weight is more preferred. When the content of ethylene and / or other α-olefin is less than 0.1% by weight, it is close to a polypropylene resin, and not only the flexibility of the obtained foamed molded article is lowered, but also the foaming molding temperature is increased, and In addition, it is not preferable in terms of the durability of the mold of the molding machine. Also, ethylene and / or other α
-When the olefin content exceeds 20% by weight, a crosslinking step is indispensable for reducing the density of the foamed molded article, and as a result, it is not preferable in terms of recyclability.
【0010】この発明において、エチレン以外のα−オ
レフィンとしては、例えばブテン−1、イソブテン、ペ
ンテン−1,3−メチル−ブテン−1、オクテン−1、
デセン−1、ドデセン−1等の炭素数4〜12のものが
挙げられる。In the present invention, examples of the α-olefin other than ethylene include butene-1, isobutene, pentene-1,3-methyl-butene-1, octene-1,
Those having 4 to 12 carbon atoms such as decene-1 and dodecene-1 are exemplified.
【0011】また、この発明において使用される熱処理
前のポリプロピレン系樹脂粒子は、70〜145℃のビ
カット軟化温度を有するものが好ましい。ビカット軟化
温度が70℃未満であると、発泡時の流動性が大きくな
り易く、発泡直後に収縮が起こりやすいので、結果的に
低密度の発泡粒子が得られ難くなり好ましくない。ま
た、このような樹脂の発泡粒子を用いて型内成形する
と、成形後の収縮が起こりやすく、寸法安定性の良い発
泡成形体が得られ難くなるので好ましくない。他方、ビ
カット軟化温度が145℃を超えると、発泡時の流動性
が低下し易く、発泡粒子の密度が高くなり、不均一なも
のになる。また、このようなポリプロピレン系樹脂粒子
から得られる発泡粒子は、型内で成形しても1つの成形
品の中に発泡粒子と未発泡粒子が混在したものとなり、
所望の緩衝性を備えた発泡成形品が得られ難い。The polypropylene resin particles before heat treatment used in the present invention preferably have a Vicat softening temperature of 70 to 145 ° C. If the Vicat softening temperature is less than 70 ° C., the fluidity during foaming tends to increase, and shrinkage tends to occur immediately after foaming. In-mold molding using such resin foam particles is not preferable because shrinkage tends to occur after molding and it becomes difficult to obtain a foam molding having good dimensional stability. On the other hand, if the Vicat softening temperature exceeds 145 ° C., the fluidity during foaming tends to decrease, the density of the foamed particles increases, and the foam becomes non-uniform. In addition, foamed particles obtained from such polypropylene-based resin particles, even if molded in a mold, becomes a mixture of foamed particles and unfoamed particles in one molded article,
It is difficult to obtain a foam molded article having a desired cushioning property.
【0012】また、熱処理前のポリプロピレン系樹脂粒
子のビカット軟化温度は、前記ポリプロピレン系樹脂粒
子のDSC曲線における主吸熱ピーク温度より5℃以上
低い温度であることが好ましく、10℃以上低い温度で
あることがさらに好ましい。熱処理前のビカット軟化温
度と主吸熱ピーク温度との差が5℃未満であるようなポ
リプロピレン系樹脂粒子を本発明の方法により熱処理し
ても、得られる効果が乏しく、発泡性ポリプロピレン系
樹脂粒子を大気中に取り出して開放した後、時間が経過
してから発泡した場合は発泡粒子の密度が高くなりやす
い。The Vicat softening temperature of the polypropylene resin particles before the heat treatment is preferably at least 5 ° C. lower than the main endothermic peak temperature in the DSC curve of the polypropylene resin particles, and is at least 10 ° C. lower. Is more preferable. Even if the polypropylene resin particles having a difference between the Vicat softening temperature before heat treatment and the main endothermic peak temperature of less than 5 ° C. are heat-treated by the method of the present invention, the effect obtained is poor and the expandable polypropylene resin particles In the case where foaming takes place after a certain time has elapsed after being taken out into the atmosphere and opened, the density of the foamed particles tends to increase.
【0013】この発明で使用されるポリプロピレン系樹
脂粒子は、エチレンおよび(または)他のα−オレフィ
ンとのプロピレン共重合体を主成分とするものである
が、プロピレンあるいはエチレンおよび(または)他の
α−オレフィンと共重合し得る他の単量体を分子内に含
有するものであってもよい。そのような単量体として
は、環状オレフィンおよびジエン系単量体から選ばれる
1種または2種以上のものが挙げられる。環状オレフィ
ンとしては、例えばシクロペンテン、シクロヘキセン等
が挙げられ、ジエン系単量体としては、例えばブタジエ
ン、ノルボルネン、5−メチレン−2−ノルボルネン、
1,4−ヘキサジエン、メチル−1,4−ヘキサジエン
等が挙げられる。なお、ポリプロピレン系樹脂粒子の製
造に際しては、スチレン、塩化ビニル、塩化ビニリデ
ン、アクリロニトリル、酢酸ビニル、アクリル酸、メタ
クリル酸、マレイン酸等のビニル単量体を少量使用して
もよい。The polypropylene resin particles used in the present invention are mainly composed of a propylene copolymer with ethylene and / or another α-olefin. Other monomers that can be copolymerized with the α-olefin may be contained in the molecule. Examples of such a monomer include one or more selected from a cyclic olefin and a diene-based monomer. Examples of the cyclic olefin include cyclopentene and cyclohexene, and examples of the diene-based monomer include butadiene, norbornene, 5-methylene-2-norbornene,
Examples thereof include 1,4-hexadiene and methyl-1,4-hexadiene. In producing the polypropylene resin particles, a small amount of a vinyl monomer such as styrene, vinyl chloride, vinylidene chloride, acrylonitrile, vinyl acetate, acrylic acid, methacrylic acid, and maleic acid may be used.
【0014】この発明におけるエチレンおよび(また
は)α−オレフィンとプロピレンとの共重合体は、二元
共重合体、三元共重合体および多元共重合体のいずれで
もよい。また、ランダム共重合体およびブロック共重合
体のいずれでもよいが、ランダム共重合体が好ましく、
プロピレンとエチレンあるいはブテン−1とのランダム
共重合体が特に好ましい。この発明では、リサイクル性
等を損なわない範囲で、ポリプロピレン系樹脂粒子に、
他の熱可塑性樹脂を1種または2種以上溶融混練した樹
脂粒子を使用することもできる。The copolymer of ethylene and / or α-olefin with propylene in the present invention may be any of a binary copolymer, a terpolymer and a multipolymer. Further, any of a random copolymer and a block copolymer may be used, but a random copolymer is preferable,
Particularly preferred is a random copolymer of propylene and ethylene or butene-1. In the present invention, polypropylene resin particles are added to the extent that the recyclability and the like are not impaired.
Resin particles obtained by melt-kneading one or more kinds of other thermoplastic resins can also be used.
【0015】そのような溶融混練し得る熱可塑性樹脂と
しては、例えば、ポリプロピレン単独重合体;エチレ
ン、α−オレフィン、環状オレフィン、ジエン系単量体
およびビニル系単量体から選ばれる1種または2種以上
の単量体との二元共重合体、三元共重合体あるいは多元
共重合体であって、ランダム共重合またはブロック共重
合しているもの、例えば、エチレン−プロピレンランダ
ムコポリマー、エチレン−プロピレンブロックコポリマ
ー、エチレン−プロピレン−ブテンランダム三元共重合
体等;低密度ポリエチレン、高密度ポリエチレン、直鎖
状低密度ポリエチレン、ポリブテン−1、ポリイソブテ
ン、ポリペンテン−1、ポリメチルペンテン−1等の炭
素数4〜12のα−ポリオレフィン;シクロペンテン等
を含む環状ポリオレフィン;1,2−ポリブタジエン、
1,3−ポリブタジエン等の単独ジエン系重合体;ノル
ボルネン、5−メチレン−2−ノルボルネン、1,4−
ヘキサジエン、メチル−1,4−ヘキサジエン等と共重
合したジエン系共重合体;ブタジエンとスチレンとのブ
ロック共重合体およびその水添物;塩化ビニル、塩化ビ
ニリデン、スチレン、アクリロニトリル、酢酸ビニル、
アクリル酸、メタクリル酸、マレイン酸等のビニル系単
独または共重合体等が挙げられる。The thermoplastic resin that can be melt-kneaded includes, for example, one or two selected from polypropylene homopolymer; ethylene, α-olefin, cyclic olefin, diene monomer and vinyl monomer. Binary copolymers, terpolymers or multipolymers with at least one kind of monomer, which are randomly or block copolymerized, for example, ethylene-propylene random copolymer, ethylene- Propylene block copolymer, ethylene-propylene-butene random terpolymer, etc .; carbon such as low density polyethylene, high density polyethylene, linear low density polyethylene, polybutene-1, polyisobutene, polypentene-1, polymethylpentene-1 Α-polyolefin of Formulas 4 to 12; cyclic polyolefin containing cyclopentene and the like 1,2-polybutadiene;
Homodiene polymers such as 1,3-polybutadiene; norbornene, 5-methylene-2-norbornene, 1,4-
A diene copolymer copolymerized with hexadiene, methyl-1,4-hexadiene, or the like; a block copolymer of butadiene and styrene and a hydrogenated product thereof; vinyl chloride, vinylidene chloride, styrene, acrylonitrile, vinyl acetate;
Examples include vinyl homo- or copolymers such as acrylic acid, methacrylic acid, and maleic acid.
【0016】以上のポリマーは、コニーダー、バンバリ
ーミキサー、プラベンダー、単軸押出機、2軸押出機等
の混練機により、180〜250℃でポリプロピレン系
樹脂粒子に均一に溶融混練することができる。これら混
練機の中では、生産性の点から単軸および2軸押出機が
好ましい。溶融混練は各々の化合物を十分に均一に混合
するため、複数回行ってもよい。このようにしてなるポ
リプロピレン系樹脂粒子には、所望により、各種添加
剤、例えば、酸化防止剤、難燃剤、難燃助剤、帯電防止
剤、気泡調整剤等を押出し溶融混練時、熱処理時または
発泡剤の含浸時にさらに添加することもできる。The above-mentioned polymer can be uniformly melt-kneaded with the polypropylene resin particles at 180 to 250 ° C. by a kneader such as a co-kneader, a Banbury mixer, a pravender, a single-screw extruder or a twin-screw extruder. Among these kneaders, single-screw and twin-screw extruders are preferred from the viewpoint of productivity. Melt kneading may be performed a plurality of times in order to sufficiently uniformly mix each compound. In the polypropylene-based resin particles thus obtained, if desired, various additives such as an antioxidant, a flame retardant, a flame retardant auxiliary, an antistatic agent, a foam control agent, etc. are extruded, melt-kneaded, heat-treated or It can be further added at the time of impregnation of the blowing agent.
【0017】本発明の発泡用改質ポリプロピレン系樹脂
粒子は、ポリプロピレン系樹脂粒子のDSC曲線におけ
る主吸熱ピーク温度からそれより15℃高い温度までの
範囲内で熱処理することにより得られる。このようにし
て得られる発泡用改質ポリプロピレン系樹脂粒子のDS
C曲線における主吸熱ピーク温度は、熱処理前のポリプ
ロピレン系樹脂粒子の主吸熱ピーク温度よりも5℃以
上、好ましくは10℃以上高くなっている(図1)。ま
た、熱処理前のポリプロピレン系樹脂粒子のDSC曲線
における主吸熱ピーク温度より5〜10℃高い温度範囲
内で熱処理して得られる発泡用改質ポリプロピレン系樹
脂粒子は、DSC曲線における主吸熱ピーク温度が熱処
理前のポリプロピレン系樹脂粒子の主吸熱ピーク温度よ
りも5℃以上、好ましくは10℃以上高くなっていると
ともに、熱処理前の主吸熱ピーク温度より7℃以上低い
温度に、もう一つの吸熱ピークを有する(図2)。主吸
熱ピーク以外にもう一つの吸熱ピークを有するこの発泡
用改質ポリプロピレン系樹脂粒子を用いると、発泡性ポ
リプロピレン系樹脂粒子を大気中に取り出してから時間
が経過した後で発泡させても、密度が小さい発泡粒子を
得ることができる。The modified polypropylene resin particles for foaming of the present invention can be obtained by subjecting the polypropylene resin particles to a heat treatment within a range from the main endothermic peak temperature in the DSC curve to a temperature higher by 15 ° C. than that. DS of the modified polypropylene resin particles for foaming thus obtained
The main endothermic peak temperature in the C curve is higher than the main endothermic peak temperature of the polypropylene resin particles before the heat treatment by 5 ° C. or more, preferably 10 ° C. or more (FIG. 1). In addition, the modified polypropylene resin particles for foaming obtained by heat treatment within a temperature range 5 to 10 ° C. higher than the main endothermic peak temperature in the DSC curve of the polypropylene resin particles before the heat treatment have a main endothermic peak temperature in the DSC curve. The other endothermic peak is at least 5 ° C., preferably at least 10 ° C. higher than the main endothermic peak temperature of the polypropylene resin particles before heat treatment, and at least 7 ° C. lower than the main endothermic peak temperature before heat treatment. (FIG. 2). When this expanded polypropylene resin particles for foaming having another endothermic peak in addition to the main endothermic peak is used, even if foaming is performed after a lapse of time since the expandable polypropylene resin particles are taken out into the air, the density is not increased. However, foamed particles having a small particle size can be obtained.
【0018】本発明の発泡用改質ポリプロピレン系樹脂
粒子の製造方法における熱処理は、例えば、水に難溶性
の無機塩を含む水性懸濁液にポリプロピレン系樹脂粒子
を分散させた後、撹拌機で撹拌し、系内を加温すること
により行われる。ポリプロピレン系樹脂粒子の量は、水
性懸濁液100重量部に対して100〜20重量部が好
ましく、70〜50重量部がさらに好ましい。また、水
に難溶性の無機塩としては、第3燐酸カルシウム、ピロ
リン酸マグネシウム等の無機塩が挙げられる。水に難溶
性の無機塩の含量は、ポリプロピレン系樹脂粒子に対し
て、通常0.5〜5重量%であることが好ましい。例え
ば第3燐酸カルシウムの場合、ポリプロピレン系樹脂粒
子に対して通常0.5〜2重量%が好ましい。The heat treatment in the method for producing the modified polypropylene resin particles for foaming of the present invention is carried out, for example, by dispersing the polypropylene resin particles in an aqueous suspension containing an inorganic salt which is hardly soluble in water, and then using a stirrer. Stirring is performed by heating the system. The amount of the polypropylene resin particles is preferably from 100 to 20 parts by weight, more preferably from 70 to 50 parts by weight, based on 100 parts by weight of the aqueous suspension. Examples of the inorganic salts that are hardly soluble in water include inorganic salts such as tertiary calcium phosphate and magnesium pyrophosphate. It is preferable that the content of the inorganic salt hardly soluble in water is usually 0.5 to 5% by weight with respect to the polypropylene resin particles. For example, in the case of tertiary calcium phosphate, it is usually preferably 0.5 to 2% by weight based on the polypropylene resin particles.
【0019】また、これらの水に難溶性の無機塩を使用
する場合は、ドデシルベンゼンスルホン酸ソーダのよう
なアニオン系界面活性剤を併用してもよい。ポリプロピ
レン系樹脂粒子を熱処理するときの温度は、DSC曲線
における熱処理前のポリプロピレン系樹脂粒子の主吸熱
ピーク温度からそれより15℃高い温度までの範囲内で
あることが好ましく、主吸熱ピーク温度より5〜10℃
高い温度までの範囲内であることがさらに好ましい。こ
の温度が主吸熱ピーク温度より15℃よりも高い温度で
あると、発泡剤の含浸時に樹脂粒子どうしが合着しやす
くなり、製造上好ましくない。また、発泡性ポリプロピ
レン系樹脂粒子を大気中に取り出して開放後、時間が経
過した後に発泡すると、嵩密度が高くなりやすいため好
ましくない。他方、熱処理の温度が主吸熱ピーク温度よ
りも低い場合には、低密度の発泡粒子が得られ難くなる
上、発泡性ポリプロピレン系樹脂粒子を大気中に取り出
して開放後、時間が経過した後に発泡すると、嵩密度が
高くなりやすいため好ましくない。When these water-insoluble inorganic salts are used, an anionic surfactant such as sodium dodecylbenzenesulfonate may be used in combination. The temperature at which the polypropylene-based resin particles are heat-treated is preferably in the range from the main endothermic peak temperature of the polypropylene-based resin particles before the heat treatment to a temperature 15 ° C. higher than that in the DSC curve, -10 ° C
More preferably, it is in the range up to high temperatures. If this temperature is higher than the main endothermic peak temperature by more than 15 ° C., the resin particles tend to coalesce during the impregnation of the foaming agent, which is not preferable in production. In addition, if the foamable polypropylene resin particles are taken out into the atmosphere and opened, and then foamed after a lapse of time, the bulk density tends to increase, which is not preferable. On the other hand, when the temperature of the heat treatment is lower than the main endothermic peak temperature, it is difficult to obtain low-density foamed particles, and after the foamable polypropylene-based resin particles are taken out into the atmosphere and opened, and after a lapse of time, the foaming occurs. Then, the bulk density tends to increase, which is not preferable.
【0020】熱処理にかける時間は特に限定されない
が、原料のポリプロピレン系樹脂粒子の大きさ(体
積)、形状等により異なる。例えば、粒子の体積が3.
0mm3 程度である場合、熱処理時間は所定の温度に達
してから0.5時間以上が好ましい。この時間が0.5
時間未満であると、ポリプロピレン系樹脂粒子の中心部
分と表面部分との間に熱処理のむらが発生する場合があ
り、得られる発泡粒子では、一つの発泡粒子内に気泡径
のばらつきが生じ、そのような発泡粒子から得られる発
泡成形体は所望の緩衝性を備えないおそれがある。The time required for the heat treatment is not particularly limited, but varies depending on the size (volume), shape, and the like of the raw polypropylene resin particles. For example, if the particle volume is 3.
When it is about 0 mm 3 , the heat treatment time is preferably 0.5 hours or more after reaching a predetermined temperature. This time is 0.5
If the time is less than the time, unevenness of the heat treatment may occur between the central portion and the surface portion of the polypropylene-based resin particles, and in the obtained foamed particles, a variation in the bubble diameter occurs in one foamed particle. There is a possibility that the foamed molded article obtained from the natural foamed particles does not have a desired cushioning property.
【0021】本発明の発泡性ポリプロピレン系樹脂粒子
は、通常、上記のようにして得られる発泡用改質ポリプ
ロピレン系樹脂粒子に、熱処理前のポリプロピレン系樹
脂粒子のビカット軟化温度より低い温度で発泡剤を含浸
させることにより得られる。このようにして、低密度の
発泡粒子を得ることができ、発泡性ポリプロピレン系樹
脂粒子を大気中に取り出して開放後、時間が経過した後
に発泡しても、低密度の発泡粒子が得られる。このこと
は、ポリプロピレン系樹脂粒子を、DSC曲線における
主吸熱ピーク温度からそれより15℃高い温度までの範
囲内で熱処理を行うことにより、樹脂粒子の結晶構造が
変化していることが原因ではないかと推測される。そし
て、含浸温度が熱処理前のポリプロピレン系樹脂粒子の
ビカット軟化温度を超えると、結晶構造が安定しようと
する力が働き、本発明の特長である低密度の発泡粒子が
得られ難くなる上、発泡性ポリプロピレン系樹脂粒子を
大気中に取り出して開放後、時間が経過した後に発泡す
ると密度が高くなり、好ましくない。The expandable polypropylene resin particles of the present invention are usually added to the foamed modified polypropylene resin particles obtained as described above at a temperature lower than the Vicat softening temperature of the polypropylene resin particles before heat treatment. Is obtained by impregnation. In this manner, low-density foamed particles can be obtained, and even if foamable polypropylene-based resin particles are taken out into the atmosphere and opened, and then foamed after a lapse of time, low-density foamed particles can be obtained. This is not due to the fact that the crystal structure of the resin particles is changed by performing the heat treatment on the polypropylene-based resin particles within a range from the main endothermic peak temperature in the DSC curve to a temperature higher by 15 ° C. than that. It is guessed. When the impregnation temperature exceeds the Vicat softening temperature of the polypropylene-based resin particles before the heat treatment, a force for stabilizing the crystal structure acts, and it becomes difficult to obtain low-density expanded particles which are a feature of the present invention. If the foaming is carried out after a certain period of time has elapsed after the porous polypropylene resin particles have been taken out into the atmosphere and opened, the density increases, which is not preferable.
【0022】発泡剤としては、常圧沸点が−50℃〜含
浸温度未満の範囲にある揮発性有機発泡剤、例えば、プ
ロパン、n−ブタン、i−ブタン、n−ペンタン、i−
ペンタン、シクロペンタン、ペンテン、ヘキサン等の炭
化水素、メチレンクロライド、ジクロロジフルオロメタ
ン、トリクロロモノフルオロメタン、モノクロロジフル
オロメタン、1,2−ジクロロテトラフルオロエタン、
トリクロロトリフルオロエタン等のハロゲン化炭化水
素、あるいは二酸化炭素、空気等の無機ガス系発泡剤等
が挙げられ、これらの発泡剤は単独で、または2種以上
混合して使用することができるが、中でもイソブタンが
特に好ましい。発泡剤の添加量は、発泡剤の種類によっ
ても異なるが、通常、発泡用改質ポリプロピレン系樹脂
粒子に対して10〜50重量%が好ましい。例えばイソ
ブタンの場合は、発泡用改質ポリプロピレン系樹脂粒子
に対して約20〜30重量%が好ましい。As the blowing agent, volatile organic blowing agents having a normal pressure boiling point in the range of -50 ° C. to less than the impregnation temperature, for example, propane, n-butane, i-butane, n-pentane, i-pentane
Pentane, cyclopentane, pentene, hydrocarbons such as hexane, methylene chloride, dichlorodifluoromethane, trichloromonofluoromethane, monochlorodifluoromethane, 1,2-dichlorotetrafluoroethane,
Halogenated hydrocarbons such as trichlorotrifluoroethane, or carbon dioxide, inorganic gas-based blowing agents such as air, and the like, and these blowing agents can be used alone or as a mixture of two or more, Among them, isobutane is particularly preferred. The amount of the foaming agent varies depending on the type of the foaming agent, but is usually preferably 10 to 50% by weight based on the modified polypropylene resin particles for foaming. For example, in the case of isobutane, the content is preferably about 20 to 30% by weight based on the modified polypropylene resin particles for foaming.
【0023】これらの発泡剤を本発明の発泡用改質ポリ
プロピレン系樹脂粒子に含浸させる方法は特に限定され
ず、水懸濁液系でも気相系でもよい。これらの方法のう
ち、水懸濁液中で含浸させる場合には、水に難溶性の無
機塩を含む懸濁液が用いられ、発泡剤の他に、発泡性樹
脂粒子を形成する際に通常用いられる各種の添加剤、例
えば、ドデシルベンゼンスルホン酸ソーダのような界面
活性剤、発泡助剤(溶剤、可塑剤)、滑剤等を添加して
もよい。水に難溶性の無機塩としては、前記の熱処理に
おける無機塩と同様のものが例示される。発泡助剤とし
ては、例えば、トルエン、エチルベンゼン、シクロヘキ
サン、イソパラフィン等が挙げられる。これらの発泡助
剤は、通常、発泡用改質ポリプロピレン系樹脂粒子に対
して0.1〜5重量%程度添加される。The method for impregnating the foamed modified polypropylene resin particles of the present invention with these foaming agents is not particularly limited, and may be an aqueous suspension system or a gas phase system. Among these methods, when impregnating in an aqueous suspension, a suspension containing an inorganic salt that is hardly soluble in water is used. Various additives used, for example, a surfactant such as sodium dodecylbenzenesulfonate, a foaming aid (solvent, plasticizer), a lubricant and the like may be added. Examples of the inorganic salts that are hardly soluble in water include the same inorganic salts as those used in the heat treatment. Examples of the foaming aid include toluene, ethylbenzene, cyclohexane, and isoparaffin. These foaming assistants are usually added in an amount of about 0.1 to 5% by weight based on the foamed modified polypropylene resin particles.
【0024】発泡剤の含浸時間は特に限定されないが、
発泡用改質ポリプロピレン系樹脂粒子の大きさ(体
積)、形状等により変動し、例えば、粒子の体積が3.
0mm3程度である場合、所定の温度に達してから3時
間以上、好ましくは4時間以上含浸が行われる。含浸時
間が所定の温度に達してから3時間未満であると、発泡
用改質ポリプロピレン系樹脂粒子の中心部分に芯と呼ば
れる未含浸部分ができ易く、発泡粒子とした際に、一つ
の発泡粒子内に発泡部分と未発泡部分が混在し、そのよ
うな発泡粒子から得られる発泡成形体は所望の緩衝性を
備えない場合がある。The impregnation time of the foaming agent is not particularly limited.
It varies depending on the size (volume), shape, and the like of the modified polypropylene resin particles for foaming.
When it is about 0 mm 3 , the impregnation is performed for 3 hours or more, preferably 4 hours or more after reaching a predetermined temperature. If the impregnation time is less than 3 hours after reaching the predetermined temperature, an unimpregnated portion called a core is easily formed in the central portion of the expanded polypropylene resin particles for foaming. Inside, foamed portions and unfoamed portions are mixed, and a foamed molded article obtained from such foamed particles may not have a desired cushioning property.
【0025】なお、発泡剤の含浸は、ポリプロピレン系
樹脂粒子の熱処理の後、いったん冷却し、次いで該樹脂
粒子のビカット軟化温度より低い温度まで加温して行っ
てもよいが、熱処理時の温度がポリプロピレン系樹脂粒
子のビカット軟化温度よりも低い温度まで下がったとき
に引き続いて行ってもよい。The impregnation with the blowing agent may be carried out by cooling the polypropylene resin particles after the heat treatment and then heating the polypropylene resin particles to a temperature lower than the Vicat softening temperature of the resin particles. May be continued when the temperature of the resin drops to a temperature lower than the Vicat softening temperature of the polypropylene resin particles.
【0026】この発明のポリプロピレン系樹脂発泡粒子
は、上記の発泡性ポリプロピレン系樹脂粒子を予備発泡
することにより得られる。その方法としては、例えば、
予備発泡装置内で蒸気圧0.5〜5.0kgf/cm2
G程度の水蒸気を圧入することによって行うことができ
る。圧入時間は、20〜90秒が一般である。予備発泡
は、発泡性ポリプロピレン系樹脂粒子を常温で1日程度
放置した後に行うのが好ましい。また、より嵩密度の低
いポリプロピレン系樹脂発泡粒子を得るためには、上記
のようにして得られたポリプロピレン系樹脂発泡粒子
を、発泡剤を含むガス雰囲気下(圧力1.0〜50kg
f/cm2 G)に1〜50時間、好ましくは4〜50時
間保って加圧したのち、予備発泡させる工程を1回ない
し複数回行うことが好ましい。この際用いられる発泡剤
としては、前記と同様に、例えば、プロパン、n−ブタ
ン、i−ブタン等の炭化水素、ジクロロジフルオロメタ
ン、モノクロロジフルオロメタン、1,2−ジクロロテ
トラフルオロエタン等のハロゲン化炭化水素等の常圧沸
点が−50〜含浸温度未満の範囲にある揮発性有機発泡
剤、または二酸化炭素、空気等の無機ガス系発泡剤等が
挙げられ、これらの発泡剤は単独で、または二種以上混
合して使用することができる。そして、予備発泡の方法
も、前記と同様である。この発明のポリプロピレン系樹
脂発泡成形体は、以上のようにして得られるポリプロピ
レン系樹脂発泡粒子を型内成形することにより得られ
る。型内成形は、所望の形状を有し、かつ発泡粒子を閉
鎖し得るが、密閉し得ない金型内で、例えば、蒸気圧
0.5〜5.0kgf/cm2 G程度の水蒸気を型内に
圧入することによって行うことができる。発泡成形後、
型を水冷または空冷し、成形体を型から取り出すことに
よりポリプロピレン系樹脂発泡成形体が得られる。な
お、型内成形は、ポリプロピレン系樹脂発泡粒子を常温
で1日程度放置し、次いで、発泡剤を含むガス雰囲気下
(圧力1.0〜50kgf/cm2 G)で1〜24時間
程度、好ましくは4〜24時間程度保持した後に行うの
が好ましい。The expanded polypropylene resin particles of the present invention can be obtained by pre-expanding the expandable polypropylene resin particles. As a method, for example,
Vapor pressure of 0.5 to 5.0 kgf / cm 2 in the prefoaming device
It can be performed by injecting about G steam. The press-in time is generally 20 to 90 seconds. The pre-expansion is preferably performed after the expandable polypropylene resin particles have been left at room temperature for about one day. Further, in order to obtain expanded polypropylene resin particles having a lower bulk density, the expanded polypropylene resin particles obtained as described above are placed under a gas atmosphere containing a foaming agent (at a pressure of 1.0 to 50 kg).
It is preferable that the step of prefoaming is carried out once or plural times after the pressure is maintained at f / cm 2 G) for 1 to 50 hours, preferably 4 to 50 hours. As the foaming agent used at this time, as described above, for example, hydrocarbons such as propane, n-butane and i-butane, halogenated compounds such as dichlorodifluoromethane, monochlorodifluoromethane, and 1,2-dichlorotetrafluoroethane are used. Volatile organic blowing agents having a normal pressure boiling point such as hydrocarbons in the range of -50 to less than the impregnation temperature, or carbon dioxide, inorganic gas-based blowing agents such as air, and the like, and these blowing agents alone or Two or more kinds can be used as a mixture. The method of prefoaming is the same as described above. The expanded polypropylene resin article of the present invention is obtained by molding the expanded polypropylene resin particles obtained as described above in a mold. In-mold molding has a desired shape and can close foam particles, but in a mold that cannot be closed, for example, steam having a vapor pressure of about 0.5 to 5.0 kgf / cm 2 G is injected into the mold. It can be performed by press-fitting the inside. After foam molding,
The polypropylene resin foam molded article is obtained by cooling the mold with water or air and removing the molded article from the mold. In the in-mold molding, the polypropylene-based resin foamed particles are allowed to stand at room temperature for about one day, and then under a gas atmosphere containing a foaming agent (at a pressure of 1.0 to 50 kgf / cm 2 G) for about 1 to 24 hours, preferably. Is preferably performed after holding for about 4 to 24 hours.
【実施例】この発明を実施例により、さらに詳細に説明
するが、この発明はこれらの実施例によって何ら制限さ
れるものではない。EXAMPLES The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
【0027】実施例1 (発泡用改質ポリプロピレン系樹脂粒子の製造方法)Example 1 (Method for producing modified polypropylene resin particles for foaming)
【0028】内容積100Lのオートクレーブに、水5
0L、分散剤としての第3燐酸カルシウム 600g、
活性剤としてのドデシルベンゼンスルホン酸ソーダ30
gを入れ、さらに気泡調整剤としてエチレンビスステア
リン酸アミド15gを入れて水性媒体とした。また、エ
チレン成分4重量%、走査型示差熱量測定で得られるD
SC曲線の主吸熱ピーク温度が135℃、ビカット軟化
温度117℃であるプロピレン−エチレンランダム共重
合樹脂を単軸押出機にて長さ2.0mm、直径1.5m
mのペレット状としたもの(ポリプロピレン系樹脂粒
子)30kgを上記の水性媒体に懸濁させ、撹拌速度1
50rpmで撹拌した。その後、混合物を145℃まで
加温し、その温度で1時間以上保ったのち、40℃まで
冷却し、脱水して生成物を取り出し、発泡用改質ポリプ
ロピレン樹脂粒子を得た。In an autoclave having an inner volume of 100 L, water 5
0 L, 600 g of tertiary calcium phosphate as dispersant,
Sodium dodecylbenzene sulfonate 30 as activator
g, and 15 g of ethylenebisstearic acid amide was further added as a cell regulator to obtain an aqueous medium. In addition, 4% by weight of ethylene component, D obtained by scanning differential calorimetry
A propylene-ethylene random copolymer resin having a main endothermic peak temperature of 135 ° C. and a Vicat softening temperature of 117 ° C. of an SC curve is 2.0 mm long and 1.5 m in diameter by a single screw extruder.
30 kg in the form of pellets (polypropylene resin particles) are suspended in the above aqueous medium, and the stirring speed is 1
Stirred at 50 rpm. Thereafter, the mixture was heated to 145 ° C., kept at that temperature for 1 hour or more, cooled to 40 ° C., dehydrated, and the product was taken out to obtain modified polypropylene resin particles for foaming.
【0029】この発泡用改質ポリプロピレン系樹脂粒子
のDSC曲線の主吸熱ピーク温度は156℃であり、熱
処理前のポリプロピレン系樹脂粒子の主吸熱ピーク温度
よりも21℃高かった。また、この発泡用改質ポリプロ
ピレン系樹脂粒子は、主吸熱ピークの他にもう一つ吸熱
ピークを有し、その吸熱ピーク温度は123℃であっ
た。 (発泡性ポリプロピレン系樹脂粒子の製造方法)次に内
容積5Lのオートクレーブに、水3L、分散剤としての
第3燐酸カルシウム30g、界面活性剤としてのドデシ
ルベンゼンスルホン酸ソーダ1gを入れて水性媒体とし
た。上記で得られた発泡用改質ポリプロピレン樹脂粒子
1kgをこの水性媒体に懸濁させ、撹拌速度350rp
mで撹拌した。その後、イソブタン250gを窒素圧を
利用して圧入した。その後、混合物を80℃まで加温
し、その温度で4時間以上保ち、25℃まで冷却した
後、脱水して生成物を取り出し、発泡性ポリプロピレン
系樹脂粒子を得た。The DSC curve of the expanded polypropylene resin particles for foaming had a main endothermic peak temperature of 156 ° C., which was 21 ° C. higher than the main endothermic peak temperature of the polypropylene resin particles before the heat treatment. The modified polypropylene resin particles for foaming had another endothermic peak in addition to the main endothermic peak, and the endothermic peak temperature was 123 ° C. (Production Method of Expandable Polypropylene Resin Particles) Next, 3 L of water, 30 g of calcium tertiary phosphate as a dispersant, and 1 g of sodium dodecylbenzenesulfonate as a surfactant were placed in an autoclave having a content volume of 5 L, and the mixture was mixed with an aqueous medium. did. 1 kg of the modified polypropylene resin particles for foaming obtained above is suspended in this aqueous medium, and the stirring speed is 350 rpm.
m. Thereafter, 250 g of isobutane was injected using nitrogen pressure. Thereafter, the mixture was heated to 80 ° C., kept at that temperature for 4 hours or more, cooled to 25 ° C., dehydrated, and the product was taken out to obtain expandable polypropylene resin particles.
【0030】得られた発泡性ポリプロピレン系樹脂粒子
をオートクレーブから取り出し、脱水して、10分、3
0分および60分経過したときの発泡性ポリプロピレン
系樹脂粒子を、それぞれ予備発泡機にて、水蒸気圧0.
5〜5.0kgf/cm2 Gの雰囲気下で30秒間加熱
して予備発泡し、各発泡粒子を得た。そして各発泡粒子
の嵩密度をそれぞれ測定した。測定した嵩密度のうち最
も小さい数値のものをそれぞれ表1に示す。これらの発
泡粒子は密度が低くて、均一であり、さらに発泡性ポリ
プロピレン系樹脂粒子を大気中に取り出して開放後、時
間が経過した後に発泡しても、得られる発泡粒子の密度
はほとんど変化しなかった。この実施例においてDSC
曲線は次の方法によって得た。The foamable polypropylene resin particles obtained were taken out of the autoclave, dehydrated, and dried for 10 minutes.
The foamable polypropylene-based resin particles after 0 minutes and 60 minutes have passed through a prefoaming machine, respectively, with a water vapor pressure of 0.
It was pre-foamed by heating in an atmosphere of 5 to 5.0 kgf / cm 2 G for 30 seconds to obtain foamed particles. Then, the bulk density of each expanded particle was measured. Table 1 shows the smallest values of the measured bulk densities. These foamed particles have a low density and are uniform.Furthermore, even after the foamable polypropylene-based resin particles are taken out into the atmosphere and opened, and then foamed after a lapse of time, the density of the obtained foamed particles hardly changes. Did not. In this embodiment, DSC
The curve was obtained by the following method.
【0031】すなわち、熱処理を施す前のポリプロピレ
ン系樹脂粒子3〜7mgを走査型示差熱量測定機(SEIK
O DSC 200 型)を用いて30〜220℃まで10℃/分
の昇温速度で加温したときに得られるDSC曲線から該
樹脂粒子の主吸熱ピーク温度を求めた。That is, 3 to 7 mg of the polypropylene resin particles before the heat treatment was applied to a scanning differential calorimeter (SEIK).
The main endothermic peak temperature of the resin particles was determined from a DSC curve obtained by heating at a rate of 10 ° C./min from 30 to 220 ° C. using an O DSC 200).
【0032】図1から明らかなように走査型示差熱量測
定で得られるDSC曲線の熱処理前のポリプロピレン系
樹脂粒子の主吸熱ピーク温度からそれより15℃高い温
度までの範囲内で熱処理が行われた発泡用改質ポリプロ
ピレン系樹脂粒子は、主吸熱ピーク温度が熱処理前と比
較して5℃以上高温側に移動していた。As is clear from FIG. 1, the heat treatment was performed within the range from the main endothermic peak temperature of the polypropylene resin particles before the heat treatment to the temperature 15 ° C. higher than the DSC curve obtained by the scanning differential calorimetry. The modified endothermic peak temperature of the expanded polypropylene resin particles for foaming was shifted to a higher temperature side by 5 ° C. or more than before the heat treatment.
【0033】ポリプロピレン系樹脂粒子をDSC曲線に
おける主吸熱ピーク温度より5℃高い温度から10℃高
い温度までの範囲内で熱処理することにより得られた発
泡用改質ポリプロピレン系樹脂粒子は、DSC曲線の主
吸熱ピーク温度が熱処理前のものよりも5℃以上移動
し、更に7℃以上低温側に他の吸熱ピークを有していた
(図2)。このような発泡用改質ポリプロピレン系樹脂
粒子を使用すれば、これにより得られる発泡性ポリプロ
ピレン系樹脂粒子を大気中に開放して、時間が経過した
後に発泡しても、嵩密度の変化が極めて少ないことがわ
かる。The modified polypropylene resin particles for foaming obtained by subjecting the polypropylene resin particles to a heat treatment within a temperature range of 5 ° C. to 10 ° C. higher than the main endothermic peak temperature in the DSC curve have the following characteristics. The main endothermic peak temperature shifted by 5 ° C. or more than that before the heat treatment, and had another endothermic peak on the low temperature side by 7 ° C. or more (FIG. 2). If such expanded polypropylene-based resin particles for foaming are used, the foamable polypropylene-based resin particles obtained thereby are opened to the atmosphere, and even when foamed after a lapse of time, the change in bulk density is extremely large. It turns out that there are few.
【0034】また、一度DSC曲線の主吸熱ピーク温度
を測定したポリプロピレン系樹脂粒子を220〜30℃
まで10℃/分の降温速度で冷却し、再度、走査型示差
熱量測定機(SEIKO DSC 200 型)を用いて30〜220
℃まで10℃/分の昇温速度で加温したときに得られる
DSC曲線の主吸熱ピーク温度は熱処理前の該樹脂粒子
の主吸熱ピーク温度とほぼ一致することから、発泡用改
質ポリプロピレン系樹脂粒子の主吸熱ピーク温度がポリ
プロピレン系樹脂粒子のものより高温側に移動するの
は、上記範囲内の温度で熱処理が行われたために生じた
現象であると理解できる。Further, once the main endothermic peak temperature of the DSC curve was measured, the polypropylene resin particles were heated at 220 to 30 ° C.
The sample was cooled at a rate of 10 ° C./min until the temperature was reduced to 30 to 220 again using a scanning differential calorimeter (SEIKO DSC 200).
Since the main endothermic peak temperature of the DSC curve obtained when heated to 10 ° C. at a rate of 10 ° C./min almost matches the main endothermic peak temperature of the resin particles before the heat treatment, the modified polypropylene foam for foaming is used. The reason why the main endothermic peak temperature of the resin particles moves to a higher temperature side than that of the polypropylene-based resin particles can be understood to be a phenomenon caused by the heat treatment performed at a temperature within the above range.
【0035】ビカット軟化温度は、JIS K−720
6に準拠した方法によって得た。すなわち、射出成形機
で作成した縦30mm、横40mm、厚さ5mmの板状
試験片から、縦10mm、横10mm、厚さ5mmの試
験試料を切り出し、ヒートデストーションテスター
((株)東洋精機製作所製)を用いて、加熱槽中の試験
片に垂直に置いた針状圧子を通じて、250gの荷重を
加えながら10℃/分で伝熱媒体を昇温させ、針状圧子
が1mm進入したときの伝熱媒体の温度をビカット軟化
温度とした。The Vicat softening temperature is JIS K-720.
6. Obtained by the method according to 6. That is, a test sample having a length of 10 mm, a width of 10 mm and a thickness of 5 mm is cut out from a plate-like test piece having a length of 30 mm, a width of 40 mm and a thickness of 5 mm prepared by an injection molding machine, and a heat distortion tester (Toyo Seiki Seisakusho Co. The temperature of the heat transfer medium was increased at 10 ° C./min while applying a load of 250 g through a needle-shaped indenter placed vertically on a test piece in a heating tank, and the needle-shaped indenter entered 1 mm. The temperature of the heat transfer medium was defined as the Vicat softening temperature.
【0036】発泡粒子の嵩密度は、JISK6767に
準拠した方法により、以下の算式により求めた。 嵩密度(g/cm3 )=W/V V:発泡粒子の嵩体積(cm3 ) W:発泡粒子の質量(g)The bulk density of the expanded particles was determined by the following formula according to a method based on JIS K6767. Bulk density (g / cm3) = W / V V: Bulk volume of expanded particles (cm3) W: Mass of expanded particles (g)
【0037】実施例2・3 熱処理時の温度が表1に示すとおりである以外は、実施
例1と同様の方法で発泡性ポリプロピレン系樹脂粒子を
得た。熱処理を施した後の発泡用改質ポリプロピレン系
樹脂粒子のDSC曲線の主吸熱ピーク温度は実施例2が
147℃で、実施例3が140℃であった。これらの発
泡用改質ポリプロピレン系樹脂粒子では、実施例1の主
吸熱ピーク以外のもう一つの吸熱ピークに相当する明確
なピークは認められなかった。Examples 2 and 3 Expandable polypropylene resin particles were obtained in the same manner as in Example 1 except that the temperature during the heat treatment was as shown in Table 1. The main endothermic peak temperature of the DSC curve of the modified polypropylene resin particles for foaming after heat treatment was 147 ° C in Example 2 and 140 ° C in Example 3. In these expanded polypropylene resin particles for foaming, no clear peak corresponding to another endothermic peak other than the main endothermic peak of Example 1 was observed.
【0038】得られた発泡性ポリプロピレン系樹脂粒子
を取り出してから、10分、30分および60分経過し
たときの発泡性ポリプロピレン系樹脂粒子を、それぞれ
予備発泡し、各発泡粒子を得た。そして各発泡粒子の嵩
密度をそれぞれ測定した。測定した嵩密度のうち最も小
さい数値のものをそれぞれ表1に示す。 実施例4・5 発泡剤を含浸させるときの温度が表1のとおりである以
外は、実施例1と同様の方法で発泡性ポリプロピレン系
樹脂粒子を得た。The foamable polypropylene resin particles 10 minutes, 30 minutes and 60 minutes after the obtained foamable polypropylene resin particles were taken out were prefoamed to obtain foamed particles. Then, the bulk density of each expanded particle was measured. Table 1 shows the smallest values of the measured bulk densities. Examples 4 and 5 Expandable polypropylene resin particles were obtained in the same manner as in Example 1 except that the temperature at which the blowing agent was impregnated was as shown in Table 1.
【0039】得られた発泡性ポリプロピレン系樹脂粒子
を取り出してから、10分、30分および60分経過し
たときの発泡性ポリプロピレン系樹脂粒子を、それぞれ
予備発泡し、各発泡粒子を得た。そして各発泡粒子の嵩
密度をそれぞれ測定した。測定した嵩密度のうち最も小
さい数値のものをそれぞれ表1に示す。 実施例6・7 エチレン含有量、熱処理温度、含浸温度および含浸圧力
が表1に示すとおりである以外は、実施例1と同様の方
法で発泡性ポリプロピレン系樹脂粒子を得た。After the obtained expandable polypropylene resin particles were taken out, the expandable polypropylene resin particles 10 minutes, 30 minutes and 60 minutes later were pre-expanded to obtain each expanded particle. Then, the bulk density of each expanded particle was measured. Table 1 shows the smallest values of the measured bulk densities. Examples 6.7 Expandable polypropylene resin particles were obtained in the same manner as in Example 1 except that the ethylene content, the heat treatment temperature, the impregnation temperature, and the impregnation pressure were as shown in Table 1.
【0040】得られた発泡性ポリプロピレン系樹脂粒子
を取り出してから、10分、30分および60分経過し
たときの発泡性ポリプロピレン系樹脂粒子を、それぞれ
予備発泡し、各発泡粒子を得た。そして各発泡粒子の嵩
密度をそれぞれ測定した。測定した嵩密度のうち最も小
さい数値のものをそれぞれ表1に示す。 実施例8 ポリプロピレン系樹脂粒子として、表1に示すプロピレ
ン−エチレンブロック共重合体樹脂を用いて、熱処理温
度、含浸温度および含浸圧力を表1のとおりにした以外
は、実施例1と同様の方法で発泡性ポリプロピレン系樹
脂粒子を得た。The foamable polypropylene-based resin particles 10 minutes, 30 minutes and 60 minutes after the obtained foamable polypropylene-based resin particles were taken out were prefoamed to obtain foamed particles. Then, the bulk density of each expanded particle was measured. Table 1 shows the smallest values of the measured bulk densities. Example 8 The same method as in Example 1 except that the propylene-ethylene block copolymer resin shown in Table 1 was used as the polypropylene resin particles, and the heat treatment temperature, the impregnation temperature, and the impregnation pressure were as shown in Table 1. Thus, expandable polypropylene-based resin particles were obtained.
【0041】得られた発泡性ポリプロピレン系樹脂粒子
を取り出してから、10分、30分および60分経過し
たときの発泡性ポリプロピレン系樹脂粒子を、それぞれ
予備発泡し、各発泡粒子を得た。そして各発泡粒子の嵩
密度をそれぞれ測定した。測定した嵩密度のうち最も小
さい数値のものをそれぞれ表1に示す。表1から明らか
なように、各実施例では、熱処理前のポリプロピレン系
樹脂粒子のビカット軟化温度よりも低い温度で発泡用改
質ポリプロピレン系樹脂粒子に発泡剤を含浸させてい
て、各実施例で得られた発泡性ポリプロピレン系樹脂粒
子は、実質的に無架橋であって、リサイクル性に優れて
いた。After the obtained expandable polypropylene resin particles were taken out, the expandable polypropylene resin particles after 10 minutes, 30 minutes and 60 minutes had been prefoamed to obtain each expanded particle. Then, the bulk density of each expanded particle was measured. Table 1 shows the smallest values of the measured bulk densities. As is clear from Table 1, in each of the examples, the foaming agent is impregnated into the modified polypropylene-based resin particles for foaming at a temperature lower than the Vicat softening temperature of the polypropylene-based resin particles before the heat treatment. The obtained expandable polypropylene-based resin particles were substantially non-crosslinked and excellent in recyclability.
【0042】各実施例により製造された発泡性ポリプロ
ピレン系樹脂粒子は大気中に取り出して開放後、時間が
経過した後に発泡しても嵩密度の低下が極めて少なく、
さらにこれらの樹脂粒子から製造される発泡粒子は、密
度が小さく、均一であった。すなわち、本発明の発泡性
ポリプロピレン系樹脂粒子は、圧力開放後の経時変化に
対して、発泡粒子の嵩密度の変化が極めて少ない特長を
有している。The expandable polypropylene-based resin particles produced in each of the examples are taken out into the atmosphere and opened, and even if expanded after a lapse of time, the decrease in the bulk density is extremely small.
Furthermore, the foamed particles produced from these resin particles were low in density and uniform. That is, the expandable polypropylene-based resin particles of the present invention have a feature that the change in the bulk density of the expanded particles is extremely small with respect to the change with time after the pressure is released.
【0043】比較例1・2 熱処理時の温度が表1に示すとおりである以外は、実施
例1と同様の方法で発泡性ポリプロピレン系樹脂粒子を
得た。得られた発泡性ポリプロピレン系樹脂粒子を取り
出してから、10分、30分および60分経過したとき
の発泡性ポリプロピレン系樹脂粒子を、それぞれ予備発
泡し、各発泡粒子を得た。そして各発泡粒子の嵩密度を
それぞれ測定した。測定した嵩密度のうち最も小さい数
値のものをそれぞれ表1に示す。Comparative Examples 1-2 Expandable polypropylene resin particles were obtained in the same manner as in Example 1 except that the temperature during the heat treatment was as shown in Table 1. After taking out the obtained expandable polypropylene-based resin particles, the expandable polypropylene-based resin particles after 10 minutes, 30 minutes, and 60 minutes had been pre-expanded to obtain each expanded particle. Then, the bulk density of each expanded particle was measured. Table 1 shows the smallest values of the measured bulk densities.
【0044】比較例3 表1に示すとおりのエチレン含有量であるポリプロピレ
ン系樹脂粒子を用いて、熱処理温度を表1のとおりにし
た以外は、実施例1と同様の方法で発泡性ポリプロピレ
ン系樹脂粒子の製造を試みた。その結果を表1に示す。Comparative Example 3 An expandable polypropylene resin was produced in the same manner as in Example 1 except that the heat treatment temperature was as shown in Table 1 using polypropylene resin particles having an ethylene content as shown in Table 1. An attempt was made to produce particles. Table 1 shows the results.
【0045】比較例4 熱処理を行わなかった以外は、実施例1と同様の方法で
発泡性ポリプロピレン系樹脂粒子を得、該発泡性ポリプ
ロピレン系樹脂粒子の発泡を試みた。その結果を表1に
示す。Comparative Example 4 Expandable polypropylene resin particles were obtained in the same manner as in Example 1 except that no heat treatment was performed, and the expansion of the expandable polypropylene resin particles was attempted. Table 1 shows the results.
【0046】[0046]
【表1】 [Table 1]
【0047】表1から明らかなように、熱処理前のポリ
プロピレン系樹脂粒子の主吸熱ピーク温度からそれより
15℃高い温度までの範囲内で熱処理が施されて得られ
た発泡用改質ポリプロピレン系樹脂粒子に、熱処理前の
ポリプロピレン系樹脂粒子のビカット軟化温度よりも低
い温度で発泡剤を含浸させた発泡性ポリプロピレン系樹
脂粒子は、大気中に取り出して開放した後、時間が経過
して発泡しても、経過時間による嵩密度の変化が極めて
少ない。さらに、この発泡性ポリプロピレン系樹脂粒子
から製造される発泡粒子は、密度が小さく、均一なもの
であった。As is clear from Table 1, the modified polypropylene resin for foaming obtained by heat-treating the polypropylene resin particles before the heat treatment in a range from the main endothermic peak temperature to a temperature 15 ° C. higher than the main endothermic peak temperature. Expandable polypropylene resin particles impregnated with a foaming agent at a temperature lower than the Vicat softening temperature of the polypropylene resin particles before heat treatment, the particles are taken out into the atmosphere and opened, and after a lapse of time, foamed. Also, the change in bulk density due to the elapsed time is extremely small. Further, the foamed particles produced from the foamable polypropylene resin particles had a low density and were uniform.
【0048】実施例9 実施例1と同様の方法で得られた発泡性ポリプロピレン
系樹脂粒子を脱水し、予備発泡機に入れ、蒸気圧4.3
kgf/cm2 Gの水蒸気を30秒程度圧入することに
よってポリプロピレン系樹脂発泡粒子を得た。さらに、
得られた発泡粒子を発泡剤を含むガス雰囲気下(5.0
kgf/cm2 G)で1日間保持した後、型内に入れ、
蒸気圧4.4kgf/cm2 Gの水蒸気を30秒程度圧
入することによってポリプロピレン系樹脂発泡成形体を
得た。得られたポリプロピレン系樹脂発泡粒子およびポ
リプロピレン系樹脂発泡成形体の水蒸気に対する耐熱性
をそれぞれ測定した。ポリプロピレン系樹脂発泡粒子の
水蒸気に対する耐熱性は、発泡性ポリプロピレン系樹脂
粒子の予備発泡時に必要な蒸気圧を測定し、その蒸気圧
を水蒸気に対する発泡粒子の耐熱性とした。また、ポリ
プロピレン系樹脂発泡成形体の水蒸気に対する耐熱性
は、ポリプロピレン系樹脂発泡粒子の型内成形時に必要
な蒸気圧を測定し、その蒸気圧を水蒸気に対する発泡成
形体の耐熱性とした。Example 9 The expandable polypropylene-based resin particles obtained in the same manner as in Example 1 were dehydrated, placed in a prefoaming machine, and had a vapor pressure of 4.3.
By injecting steam of kgf / cm 2 G for about 30 seconds, foamed polypropylene resin particles were obtained. further,
The obtained expanded particles were placed in a gas atmosphere containing a blowing agent (5.0).
kgf / cm 2 G) for 1 day, then put in the mold,
A foamed polypropylene resin body was obtained by injecting steam having a vapor pressure of 4.4 kgf / cm 2 G for about 30 seconds. The heat resistance to water vapor of each of the obtained expanded polypropylene resin particles and expanded polypropylene resin molded article was measured. The heat resistance of the expanded polypropylene resin particles to water vapor was determined by measuring the vapor pressure required during pre-expansion of the expandable polypropylene resin particles, and using the vapor pressure as the heat resistance of the expanded particles to water vapor. The heat resistance of the foamed polypropylene resin article to water vapor was determined by measuring the vapor pressure required for in-mold molding of the foamed polypropylene resin particles, and using the measured vapor pressure as the heat resistance of the foamed molded article to steam.
【0049】実施例10〜12 熱処理時の温度が表2に示すとおりである以外は、実施
例9と同様の方法でポリプロピレン系樹脂発泡粒子およ
びポリプロピレン系樹脂発泡成形体を得た。また、発泡
性ポリプロピレン系樹脂粒子およびポリプロピレン系樹
脂発泡粒子の水蒸気に対する耐熱性をそれぞれ測定し
た。その結果を表2に示す。Examples 10 to 12 Except that the temperature during the heat treatment was as shown in Table 2, foamed polypropylene resin particles and foamed polypropylene resin were obtained in the same manner as in Example 9. Further, the heat resistance of the expandable polypropylene resin particles and the expanded polypropylene resin particles to water vapor was measured. Table 2 shows the results.
【0050】実施例13・14 発泡剤を含浸させたときの温度が表2に示すとおりであ
る以外は、実施例9と同様の方法でポリプロピレン系樹
脂発泡粒子およびポリプロピレン系樹脂発泡成形体を得
た。また、発泡性ポリプロピレン系樹脂粒子およびポリ
プロピレン系樹脂発泡粒子の水蒸気に対する耐熱性をそ
れぞれ測定した。その結果を表2に示す。Examples 13 and 14 Except for the temperature at which the blowing agent was impregnated as shown in Table 2, foamed polypropylene resin particles and foamed polypropylene resin were obtained in the same manner as in Example 9. Was. Further, the heat resistance of the expandable polypropylene resin particles and the expanded polypropylene resin particles to water vapor was measured. Table 2 shows the results.
【0051】実施例15・16 エチレン含有量が表2に示すとおりである以外は、実施
例9と同様の方法でポリプロピレン系樹脂発泡粒子およ
びポリプロピレン系樹脂発泡成形体を得た。また、発泡
性ポリプロピレン系樹脂粒子およびポリプロピレン系樹
脂発泡粒子の水蒸気に対する耐熱性をそれぞれ測定し
た。その結果を表2に示す。Examples 15 and 16 Except that the ethylene content is as shown in Table 2, foamed polypropylene resin particles and foamed polypropylene resin were obtained in the same manner as in Example 9. Further, the heat resistance of the expandable polypropylene resin particles and the expanded polypropylene resin particles to water vapor was measured. Table 2 shows the results.
【0052】実施例17 実施例9で得られたポリプロピレン系樹脂発泡粒子を、
発泡剤を含むガス雰囲気下(5.0kgf/cm2G)
で1日間保ち、大気中に取り出した後、蒸気圧4.4k
gf/cm2Gの水蒸気を30秒程度圧入することによ
ってさらに予備発泡し、ポリプロピレン系樹脂発泡粒子
を得た。また、さらに、このポリプロピレン系樹脂発泡
粒子を、発泡剤を含むガス雰囲気下(5.0kgf/c
m2G)で1日間保ち、大気中に取り出した後、蒸気圧
4.3kgf/cm2Gの水蒸気を形内に30秒程度圧
入することによって型内成形し、ポリプロピレン系樹脂
発泡成形体を得た。また、発泡性ポリプロピレン系樹脂
粒子を予備発泡させるときに必要な蒸気圧(1回目、2
回目)および型内成形時に必要な蒸気圧をそれぞれ測定
した。その結果を表2に示す。各実施例で得られたポリ
プロピレン系樹脂発泡粒子およびポリプロピレン系樹脂
発泡成形体は、実質的に無架橋であって、リサイクル性
に優れ、表2から明らかなように、低い嵩密度を呈して
いた。また、図3に示すように、ポリプロピレン系樹脂
発泡粒子の水蒸気に対する耐熱性(主吸熱ピーク温度が
135℃であるポリプロピレン系樹脂粒子から得られる
発泡性ポリプロピレン系樹脂粒子の予備発泡時の蒸気圧
力)は、ポリプロピレン系樹脂粒子の熱処理温度の変化
に従って変化するため、熱処理温度を調節することによ
りコントロールできることが分かった。Example 17 The expanded polypropylene resin particles obtained in Example 9 were
Under a gas atmosphere containing a foaming agent (5.0 kgf / cm 2 G)
For 1 day, and after taking out to the atmosphere, the vapor pressure is 4.4k
The foam was further prefoamed by injecting steam of gf / cm 2 G for about 30 seconds to obtain foamed polypropylene resin particles. Further, the expanded polypropylene resin particles were placed in a gas atmosphere containing a blowing agent (5.0 kgf / c).
m 2 G) for 1 day, and after taking out into the atmosphere, a steam having a vapor pressure of 4.3 kgf / cm 2 G is injected into the mold for about 30 seconds to perform in-mold molding. Obtained. Further, the vapor pressure (first time, second time) required for pre-expanding the expandable polypropylene resin particles.
The second time) and the vapor pressure required during in-mold molding were measured. Table 2 shows the results. The expanded polypropylene resin particles and expanded polypropylene resin product obtained in each Example were substantially non-crosslinked, excellent in recyclability, and exhibited a low bulk density, as is clear from Table 2. . In addition, as shown in FIG. 3, the heat resistance of the expanded polypropylene resin particles to water vapor (steam pressure during pre-expansion of expandable polypropylene resin particles obtained from the polypropylene resin particles having a main endothermic peak temperature of 135 ° C.) Is changed according to the change in the heat treatment temperature of the polypropylene-based resin particles, and thus it can be found that it can be controlled by adjusting the heat treatment temperature.
【0053】比較例5・6 ポリプロピレン系樹脂粒子の熱処理温度が表2に示すと
おりである以外は、実施例9と同様の方法でポリプロピ
レン系樹脂発泡粒子およびポリプロピレン系樹脂発泡成
形体を得た。また、発泡性ポリプロピレン系樹脂粒子お
よびポリプロピレン系樹脂発泡粒子の水蒸気に対する耐
熱性をそれぞれ測定した。その結果を表2に示す。Comparative Examples 5.6 Except that the heat treatment temperature of the polypropylene resin particles was as shown in Table 2, foamed polypropylene resin particles and foamed molded article of polypropylene resin were obtained in the same manner as in Example 9. Further, the heat resistance of the expandable polypropylene resin particles and the expanded polypropylene resin particles to water vapor was measured. Table 2 shows the results.
【0054】比較例7 発泡剤を含浸させたときの温度が表2に示すとおりであ
る以外は、実施例9と同様の方法でポリプロピレン系樹
脂発泡粒子およびポリプロピレン系樹脂発泡成形体を得
た。また、発泡性ポリプロピレン系樹脂粒子およびポリ
プロピレン系樹脂発泡粒子の水蒸気に対する耐熱性をそ
れぞれ測定した。その結果を表2に示す。Comparative Example 7 Except for the temperature at which the foaming agent was impregnated as shown in Table 2, foamed polypropylene resin particles and foamed polypropylene resin were obtained in the same manner as in Example 9. Further, the heat resistance of the expandable polypropylene resin particles and the expanded polypropylene resin particles to water vapor was measured. Table 2 shows the results.
【0055】比較例8 ポリプロピレン系樹脂粒子の熱処理を行わなかった以外
は、実施例9と同様の方法でポリプロピレン系樹脂発泡
粒子およびポリプロピレン系樹脂発泡成形体を得た。ま
た、発泡性ポリプロピレン系樹脂粒子およびポリプロピ
レン系樹脂発泡粒子の水蒸気に対する耐熱性をそれぞれ
測定した。その結果を表2に示す。Comparative Example 8 Expanded polypropylene resin particles and expanded foamed polypropylene resin were obtained in the same manner as in Example 9 except that the heat treatment of the polypropylene resin particles was not performed. Further, the heat resistance of the expandable polypropylene resin particles and the expanded polypropylene resin particles to water vapor was measured. Table 2 shows the results.
【0056】[0056]
【表2】 [Table 2]
【0057】表2から明らかなように、本発明のポリプ
ロピレン系樹脂発泡粒子およびポリプロピレン系樹脂発
泡成形体は、ポリプロピレン系樹脂粒子の熱処理温度を
調節することにより、水蒸気に対する耐熱性をコントロ
ールできることが分かる。As is apparent from Table 2, the heat resistance to water vapor of the expanded polypropylene resin particles and expanded polypropylene resin article of the present invention can be controlled by adjusting the heat treatment temperature of the polypropylene resin particles. .
【0058】[0058]
【発明の効果】本発明の発泡性ポリプロピレン系樹脂粒
子は実質的に無架橋であり、リサイクル性に優れ、大気
中に取り出して開放し、時間が経過した後に発泡しても
嵩密度の変化が極めて少ない発泡粒子が得られる。さら
に、この樹脂粒子から製造されるポリプロピレン系樹脂
発泡粒子およびポリプロピレン系樹脂発泡成形体は、実
質的に無架橋であって、リサイクル性に優れ、密度が小
さく、均一なものであり、ポリプロピレン系樹脂粒子の
熱処理温度を調節することにより、水蒸気に対する耐熱
性をコントロールすることができる。The expandable polypropylene resin particles of the present invention are substantially non-crosslinked, have excellent recyclability, are taken out into the atmosphere and opened, and change in bulk density even after foaming after a lapse of time. Very few expanded particles are obtained. Furthermore, the expanded polypropylene resin particles and expanded polypropylene resin article produced from the resin particles are substantially non-crosslinked, have excellent recyclability, have a low density, are uniform, and have a high polypropylene resin content. By adjusting the heat treatment temperature of the particles, the heat resistance to water vapor can be controlled.
【図1】DSC曲線のポリプロピレン系樹脂粒子の主吸
熱ピーク温度および発泡用改質ポリプロピレン系樹脂粒
子の主吸熱ピーク温度を示すグラフである。FIG. 1 is a graph showing the main endothermic peak temperature of polypropylene-based resin particles and the main endothermic peak temperature of modified polypropylene-based resin particles for foaming in a DSC curve.
【図2】DSC曲線において、主吸熱ピーク以外にもう
一つの吸熱ピークを有する発泡用改質ポリプロピレン系
樹脂粒子のグラフである。FIG. 2 is a graph of foamed modified polypropylene-based resin particles having another endothermic peak in addition to the main endothermic peak in the DSC curve.
【図3】主吸熱ピークが135℃であるポリプロピレン
系樹脂粒子の熱処理温度とこの樹脂から得られる発泡性
ポリプロピレン系樹脂粒子の予備発泡時の蒸気圧力との
関係を示すグラフである。FIG. 3 is a graph showing a relationship between a heat treatment temperature of a polypropylene resin particle having a main endothermic peak of 135 ° C. and a vapor pressure at the time of prefoaming of expandable polypropylene resin particles obtained from the resin.
Claims (12)
フィンとのプロピレン共重合体を主成分とするポリプロ
ピレン系樹脂粒子を熱処理して得られる発泡用改質ポリ
プロピレン系樹脂粒子であって、走査型示差熱量測定で
得られるDSC曲線の主吸熱ピーク温度が熱処理前のポ
リプロピレン系樹脂粒子の主吸熱ピーク温度よりも5℃
以上高いことを特徴とする発泡用改質ポリプロピレン系
樹脂粒子。A modified polypropylene resin particle for foaming obtained by heat-treating a polypropylene resin particle containing a propylene copolymer with ethylene and / or another α-olefin as a main component. The main endothermic peak temperature of the DSC curve obtained by differential calorimetry is 5 ° C. higher than the main endothermic peak temperature of the polypropylene resin particles before heat treatment.
The modified polypropylene resin particles for foaming, characterized in that the particles are higher than the above.
上低い温度にもう一つの吸熱ピークを有する請求項1に
記載の発泡用改質ポリプロピレン系樹脂粒子。2. The modified polypropylene resin particles for foaming according to claim 1, which has another endothermic peak at a temperature lower by at least 7 ° C. than the main endothermic peak temperature before the heat treatment.
体である請求項1または2に記載の発泡用改質ポリプロ
ピレン系樹脂粒子。3. The modified polypropylene resin particles for foaming according to claim 1, wherein the propylene copolymer is a random copolymer.
改質ポリプロピレン系樹脂粒子に発泡剤を含浸させてな
ることを特徴とする発泡性ポリプロピレン系樹脂粒子。4. Expandable polypropylene resin particles obtained by impregnating the modified polypropylene resin particles for expansion according to claim 1 with a blowing agent.
系樹脂粒子を予備発泡させてなることを特徴とするポリ
プロピレン系樹脂発泡粒子。5. Expanded polypropylene resin particles obtained by pre-expanding the expandable polypropylene resin particles according to claim 4.
発泡粒子を用いて、発泡剤を含むガス雰囲気下での加圧
および予備発泡を1回または複数回行うことにより得ら
れることを特徴とするポリプロピレン系樹脂発泡粒子。6. A method comprising using the expanded polypropylene resin particles according to claim 5 and performing pressurization and pre-expansion once or a plurality of times in a gas atmosphere containing a blowing agent. Polypropylene resin foam particles.
リプロピレン系樹脂発泡粒子を型内成形して得られるこ
とを特徴とするポリプロピレン系樹脂発泡成形体。7. A foamed polypropylene resin article obtained by molding the foamed polypropylene resin particles according to claim 5 in a mold.
フィンとのプロピレン共重合体を主成分とするポリプロ
ピレン系樹脂粒子を、該ポリプロピレン系樹脂粒子の走
査型示差熱量測定で得られるDSC曲線の主吸熱ピーク
温度からそれより15℃高い温度までの範囲内で熱処理
することを特徴とする発泡用改質ポリプロピレン系樹脂
粒子の製造方法。8. A DSC curve obtained by scanning differential calorimetry of a polypropylene resin particle mainly composed of a propylene copolymer with ethylene and / or another α-olefin as a main component. A method for producing modified polypropylene resin particles for foaming, wherein the heat treatment is performed within a range from an endothermic peak temperature to a temperature 15 ° C. higher than the endothermic peak temperature.
改質ポリプロピレン系樹脂粒子に、熱処理前のポリプロ
ピレン系樹脂粒子のビカット軟化温度よりも低い温度で
発泡剤を含浸させることを特徴とする発泡性ポリプロピ
レン系樹脂粒子の製造方法。9. A foaming agent is impregnated in the modified polypropylene resin particles for foaming obtained by the method according to claim 8 at a temperature lower than the Vicat softening temperature of the polypropylene resin particles before heat treatment. For producing expandable polypropylene resin particles.
性ポリプロピレン系樹脂粒子を予備発泡することを特徴
とするポリプロピレン系樹脂発泡粒子の製造方法。10. A method for producing expanded polypropylene resin particles, wherein the expandable polypropylene resin particles obtained by the method according to claim 9 are pre-expanded.
リプロピレン系樹脂発泡粒子を、発泡剤を含むガス雰囲
気下での加圧および予備発泡を1回または複数回行うこ
とを特徴とするポリプロピレン系樹脂発泡粒子の製造方
法。11. A polypropylene-based resin obtained by subjecting the expanded polypropylene resin particles obtained by the method according to claim 10 to pressurization and pre-expansion in a gas atmosphere containing a blowing agent once or a plurality of times. A method for producing expanded resin particles.
載の方法で得られるポリプロピレン系樹脂発泡粒子を型
内成形することを特徴とするポリプロピレン系樹脂発泡
成形体の製造方法。12. A method for producing a foamed polypropylene resin article, comprising molding the foamed polypropylene resin particles obtained by the method according to claim 10 in a mold.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27966299A JP3556133B2 (en) | 1999-03-16 | 1999-09-30 | Polypropylene resin foam molded article and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7032099 | 1999-03-16 | ||
JP11-70320 | 1999-03-16 | ||
JP27966299A JP3556133B2 (en) | 1999-03-16 | 1999-09-30 | Polypropylene resin foam molded article and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000327826A true JP2000327826A (en) | 2000-11-28 |
JP3556133B2 JP3556133B2 (en) | 2004-08-18 |
Family
ID=26411483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27966299A Expired - Fee Related JP3556133B2 (en) | 1999-03-16 | 1999-09-30 | Polypropylene resin foam molded article and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3556133B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006007781A (en) * | 2001-05-23 | 2006-01-12 | A San Chemicals Co Ltd | Method for producing pellet type foamed article of low melting non-cross linked polypropylene resin and pellet type foamed article |
US7182897B2 (en) | 2002-08-07 | 2007-02-27 | Canon Kabushiki Kaisha | Method of storing material into which gas saturates |
JP2015131907A (en) * | 2014-01-14 | 2015-07-23 | 株式会社ジェイエスピー | Polyolefin based resin particle, polyolefin based resin foamed particle and method for manufacturing polyolefin based resin foamed particle |
CN110105677A (en) * | 2019-05-27 | 2019-08-09 | 苏州市炽光新材料有限公司 | PP foam material and preparation method thereof based on recycled plastic |
-
1999
- 1999-09-30 JP JP27966299A patent/JP3556133B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006007781A (en) * | 2001-05-23 | 2006-01-12 | A San Chemicals Co Ltd | Method for producing pellet type foamed article of low melting non-cross linked polypropylene resin and pellet type foamed article |
US7182897B2 (en) | 2002-08-07 | 2007-02-27 | Canon Kabushiki Kaisha | Method of storing material into which gas saturates |
JP2015131907A (en) * | 2014-01-14 | 2015-07-23 | 株式会社ジェイエスピー | Polyolefin based resin particle, polyolefin based resin foamed particle and method for manufacturing polyolefin based resin foamed particle |
WO2015108040A1 (en) * | 2014-01-14 | 2015-07-23 | 株式会社ジェイエスピー | Polyolefin resin particles, polyolefin resin foamed particles, and method for producing polyolefin resin foamed particles |
CN105899590A (en) * | 2014-01-14 | 2016-08-24 | 株式会社Jsp | Polyolefin resin particles, polyolefin resin foamed particles, and method for producing polyolefin resin foamed particles |
US9650486B2 (en) | 2014-01-14 | 2017-05-16 | Jsp Corporation | Polyolefin resin particles, polyolefin resin foamed particles, and method for producing polyolefin resin foamed particles |
CN105899590B (en) * | 2014-01-14 | 2017-09-05 | 株式会社Jsp | The manufacture method of polyolefin resin particle, polyolefin resin expanded particle and polyolefin resin expanded particle |
CN110105677A (en) * | 2019-05-27 | 2019-08-09 | 苏州市炽光新材料有限公司 | PP foam material and preparation method thereof based on recycled plastic |
Also Published As
Publication number | Publication date |
---|---|
JP3556133B2 (en) | 2004-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5348984A (en) | Expandable composition and process for extruded thermoplastic foams | |
KR100798204B1 (en) | Composition for polyolefin resin foam, foam of the same, and process for producing foam | |
JP2003528173A (en) | Sound absorbing polymer foam with improved thermal insulation performance | |
WO1998018854A1 (en) | Expandable composition | |
JP2001348452A (en) | Polyolefinic resin foam and manufacturing method therefor | |
WO2007118765A1 (en) | Foams comprising polystyrene and other thermoplastics | |
US5288740A (en) | Process for making alkenyl aromatic foam packing bodies with carbon dioxide and/or ethane blowing agent systems | |
JP3435161B2 (en) | Method for Unimodal Cell Size Distribution Styrene Foam Structure | |
EP1124887B1 (en) | Process for producing extruded foam | |
US6123881A (en) | Process for producing extruded foam products having polystyrene blends with high levels of CO2 as a blowing agent | |
WO2002072691A1 (en) | Blends of ethylenic polymers with improved modulus and melt strength and articles fabricated from these blends | |
CA2198133A1 (en) | Foam made with downstream injection of water | |
JP3556133B2 (en) | Polypropylene resin foam molded article and method for producing the same | |
JP3888837B2 (en) | Polypropylene resin foam molded article and method for producing the same | |
JPH07278365A (en) | Low-density polyolefin foam, foamable polyolefin compositionand their production | |
US6087408A (en) | Process for the production of polyolefin resin foams | |
JP2000169619A (en) | Conductive polypropylene-based resin foamed molded article and its production | |
EP1198498B1 (en) | Polymer foam and method of making using oil-containing furnace black as an insulation enhancer | |
JP3205225B2 (en) | Polypropylene resin foam | |
JP3599600B2 (en) | Expandable polyolefin-based resin particles, expanded particles and expanded molded articles obtained therefrom, and method for producing expanded particles | |
JP3763725B2 (en) | Polypropylene resin particles for foaming and method for producing the same | |
JPH10306173A (en) | Propylene resin particle for foam molding, foamable propylene resin particle, prefoamed propylene resin particle, and molded propylene resin foam | |
JPH11349724A (en) | Foamable polyolefin-based resin particle, foamed particle therefrom and foamed molded material | |
JPH11246699A (en) | Foaming polyolefin resin particle, foamed particle therefrom and molded foam therefrom | |
JP3306189B2 (en) | Olefin resin composition for foaming |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20031211 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20031224 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040219 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040427 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040511 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3556133 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080521 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090521 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100521 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100521 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110521 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120521 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120521 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130521 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130521 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140521 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |