JP2000327361A - Method for drawing optical fiber - Google Patents

Method for drawing optical fiber

Info

Publication number
JP2000327361A
JP2000327361A JP11137966A JP13796699A JP2000327361A JP 2000327361 A JP2000327361 A JP 2000327361A JP 11137966 A JP11137966 A JP 11137966A JP 13796699 A JP13796699 A JP 13796699A JP 2000327361 A JP2000327361 A JP 2000327361A
Authority
JP
Japan
Prior art keywords
optical fiber
preform
pmd
chuck part
held
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11137966A
Other languages
Japanese (ja)
Inventor
Tomomi Onose
智巳 小野瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP11137966A priority Critical patent/JP2000327361A/en
Publication of JP2000327361A publication Critical patent/JP2000327361A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02745Fibres having rotational spin around the central longitudinal axis, e.g. alternating +/- spin to reduce polarisation mode dispersion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/06Rotating the fibre fibre about its longitudinal axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an optical fiber comprising such a practice that a preform having an optical propagation portion is brought into a drawing oven and held with a chuck part and then melted under heating while circumferentially rotating the preform normally/reversely followed by conducting a drawing so as to enable PMD minimization of the final optical fiber even if involving asphericity coat thickness deviation, periodical torsion, etc., in the optical fiber. SOLUTION: This method for producing an optical fiber 6 comprises the following practice: a preform 3 with a clad portion outside a core portion for optical transmission is held with a chuck part 2 via a dummy rod provided on the upper part of the preform and brought into an oven 4, which is subsequently raised in temperature to melt the preform 3 followed by centering and then spinning it; wherein the preform 3 is drawn while circumferentially rotating it normally/reversely by a motor 1 via the chuck part 2; in this case, the normal/reverse rotation is carried out pref. at a maximum angle of 30 deg. periodically pref. at a frequency of about 20 reciprocations/min; thereby applying anisotropic strain in a pseudorandom fashion to the core portion to effect substantial minimization of PMD of the resultant optical fiber which is then subjected to protective coating of silicone resin or the like using a resin coater 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光ファイバ、特に偏
波分散を最小とするような光ファイバの線引方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber, and more particularly to a method for drawing an optical fiber so as to minimize polarization dispersion.

【0002】[0002]

【従来の技術】図2は、従来の光ファイバの線引方法を
示した説明図である。12はチャック部、13はプリフ
ォーム、14は線引炉、15は樹脂被覆装置、16は光
ファイバ、17は巻取りドラムである。
2. Description of the Related Art FIG. 2 is an explanatory view showing a conventional optical fiber drawing method. Reference numeral 12 denotes a chuck portion, 13 denotes a preform, 14 denotes a drawing furnace, 15 denotes a resin coating device, 16 denotes an optical fiber, and 17 denotes a winding drum.

【0003】プリフォーム13は、その内部に光を伝搬
するコア部とクラッド部を有している。まず、このプリ
フォーム13の製造方法を以下に説明する。
[0003] The preform 13 has a core portion and a clad portion for transmitting light therein. First, a method for manufacturing the preform 13 will be described below.

【0004】最初に多孔質母材を製造する。これは、S
iCl4 などのガラス原料を火炎加水分解反応させてガ
ラス微粒子SiO2 を生成させ、このガラス微粒子を回
転する出発部材に堆積させていき、回転軸方向に多孔質
体を成長させることにより得られる。この多孔質母材の
コア部には、屈折率を高めるためにGeO2 が含有され
ている。クラッド部はガラス微粒子SiO2 のみで形成
されている。コア部とクラッド部は同時に堆積され、且
つコア部の上からクラッド部が堆積される。
First, a porous preform is manufactured. This is S
A glass raw material such as iCl 4 is subjected to a flame hydrolysis reaction to generate glass fine particles SiO 2 , and the glass fine particles are deposited on a rotating starting member, and are grown by growing a porous body in a rotation axis direction. The core of the porous base material contains GeO 2 to increase the refractive index. The clad portion is formed only of glass fine particles SiO 2 . The core portion and the clad portion are simultaneously deposited, and the clad portion is deposited from above the core portion.

【0005】次に、このSiO2 −GeO2 コア/Si
2 クラッド多孔質母材を高温電気炉内で焼結して透明
ガラス化し、その後延伸する。この延伸体は光伝搬部を
含んだ光ファイバ用のガラスロッドであり、単にガラス
ロッドと称する。ガラスロッドの表面は火炎研磨され、
不純物などが取り除かれる。
Next, the SiO 2 -GeO 2 core / Si
The O 2 clad porous base material is sintered in a high-temperature electric furnace to form a transparent glass, and then stretched. This stretched body is a glass rod for an optical fiber including a light propagation part, and is simply referred to as a glass rod. The surface of the glass rod is flame polished,
Impurities and the like are removed.

【0006】そして、ガラスロッドを回転させながらそ
の外周にSiO2 のガラス微粒子を堆積させ、高温電気
炉で焼結して透明ガラス化する。このようにしてプリフ
ォーム13(光ファイバ母材)を得ることができる。ガ
ラスロッドにSiO2 のガラス微粒子を堆積させる理由
は、外径125μmに光ファイバを線引した時に、コア
部の寸法が所定の寸法となるようにするためである。な
お、多孔質母材の製造装置によっては一括して、すなわ
ち途中でガラスロッドを製造することなしに、プリフォ
ーム13を製造することも可能である。
Then, while rotating the glass rod, glass fine particles of SiO 2 are deposited on the outer periphery thereof, and sintered in a high-temperature electric furnace to form a transparent glass. Thus, the preform 13 (optical fiber preform) can be obtained. The reason for depositing the glass particles of SiO 2 on the glass rod is to make the size of the core portion a predetermined size when the optical fiber is drawn to an outer diameter of 125 μm. Note that the preform 13 can be manufactured collectively, that is, without manufacturing a glass rod in the middle depending on the manufacturing apparatus of the porous base material.

【0007】プリフォーム13は、線引炉14の大きさ
に合わせて上部に枝棒(ダミー棒)が融着され、チャッ
ク部12に保持される。線引炉14の温度を上げて、必
要な中心出しが完了すると線引が開始される。中心出し
とは、プリフォーム13が線引炉14と樹脂被覆装置1
5の中心にくるように調整することである。プリフォー
ム13は、通常外径125μmの光ファイバに溶融・紡
糸され、保護のためにシリコーン樹脂などが樹脂被覆装
置15によりコーティングされる。製造された光ファイ
バ16は巻取りドラム17に巻き取られ、線引工程が完
了する。なお、プリフォーム13はチャック部12で保
持されながら線引炉14に送り込まれるが、回転はされ
ずに線引が行なわれる。
The preform 13 has a branch bar (dummy bar) fused to the upper part according to the size of the drawing furnace 14 and is held by the chuck unit 12. When the temperature of the drawing furnace 14 is increased and the necessary centering is completed, the drawing is started. The centering means that the preform 13 is drawn with the drawing furnace 14 and the resin coating apparatus 1.
5 is adjusted. The preform 13 is usually melted and spun into an optical fiber having an outer diameter of 125 μm, and coated with a silicone resin or the like by a resin coating device 15 for protection. The manufactured optical fiber 16 is wound on a winding drum 17, and the drawing step is completed. The preform 13 is fed into the drawing furnace 14 while being held by the chuck portion 12, but is drawn without being rotated.

【0008】[0008]

【発明が解決しようとする課題】プリフォームはコア部
を中心に回転しながら製造されるので、円周方向には均
一なものが得られる。これは、製造された光ファイバの
コア部とクラッド部の偏心(コア部中心とクラッド部中
心との間隔)や非円率を測定することで確認できる。し
かしながら、円周方向に均一であるために、円周方向に
異方性の歪、例えば線引時にコーティング材(被覆樹
脂)の偏肉があったり、あるいはケーブル化時に周期的
な捩れが光ファイバに加わったりすると光ファイバの偏
波分散(Polarization Mode Dispersion、以下PMDと
略する)が大きくなるという問題点があった。もちろん
コア部やクラッド部が非円であるならばPMDは大きく
なるが、プリフォームを均一に作製しコア部やクラッド
部が完全に円であるとしても上記の異方性歪みの影響で
PMDが大きくなることが問題であった。
Since the preform is manufactured while rotating around the core, a uniform product can be obtained in the circumferential direction. This can be confirmed by measuring the eccentricity (the distance between the center of the core and the center of the clad) and the non-circularity of the core and the clad of the manufactured optical fiber. However, since it is uniform in the circumferential direction, there is anisotropic strain in the circumferential direction, for example, uneven thickness of the coating material (coating resin) at the time of drawing, or periodic twisting at the time of forming a cable causes an optical fiber. In addition, there is a problem that the polarization dispersion (Polarization Mode Dispersion, hereinafter abbreviated as PMD) of the optical fiber increases. Of course, if the core and cladding are non-circular, the PMD will increase, but even if the preform is made uniformly and the core and cladding are completely circular, the PMD will still be affected by the above-described anisotropic strain. The problem was getting bigger.

【0009】この点で従来の光ファイバの線引方法で
は、プリフォームを回転することなく線引していたの
で、上記のPMDの問題を解決することは不可能であっ
た。
In this regard, in the conventional optical fiber drawing method, since the preform is drawn without rotating, it is impossible to solve the above-mentioned problem of PMD.

【0010】PMDとは、直交する2つの直線偏波の光
を光ファイバに同時に入射した時の光ファイバ出射端で
の到達時間差を言う。単位はpsec/√kmである。つま
り、円周方向に異方性の歪が加わると、円周方向の屈折
率分布が一様ではなくなり、直線偏波の光の到達時間に
入射方位角依存性がでてくる。すなわち、ある特定の方
位角度で光ファイバに入射した直線偏波は、それ以外の
方位角度で入射した直線偏波より早く伝搬するという現
象が見られるようになる。この到達時間が一番小さくな
る入射方位角度を固有軸と言う。この固有軸に入射した
直線偏波と、この固有軸に直交する軸に入射した直線偏
波との伝搬時間差を偏波分散と言い、光ファイバに印加
される異方性歪の大きさに比例する。
The PMD refers to the difference in arrival time at the optical fiber output end when two orthogonal linearly polarized lights are simultaneously incident on the optical fiber. The unit is psec / √km. That is, when anisotropic strain is applied in the circumferential direction, the refractive index distribution in the circumferential direction becomes non-uniform, and the arrival time of linearly polarized light depends on the incident azimuth. In other words, a phenomenon occurs in which linearly polarized light incident on an optical fiber at a specific azimuth angle propagates faster than linearly polarized light incident on other azimuth angles. The incident azimuth angle at which the arrival time becomes the shortest is referred to as an eigenaxis. The propagation time difference between linearly polarized light incident on this eigenaxis and linearly polarized light incident on an axis perpendicular to this eigenaxis is called polarization dispersion, and is proportional to the magnitude of anisotropic strain applied to the optical fiber. I do.

【0011】PMDが大きくなると、例えば円偏波の光
で通信を行なっている場合、円偏波は2つの直交する直
線偏波の合成であるから、直交する2つの直線偏波の光
に到達時間差が生じることで出射端では光は円偏波でな
くなり、情報を含んだ信号光が劣化し、その結果伝送帯
域が狭くなる。1つの直線偏波の光で通信を行なってい
る場合でも、異方性歪の存在でモード変換(電力の授
受)を起こし、直交する2つの直線偏波の光が発生し、
それらの到達時間に差が生じることで上記と同様に情報
を含んだ信号光が劣化し、その結果伝送帯域が狭くな
る。この現象は、海底ケーブルなど超長距離で光通信を
行なっている場合に特に問題となる。
When the PMD becomes large, for example, when communication is performed using circularly polarized light, circularly polarized light is a combination of two orthogonal linearly polarized lights, and therefore reaches two orthogonally linearly polarized lights. Due to the time difference, the light is no longer circularly polarized at the emission end, and the signal light containing information is degraded, resulting in a narrow transmission band. Even when communication is performed using one linearly polarized light, mode conversion (transfer of power) occurs due to the presence of anisotropic distortion, and two orthogonal linearly polarized lights are generated.
Due to the difference in their arrival times, the signal light containing information is deteriorated in the same manner as described above, and as a result, the transmission band is narrowed. This phenomenon becomes a problem particularly when optical communication is performed over a very long distance such as a submarine cable.

【0012】従って本発明の目的は、前記した従来技術
の欠点を解消し、光ファイバのコア部やクラッド部が非
円であっても、また線引時にコーティング材の偏肉があ
っても、あるいはケーブル化時に周期的に光ファイバが
捩れてもPMD(偏波分散)が最小となるような光ファ
イバの線引方法を提供することにある。
Accordingly, an object of the present invention is to solve the above-mentioned drawbacks of the prior art, and to provide an optical fiber having a non-circular core or cladding, and a coating material having uneven thickness at the time of drawing. Another object of the present invention is to provide a method of drawing an optical fiber in which PMD (polarization dispersion) is minimized even if the optical fiber is twisted periodically when the cable is formed.

【0013】[0013]

【課題を解決するための手段】本発明は上記の目的を実
現するため、光伝搬部を有するプリフォームをチャック
部に保持して線引炉に送り込み、前記プリフォームを溶
融・紡糸する光ファイバの線引方法において、前記プリ
フォームを円周方向に正逆に回転しながら線引した。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides an optical fiber for holding and holding a preform having a light transmitting portion in a chuck portion and feeding the preform into a drawing furnace to melt and spin the preform. In the drawing method, the preform was drawn while rotating in the forward and reverse directions in the circumferential direction.

【0014】また、正逆の回転角度は最大30度で且つ
周期的に行なった。
The rotation angle in the forward and reverse directions was a maximum of 30 degrees and the rotation was performed periodically.

【0015】そして、周期は1分間に略20往復とし
た。
The period was set to approximately 20 reciprocations per minute.

【0016】[0016]

【発明の実施の形態】図1は、本発明の光ファイバの線
引方法の一実施例を示した説明図である。1はモータ、
2はチャック部、3はプリフォーム、4は線引炉、5は
樹脂被覆装置、6は光ファイバ、7は巻取りドラムであ
る。SiO2 −GeO2 コア/SiO2 クラッド多孔質
母材の製造方法やプリフォーム3の製造方法は従来技術
と同様である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory view showing an embodiment of a method for drawing an optical fiber according to the present invention. 1 is a motor,
Reference numeral 2 denotes a chuck unit, 3 denotes a preform, 4 denotes a drawing furnace, 5 denotes a resin coating device, 6 denotes an optical fiber, and 7 denotes a winding drum. The method for producing the SiO 2 —GeO 2 core / SiO 2 clad porous preform and the method for producing the preform 3 are the same as in the prior art.

【0017】プリフォーム3は、線引炉4の大きさに合
わせて上部に枝棒(ダミー棒)が融着され、チャック部
2に保持される。線引炉4の温度を上げて、必要な中心
出しが完了すると線引が開始される。プリフォーム3
は、通常外径125μmの光ファイバに溶融・紡糸さ
れ、保護のためにシリコーン樹脂などが樹脂被覆装置5
にてコーティングされる。製造された光ファイバ6は、
巻取りドラム7に巻き取られ線引工程が完了する。
The preform 3 has a branch bar (dummy bar) fused to the upper part according to the size of the drawing furnace 4 and is held by the chuck unit 2. When the required centering is completed by raising the temperature of the drawing furnace 4, the drawing is started. Preform 3
Is usually melted and spun into an optical fiber having an outer diameter of 125 μm, and is coated with a silicone resin or the like for protection.
Coated with. The manufactured optical fiber 6 is
It is wound on the winding drum 7 and the drawing process is completed.

【0018】線引中、プリフォーム3はモータ1により
円周方向に最大10度で20往復/分の割合で正逆回転
運動が施されながら、線引速度200m/分で線引され
る。実際に得られた光ファイバ6のPMDは0.4psec
/√kmであり、従来の光ファイバの線引方法で製造され
た光ファイバのPMDより約30%低減することができ
た。なお、偏心などその他の特性には特に差は見られな
かった。
During drawing, the preform 3 is drawn at a drawing speed of 200 m / min while the motor 1 performs a forward / reverse rotational movement at a maximum of 10 degrees in the circumferential direction at a rate of 20 reciprocations / min. The PMD of the optical fiber 6 actually obtained is 0.4 psec.
/ √km, which is about 30% lower than the PMD of an optical fiber manufactured by a conventional optical fiber drawing method. In addition, there was no particular difference in other characteristics such as eccentricity.

【0019】PMDが低減する理由は次のように説明で
きる。上述のように、線引時のプリフォーム3は円周方
向に最大10度で20往復/分の割合で正逆回転運動が
施される。その結果、光ファイバには強制的に捩れが擬
似ランダムに印加されることになる。この捩れは偏心や
伝送損失などの特性には影響を及ぼさないが、コア部に
異方性歪を擬似ランダムに印加する働きをする。そうす
ると、直交する2つの直線偏波の間ではモード変換(電
力の授受)が積極的に且つ擬似ランダムに行なわれるこ
とになる。そのようになると、PMDが最大となる固有
軸へのモード変換は確率的に低くなるため、PMDは略
最小となる。このことは確立統計学の理論からも証明さ
れる。
The reason why the PMD is reduced can be explained as follows. As described above, at the time of drawing, the preform 3 is rotated forward and backward at a rate of 20 reciprocations / minute at a maximum of 10 degrees in the circumferential direction. As a result, a twist is forcibly applied to the optical fiber in a pseudo-random manner. Although this twist does not affect characteristics such as eccentricity and transmission loss, it functions to apply anisotropic strain to the core in a pseudo-random manner. Then, mode conversion (power transfer) is positively and pseudo-randomly performed between two orthogonal linearly polarized waves. In such a case, since the mode conversion to the eigen axis where the PMD becomes the maximum becomes stochastically low, the PMD becomes substantially the minimum. This is proved by the theory of established statistics.

【0020】なお、円周方向正逆にプリフォームを回転
する角度は最大でも30度である。この角度を超える
と、今度は加えた捩れにより伝送損失が増大する。ま
た、周期については実施例では20往復/分としたが、
往復回数をこれより多くすると伝送損失に影響が現れ、
これより少なくすると効果が小さくなる。
The angle at which the preform is rotated in the circumferential direction is 30 degrees at the maximum. Beyond this angle, the added twist will increase transmission losses. In the embodiment, the cycle is set to 20 reciprocations / minute,
Increasing the number of round trips affects transmission loss,
If less than this, the effect is reduced.

【0021】[0021]

【発明の効果】本発明の光ファイバの線引方法によれ
ば、プリフォームを円周方向に正逆に回転させながら線
引したので、たとえ光ファイバのコア部やクラッド部が
非円であっても、また線引時にコーティング材の偏肉が
あっても、あるいはケーブル化時に周期的に光ファイバ
が捩れてもPMD(偏波分散)が最小である光ファイバ
を得ることができた。これにより、光ファイバの製品歩
留まり向上と光ファイバ製造価格の低減が実現できる。
According to the optical fiber drawing method of the present invention, since the preform is drawn while rotating the preform in the forward and reverse directions in the circumferential direction, even if the core portion or the clad portion of the optical fiber is noncircular. However, even if the coating material was uneven in thickness at the time of drawing, or the optical fiber was twisted periodically at the time of the cable, an optical fiber having the minimum PMD (polarization dispersion) could be obtained. As a result, it is possible to improve the product yield of the optical fiber and to reduce the optical fiber manufacturing cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光ファイバの線引方法の一実施例を示
した説明図である。
FIG. 1 is an explanatory diagram showing one embodiment of an optical fiber drawing method of the present invention.

【図2】従来の光ファイバの線引方法を示した説明図で
ある。
FIG. 2 is an explanatory diagram showing a conventional optical fiber drawing method.

【符号の説明】[Explanation of symbols]

1 モータ 2、12 チャック部 3、13 プリフォーム 4、14 線引炉 5、15 樹脂被覆装置 6、16 光ファイバ 7、17 巻取りドラム DESCRIPTION OF SYMBOLS 1 Motor 2, 12 Chuck part 3, 13 Preform 4, 14 Drawing furnace 5, 15 Resin coating device 6, 16 Optical fiber 7, 17 Winding drum

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】光伝搬部を有するプリフォームをチャック
部に保持して線引炉に送り込み、前記プリフォームを溶
融・紡糸する光ファイバの線引方法において、前記プリ
フォームを円周方向に正逆に回転しながら線引すること
を特徴とする光ファイバの線引方法。
1. A method of drawing an optical fiber, comprising holding a preform having a light transmitting portion in a chuck portion and feeding the preform into a drawing furnace, and melting and spinning the preform. A method for drawing an optical fiber, characterized by drawing while rotating in the opposite direction.
【請求項2】正逆の回転角度は最大30度で且つ周期的
に行なうことを特徴とする請求項1記載の光ファイバの
線引方法。
2. The method for drawing an optical fiber according to claim 1, wherein the rotation angle in the forward and reverse directions is a maximum of 30 degrees and the rotation is performed periodically.
【請求項3】周期は1分間に略20往復とすることを特
徴とする請求項2記載の光ファイバの線引方法。
3. The method for drawing an optical fiber according to claim 2, wherein the period is about 20 reciprocations per minute.
JP11137966A 1999-05-19 1999-05-19 Method for drawing optical fiber Pending JP2000327361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11137966A JP2000327361A (en) 1999-05-19 1999-05-19 Method for drawing optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11137966A JP2000327361A (en) 1999-05-19 1999-05-19 Method for drawing optical fiber

Publications (1)

Publication Number Publication Date
JP2000327361A true JP2000327361A (en) 2000-11-28

Family

ID=15210908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11137966A Pending JP2000327361A (en) 1999-05-19 1999-05-19 Method for drawing optical fiber

Country Status (1)

Country Link
JP (1) JP2000327361A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1571133A1 (en) * 2004-03-01 2005-09-07 Furukawa Electric North America Inc. Apparatus and method for manufacturing optical fiber including rotating optical fiber preforms during draw
CN103030271A (en) * 2012-12-19 2013-04-10 江苏亨通光电股份有限公司 Method and device for producing low polarization mode dispersion optical fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1571133A1 (en) * 2004-03-01 2005-09-07 Furukawa Electric North America Inc. Apparatus and method for manufacturing optical fiber including rotating optical fiber preforms during draw
CN103030271A (en) * 2012-12-19 2013-04-10 江苏亨通光电股份有限公司 Method and device for producing low polarization mode dispersion optical fiber

Similar Documents

Publication Publication Date Title
JP3491644B2 (en) Optical fiber manufacturing method
JP2981088B2 (en) Optical fiber, method for manufacturing the same, and optical communication system
US4427717A (en) Process for producing an object with a chiralic structure obtained from a shapeable material source
JP3860237B2 (en) Optical fiber having polarization dispersion suppression characteristic and manufacturing method thereof
EP1571133A1 (en) Apparatus and method for manufacturing optical fiber including rotating optical fiber preforms during draw
WO2017197957A1 (en) Ultrafine polarization-maintaining optical fiber for use in fiber optic gyroscope and manufacturing method for optical fiber
US4283213A (en) Method of fabrication of single mode optical fibers or waveguides
WO2010124535A1 (en) Manufacture method for single mode fiber of undersea optical cable with high strength and large coil length
KR19980064732A (en) Optical fiber and how to make it
CA2433094A1 (en) Method for producing an optical fibre telecommunications cable with reduced polarization mode dispersion
JPH07115878B2 (en) Method for producing optical fiber with high mechanical resistance by drawing with large tensile force
CN1103956A (en) Optical fiber preform, optical fiber and their manufacturing methods
JP4134723B2 (en) Coated optical fiber and manufacturing method thereof
JP2000327361A (en) Method for drawing optical fiber
CN100357205C (en) Apparatus and method for fabricating optical fiber by spinning
JPS627130B2 (en)
JPH11302042A (en) Production of optical fiber and apparatus for production
JPS59164522A (en) Manufacture of optical distributing circuit
JP2652700B2 (en) Optical fiber manufacturing method
JP3491642B2 (en) Optical fiber preform, optical fiber, and manufacturing method thereof
JPH06235838A (en) Production of polarization maintaining optical fiber
JPS58135141A (en) Preparation of single polarized optical fiber
JP2000264669A (en) Production of optical fiber preform
JPH07234322A (en) Method for drawing plastic optical fiber
JPH0519135A (en) Manufacture of optical fiber coupler