JP2000326090A - Tig welding flux of stainless steel - Google Patents

Tig welding flux of stainless steel

Info

Publication number
JP2000326090A
JP2000326090A JP11138045A JP13804599A JP2000326090A JP 2000326090 A JP2000326090 A JP 2000326090A JP 11138045 A JP11138045 A JP 11138045A JP 13804599 A JP13804599 A JP 13804599A JP 2000326090 A JP2000326090 A JP 2000326090A
Authority
JP
Japan
Prior art keywords
flux
stainless steel
range
welding
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11138045A
Other languages
Japanese (ja)
Inventor
Kiyoshi Kanayama
潔士 金山
Tadanobu Murakami
任布 村上
Mitsuru Nakamura
満 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kokan Koji KK
Original Assignee
Nippon Kokan Koji KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Koji KK filed Critical Nippon Kokan Koji KK
Priority to JP11138045A priority Critical patent/JP2000326090A/en
Publication of JP2000326090A publication Critical patent/JP2000326090A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable deep penetration welding without generating a fluorine gas by containing SiO2, CrO and specifying the range of the content ratio of Cr2O3/SiO2. SOLUTION: This flux in which a content ratio value of Cr2O3/SiO2 is in a range of 0.15-2.0. When using the flux in which a content ratio of Cr2O3/SiO2 is mixed to a range of 0.15-2.0, the surface tension of a molten pool is turned to <=600 dyne/cm, the surface tension is greatly reduced as compared to the case except this range. Furthermore in the range of a content ratio of 0.15-2.0, regardless of the increase in the input heat quantity, the surface tension is maintained in a prescribed range. The flux, in TIG welding of a stainless steel, increases the penetration depth to improve welding part quality and to shorten a welding time. The flux does not generate a fluorine gas, a simple clothing is acceptable for working, and set up time is shortened as well.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ステンレス鋼のT
IG溶接を施す際に使用するフラックスに関する。
TECHNICAL FIELD The present invention relates to a stainless steel T
The present invention relates to a flux used when performing IG welding.

【0002】[0002]

【従来の技術】ステンレス鋼にTIG溶接を施す場合、
図5に示すように、溶け込み深さは、ある程度、硫黄S
の含有量に左右されることが知られている。この図5の
横軸はステンレス鋼に含有される硫黄Sの含有量(重量
%)を示し、縦軸は溶け込みDを示している。図中、a
の曲線は溶接時の入力電流が160A、bの曲線は入力
電流が140Aのものである。曲線a及び曲線bに示す
ように、ステンレス鋼に含有される硫黄Sの含有量が8
%を超えると、溶け込み深さDは硫黄Sの含有量にかか
わらずほぼ一定となるが、含有量が6重量%までは、溶
け込み深さDは硫黄の含有量に比例するように増加して
いる。
2. Description of the Related Art When performing TIG welding on stainless steel,
As shown in FIG. 5, the penetration depth is somewhat
It is known that it depends on the content of. The horizontal axis of FIG. 5 indicates the content (% by weight) of sulfur S contained in stainless steel, and the vertical axis indicates penetration D. In the figure, a
The curve indicated by the curve represents the case where the input current during welding was 160 A, and the curve indicated by the curve b indicates the case where the input current was 140 A. As shown in curves a and b, the content of sulfur S contained in the stainless steel is 8
%, The penetration depth D becomes substantially constant irrespective of the content of sulfur S, but up to a content of 6% by weight, the penetration depth D increases in proportion to the sulfur content. I have.

【0003】従来、ステンレス鋼により形成された固定
管にTIG溶接をする場合、図6に示すU字開先又は図
7に示すV字開先を設けて行っていた。この場合、ステ
ンレス鋼の底面から開先の底部までの長さであるルート
フェイスRF、ステンレス鋼に形成された開先底部の対
向面間の距離であるルートギャップRG及びステンレス
鋼底面と平行をなす開先底部の開先端面からの距離であ
る平行部長さLを、ステンレス鋼に含まれる硫黄Sの含
有量に応じて適切に変化させなければ、溶け込み不良、
裏波凹み等の不具合が発生する。
Conventionally, when performing TIG welding on a fixed pipe formed of stainless steel, a U-shaped groove shown in FIG. 6 or a V-shaped groove shown in FIG. 7 is provided. In this case, the root face RF is a length from the bottom surface of the stainless steel to the bottom of the groove, the root gap RG is a distance between opposing surfaces of the groove bottom formed in the stainless steel, and the bottom surface is parallel to the bottom surface of the stainless steel. If the length L of the parallel portion, which is the distance from the open front end surface of the groove bottom, is not appropriately changed according to the content of sulfur S contained in the stainless steel, poor penetration may occur.
Inconveniences such as Uranami dents occur.

【0004】一方、溶接の能率を向上するには、開先の
表面積を極力小さくすることが必要である為、開先形状
をI型に形成することも考えられる。しかし、開先をI
型(図8参照)にして通常のTIG溶接を行ったので
は、深い溶け込みを確保することが困難である。
On the other hand, in order to improve the efficiency of welding, it is necessary to reduce the surface area of the groove as much as possible. Therefore, it is conceivable to form the groove in an I-shape. However, the bevel is I
It is difficult to secure deep penetration if normal TIG welding is performed using a mold (see FIG. 8).

【0005】溶け込み深さを十分確保する方法に、英
国、TWIの実験報告に示されたフラックスや、米国、
EWI社のフラックスをステンレス鋼に塗布する方法が
有る。しかし、これらの方法にあっては、フラックスに
フッ素化合物であるNaFが含まれているため、フッ素
ガスが発生する恐れが有る。そのため、溶接作業者の装
備を重装備にする必要が有り、段取りに時間を要し、ト
ータルの作業時間としては必ずしも短縮されていなかっ
た。
[0005] There are several methods for ensuring a sufficient penetration depth, such as the flux shown in the experimental report of TWI in the United Kingdom, the United States,
There is a method of applying a flux from EWI to stainless steel. However, in these methods, since the flux contains NaF which is a fluorine compound, fluorine gas may be generated. Therefore, it is necessary to make the equipment of the welding operator heavy equipment, which requires time for setup, and the total working time has not always been reduced.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記課題に
対して成されたものであり、ステンレス鋼にTIG溶接
をする際、フッ素ガスを発生させずに溶け込みを深くす
ることができるステンレス鋼のTIG溶接用フラックス
を提供する。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and when performing TIG welding on stainless steel, the stainless steel can be deeply penetrated without generating fluorine gas. And a flux for TIG welding.

【0007】[0007]

【課題を解決するための手段】本発明では、ステンレス
鋼のTIG溶接に使用されるフラックスであって、この
フラックスは、SiO2とCr23とを含有し、Cr2
3/SiO2の成分比の値が0.15〜2.0の範囲ので
あるステンレス鋼のTIG溶接用フラックスにより上記
課題を解決する。
In [SUMMARY OF THE The present invention relates to a flux used for TIG welding of stainless steel, the flux contains SiO 2 and Cr 2 O 3, Cr 2 O
3 / the value of the component ratio of SiO 2 to solve the above problems by TIG welding flux Stainless steel is the range of 0.15 to 2.0.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0009】一般に、溶接深さは、母材の表面張力、粘
性、溶湯温度その他の各因子により決定される。本願発
明の発明者の種々の実験により、ステンレス鋼にTIG
溶接をした場合、溶接時に使用されるフラックスに含有
されるSiO2、Cr23の成分割合が、溶融池の表面
張力に影響を及ぼすことが判明した。
Generally, the welding depth is determined by the surface tension, viscosity, molten metal temperature and other factors of the base material. According to various experiments by the inventor of the present invention, TIG was added to stainless steel.
When welding was performed, it was found that the component ratio of SiO 2 and Cr 2 O 3 contained in the flux used at the time of welding affects the surface tension of the molten pool.

【0010】Cr23のSiO2に対する成分割合を
0.15〜2.0の範囲に混合したフラックスをステン
レス鋼の溶接しようとする表面部に塗布してTIG溶接
すると、溶融池の表面張力が、600dyne/cm以
下となり、この範囲以外の範囲の場合に比し、大幅に表
面張力を低下させることができる。これに対し、Cr2
3のSiO2に対する成分割合を0.15より小さくす
ると、溶融池の表面張力は大きくなる。逆に、Cr23
のSiO2に対する成分割合を2.0より大きくしても
溶融池の表面張力は大きくなる。
When a flux in which the component ratio of Cr 2 O 3 to SiO 2 is mixed in the range of 0.15 to 2.0 is applied to the surface of stainless steel to be welded and TIG-welded, the surface tension of the molten pool is obtained. Is 600 dyne / cm or less, and the surface tension can be significantly reduced as compared with the case outside the above range. In contrast, Cr 2
If the component ratio of O 3 to SiO 2 is smaller than 0.15, the surface tension of the molten pool increases. Conversely, Cr 2 O 3
The surface tension of the molten pool increases even if the component ratio of SiO 2 to SiO 2 is larger than 2.0.

【0011】また、成分割合が0.15〜2.0の範囲
では、入熱量の増加にかかわりなく表面張力を所定の範
囲に保つことができる。なお、Cr23のSiO2に対
する成分割合は、好ましくは、0.5〜0.8、更に好
ましくは、0.6〜0.7の範囲にするとよい。
When the component ratio is in the range of 0.15 to 2.0, the surface tension can be kept in a predetermined range regardless of the increase in the heat input. The ratio of Cr 2 O 3 to SiO 2 is preferably 0.5 to 0.8, and more preferably 0.6 to 0.7.

【0012】[0012]

【実施例1】ステンレス鋼に試験用フラックスを塗布
し、TIG溶接でビードオンプレートテストを行い、溶
け込み深さを測定した。試験用フラックスは、Cr23
とSiO2とで構成され、Cr23の比率を70〜40
重量%、SiO2の比率を30〜60重量%の範囲で変
化させたものを使用した。また、EWI社製のフッ素化
合物が含まれたSS7についても同様にビードオンプレ
ートテストを行った。なお、試験用フラックスは、Cr
23とSiO2とをアセトンで溶かし、刷毛でステンレ
ス鋼の開先に塗布した。また、ステンレス鋼は、表1に
示す化学成分組成を有するSUS304であり、その板
厚が6mmの鋼板のものを使用した。
Example 1 A test flux was applied to stainless steel, a bead-on-plate test was performed by TIG welding, and the penetration depth was measured. The test flux was Cr 2 O 3
And SiO 2, and the ratio of Cr 2 O 3 is 70 to 40.
Wt%, it was used that the ratio of SiO 2 was varied in the range of 30 to 60 wt%. In addition, a bead-on-plate test was similarly performed on SS7 containing a fluorine compound manufactured by EWI. The test flux was Cr
2 O 3 and SiO 2 were dissolved in acetone and applied to a stainless steel groove with a brush. The stainless steel used was SUS304 having the chemical composition shown in Table 1 and had a thickness of 6 mm.

【0013】[0013]

【表1】 [Table 1]

【0014】図1にアーク長を3mmに固定してテスト
したときの、入熱量と溶け込み深さとの関係を示す。本
図の縦軸は溶け込み深さ(mm)を、横軸は入熱量(K
J/cm)を示している。また、本図に示されたデータ
は、テストを行ったフラックスの中から、Cr23とS
iO2との含有率が表2に示されたフラックスにつての
ものである。
FIG. 1 shows the relationship between the amount of heat input and the penetration depth when a test was performed with the arc length fixed at 3 mm. The vertical axis of this figure is the penetration depth (mm), and the horizontal axis is the heat input (K
J / cm). In addition, the data shown in the figure shows that Cr 2 O 3 and S
The content of iO 2 is for the fluxes shown in Table 2.

【0015】[0015]

【表2】 [Table 2]

【0016】この図から明らかなように、試験用フラッ
クスは、フッ素化合物が含まれたSS7と比較して概ね
深い溶け込みを得ている。また、採用した試験用フラッ
クス同士を比較すると、入熱量が同値であれば、溶け込
み深さは、Cr23の比率が40重量%、SiO2の比
率が60重量%に構成されたものが最も深いことがわか
る。
As is apparent from this figure, the test flux has generally deeper penetration than SS7 containing a fluorine compound. When the test fluxes used are compared with each other, if the heat input amounts are the same, the penetration depth is such that the Cr 2 O 3 ratio is 40% by weight and the SiO 2 ratio is 60% by weight. You can see the deepest.

【0017】図2(a)は、入熱量を12KJ/cmに
固定しときの、溶け込み深さと、Cr23のSiO2
対する割合、Cr23/SiO2との関係を示してい
る。Cr 23のSiO2に対する割合を変化させたもの
のうち、Cr23/SiO2の値が、0.15から2の
範囲であれば、フッ素化合物が含まれたSS7と比較し
て概ね深い溶け込みを得ている。特に、Cr23/Si
2の値が0.5〜0.8で、深い溶け込みを得ること
ができ、約0.7の値を取るときピークとなっており、
その値は約6mmである。
FIG. 2A shows that the heat input is reduced to 12 KJ / cm.
Penetration depth when fixing and CrTwoOThreeSiOTwoTo
Percentage, CrTwoOThree/ SiOTwoShows a relationship with
You. Cr TwoOThreeSiOTwoWith a different ratio to
Of which, CrTwoOThree/ SiOTwoIs between 0.15 and 2
If it is within the range, compare it with SS7 containing fluorine compounds.
It has almost deep penetration. In particular, CrTwoOThree/ Si
OTwoValue of 0.5 to 0.8 to obtain deep penetration
Is peaked when it takes a value of about 0.7,
Its value is about 6 mm.

【0018】一方、図2(b)は、アスペクト比D/W
(図3参照)と、Cr23のSiO 2に対する割合(C
23/SiO2)との関係を示している。この図から
明らかなように、Cr23/SiO2の値が0.6〜
0.7の付近では、アスペクト比は約0.8と極めて良
好な値を示している。
On the other hand, FIG. 2B shows an aspect ratio D / W
(See FIG. 3) and CrTwoOThreeSiO TwoTo the ratio (C
rTwoOThree/ SiOTwo). From this figure
Clearly, CrTwoOThree/ SiOTwoIs 0.6-
In the vicinity of 0.7, the aspect ratio is extremely good at about 0.8.
It shows good values.

【0019】[0019]

【実施例2】肉厚が6mmのステンレス鋼のパイプ材に
図4に示す開先をそれぞれ形成し、この開先にCr23
とSiO2とからなるフラックスを塗布してTIG溶接
したところ、70°のV形開先を形成してTIG溶接し
ていた従来の場合に比べ、溶接時間が約1/5になっ
た。
Example 2 A groove shown in FIG. 4 was formed in a stainless steel pipe material having a thickness of 6 mm, and Cr 2 O 3 was formed on the groove.
When a flux consisting of SiO 2 and SiO 2 was applied and TIG welding was performed, the welding time was reduced to about 1/5 as compared with the conventional case in which a 70 ° V-shaped groove was formed and TIG welding was performed.

【0020】[0020]

【発明の効果】以上説明したように、本発明のフラック
スは、ステンレス鋼にTIG溶接を施す際、溶け込みを
深くすることができ、溶接部の品質を向上させる。ま
た、溶け込みが深くなることで、溶接時間を短縮するこ
ともできる。さらに、本発明にかかるフラックスでは、
フッ素化合物が含有されていないので、フッ素ガスが発
生せず、作業時の装備を軽装にでき、段取り時間をも短
縮する。
As described above, the flux of the present invention can deepen the penetration when performing TIG welding on stainless steel, and improves the quality of the welded portion. Further, the deeper the penetration, the shorter the welding time can be. Furthermore, in the flux according to the present invention,
Since no fluorine compound is contained, no fluorine gas is generated, the equipment required for work can be lightened, and the setup time is also reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1のビードオンプレートテストにおける
入熱量と溶け込み深さの関係を示す図。
FIG. 1 is a diagram showing a relationship between a heat input amount and a penetration depth in a bead-on-plate test of Example 1.

【図2】実施例1のビードオンプレートテストにおける
Cr23/SiO2に対する溶け込み深さ及びCr23
/SiO2に対する溶け込み深さと幅とのアスペクト比
との関係を示す図。
FIG. 2 shows the penetration depth of Cr 2 O 3 / SiO 2 and the Cr 2 O 3 in the bead-on-plate test of Example 1.
/ Shows the relationship between the aspect ratio between the depth and width penetration for SiO 2.

【図3】ビードオンプレートテストの溶け込み深さD及
び溶け込み幅Wを示す図。
FIG. 3 is a diagram showing a penetration depth D and a penetration width W in a bead-on-plate test.

【図4】実施例2におけるステンレス鋼のパイプ材に形
成した開先の形状を示す図。
FIG. 4 is a view showing the shape of a groove formed on a stainless steel pipe material in Example 2.

【図5】ステンレス鋼に添加されたSに対する溶け込み
幅及び溶け込み深さの一般的な関係を示す図。
FIG. 5 is a diagram showing a general relationship between a penetration width and a penetration depth for S added to stainless steel.

【図6】ステンレス鋼に形成されたU字開先を示す図。FIG. 6 is a view showing a U-shaped groove formed in stainless steel.

【図7】ステンレス鋼に形成されたV字開先を示す図。FIG. 7 is a view showing a V-shaped groove formed in stainless steel.

【図8】ステンレス鋼に形成されたI字開先を示す図。FIG. 8 is a diagram showing an I-shaped groove formed in stainless steel.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4E084 AA03 AA15 CA19 DA31 EA09 HA01  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4E084 AA03 AA15 CA19 DA31 EA09 HA01

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ステンレス鋼のTIG溶接に使用される
フラックスであって、 このフラックスは、SiO2とCr23とを含有し、C
23/SiO2の成分比の値が0.15〜2.0の範
囲のであることを特徴とするステンレス鋼のTIG溶接
用フラックス。
1. A flux used for TIG welding of stainless steel, wherein the flux contains SiO 2 and Cr 2 O 3 ,
A flux for TIG welding of stainless steel, wherein a value of a component ratio of r 2 O 3 / SiO 2 is in a range of 0.15 to 2.0.
JP11138045A 1999-05-19 1999-05-19 Tig welding flux of stainless steel Pending JP2000326090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11138045A JP2000326090A (en) 1999-05-19 1999-05-19 Tig welding flux of stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11138045A JP2000326090A (en) 1999-05-19 1999-05-19 Tig welding flux of stainless steel

Publications (1)

Publication Number Publication Date
JP2000326090A true JP2000326090A (en) 2000-11-28

Family

ID=15212726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11138045A Pending JP2000326090A (en) 1999-05-19 1999-05-19 Tig welding flux of stainless steel

Country Status (1)

Country Link
JP (1) JP2000326090A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100441365C (en) * 2006-12-12 2008-12-10 南京航空航天大学 Surfactant for magnesium alloy TIG welding and its prepn process and usage
CN105312770A (en) * 2014-07-29 2016-02-10 天津大学 Laser welding mode determination method based on plasma electric signals
CN113927193A (en) * 2021-10-29 2022-01-14 中国船舶重工集团公司第七二五研究所 Novel combined large-penetration welding method for thick plate copper alloy
CN113927200A (en) * 2020-07-14 2022-01-14 中国核工业二三建设有限公司 Formula and using method of activator for 304 stainless steel A-TIG welding

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100441365C (en) * 2006-12-12 2008-12-10 南京航空航天大学 Surfactant for magnesium alloy TIG welding and its prepn process and usage
CN105312770A (en) * 2014-07-29 2016-02-10 天津大学 Laser welding mode determination method based on plasma electric signals
CN113927200A (en) * 2020-07-14 2022-01-14 中国核工业二三建设有限公司 Formula and using method of activator for 304 stainless steel A-TIG welding
CN113927193A (en) * 2021-10-29 2022-01-14 中国船舶重工集团公司第七二五研究所 Novel combined large-penetration welding method for thick plate copper alloy

Similar Documents

Publication Publication Date Title
DK3045259T3 (en) Flux core wire for AR-CO2 arc welding with protective gas
US10160065B2 (en) Flux-cored wire for carbon dioxide gas shielded arc welding
CA2876497A1 (en) High strength steel weld metal for demanding structural applications
JP2000326091A (en) Tig welding flux of stainless steel
JP2016147273A (en) FLUX-CORED WIRE FOR 9% Ni STEEL WELDING
US2432773A (en) Coated welding electrode
US20170129056A1 (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP2000326090A (en) Tig welding flux of stainless steel
CA2024498C (en) Gas metal arc welding wire
Savytsky et al. Influence of the impurities on the depth of penetration with carbon steel weldings
US5155333A (en) Low hydrogen type coated electrode
JPH04361876A (en) High fatigue strength gas shielded arc welding method
Sánchez Osio Influence of consumable composition and solidification on inclusion formation and growth in low carbon steel underwater wet welds, The
JPH1110391A (en) Flux cored wire for multielectrode vertical electrogas arc welding for extra thick plate
JP7244283B2 (en) 3-electrode single-sided gas-shielded arc welding method
JP3789060B2 (en) Flux-cored wire for TIG welding
JPH01262094A (en) Low hydrogen type coated electrode
JP2628396B2 (en) Flux-cored wire for self-shielded arc welding
JPS61286090A (en) Flux-cored wire for arc welding
JP2001219274A (en) Tic welding method
JPS63115696A (en) Flux-cored wire for hard overlay
SU683876A1 (en) Core electrode wire charge
RU2056984C1 (en) Method of automatic flux welding of quenchable steels
JPS6054156B2 (en) Flux for submerged arc welding of ultra-low carbon austenitic stainless steel
Baeslack III et al. Stress corrosion cracking in duplex stainless steel weldments

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060322