JP2000325434A - Electron beam irradiating device - Google Patents

Electron beam irradiating device

Info

Publication number
JP2000325434A
JP2000325434A JP11142062A JP14206299A JP2000325434A JP 2000325434 A JP2000325434 A JP 2000325434A JP 11142062 A JP11142062 A JP 11142062A JP 14206299 A JP14206299 A JP 14206299A JP 2000325434 A JP2000325434 A JP 2000325434A
Authority
JP
Japan
Prior art keywords
electron beam
irradiated
dose
beam irradiation
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11142062A
Other languages
Japanese (ja)
Inventor
Takashi Yamakawa
隆 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11142062A priority Critical patent/JP2000325434A/en
Publication of JP2000325434A publication Critical patent/JP2000325434A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable the suppressing of a distribution of electron beams within a specified value without allowing the difference of the distribution of electron beams becoming larger, by irradiating one or more objects to be irradiated with electron beams in a state that they are housed in a cylindrical container and by selecting the thickness and material of the cylindrical container so that the distribution of electron beams between a surface region and a center region may be within a specified value. SOLUTION: A chain 5 is rotated in a specified speed with a belt conveyer 2 being conveyed in a state that cylinder bodies 8 containing respective dialyzers (objects to be irradiated) are placed on a line-shaped placing board 3. In this way, the cylinder bodies 8 are conveyed with rotating through an effective electron beam region of an electron beam irradiating device 7, while the dialyzers are irradiated with the electron beams having energy of 10 Mev from the electron beam irradiating device 7 through the cylindrical bodies 8. By doing so, the dialyzers 8 can be irradiated with the electron beam having the energy of 10 Mev without an irregularity through the cylindrical bodies 8. Moreover, the thickness and material of the cylindrical bodies 8 are selected so that the distribution of electron beams between the surface region and the center region of the dialyzer 8 may be set within 1.5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば血液処理モ
ジュール等の医療機器のように、立体的で複雑な形状を
した被照射物に高エネルギの電子線を照射しながら殺菌
等の所期の目的を達成する電子線照射装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intended object such as sterilization while irradiating a high-energy electron beam to a three-dimensional and complicated shaped object to be irradiated, such as a medical device such as a blood processing module. The present invention relates to an electron beam irradiation device that achieves the object.

【0002】[0002]

【従来の技術】従来より、半透膜の中空糸状毛細管内を
血液を通過させながらその管周囲を流れる透析液によ
り、前記管膜を介した両流体の濃度勾配に基づく分子拡
散等により尿毒症原因物質等を排出する血液透析用ダイ
アライザは公知であり、かかるダイアライザ1の形状は
図5に示すように、多数本の中空糸状毛細管35をその
上下両端で保持するリング状の毛管ホルダ21を具え、
これらを円筒状のケース20で包被するとともに、該ケ
ース20の上下両端に夫々キャップ22、23により螺
着された漏斗状の血液流入部26と血液流出部27とを
固定する。又、前記円筒状ケース20の上下両側の側面
には細筒状の透析液流入口24と流出口25とを突設さ
せている。
2. Description of the Related Art Conventionally, dialysis fluid flowing around a hollow fiber capillary tube having a semipermeable membrane while blood is passed through the capillary tube causes uremia due to molecular diffusion or the like based on the concentration gradient of both fluids through the tube membrane. A dialyzer for hemodialysis for discharging a causative substance or the like is known. The dialyzer 1 has a ring-shaped capillary holder 21 for holding a large number of hollow fiber capillaries 35 at upper and lower ends thereof as shown in FIG. ,
These are covered with a cylindrical case 20, and a funnel-shaped blood inlet 26 and a blood outlet 27, which are screwed to upper and lower ends of the case 20 by caps 22 and 23, respectively, are fixed. Further, on the upper and lower side surfaces of the cylindrical case 20, a thin cylindrical dialysate inlet 24 and an outlet 25 are projected.

【0003】かかる血液透析用ダイアライザ1は血液が
循環するものであるために、当然のごとく十分滅菌して
使用せねばならず、その滅菌方法には、従来より高圧蒸
気滅菌、エチレンオキシドガス滅菌、γ線滅菌などが開
発されている。
[0003] Such a hemodialysis dialyzer 1 must be used after being sufficiently sterilized as a matter of course because it circulates blood, and its sterilization methods include conventional high-pressure steam sterilization, ethylene oxide gas sterilization, and γ. X-ray sterilization and the like have been developed.

【0004】さらに近年は、電子線照射が、その加速電
圧を大きくすることで、医療用具等を滅菌可能とする方
法が注目されている。電子線照射による滅菌法は、高圧
蒸気滅菌法のように、被照射物の耐熱性が問題になるこ
とがなく、又、エチレンオキシドガス法のような残留毒
性の心配がなく、更にエチレンオキシドガス法、γ線照
射法のように滅菌処理時間が長くなく短時間で処理が可
能である。また、電源を切れば、瞬時に照射を停止し、
γ線の照射施設のような放射性物質の保管に関する配慮
は不要で環境上の安全性が高く、コスト面からも安価で
ある等の有利性を有す。更に、γ線との違いは、材料劣
化が小さいと言われていることである。このため、材料
選択の範囲が広い利点がある。
In recent years, attention has been paid to a method for sterilizing medical devices and the like by increasing the acceleration voltage of electron beam irradiation. The sterilization method using electron beam irradiation does not have the problem of heat resistance of the irradiated object unlike the high-pressure steam sterilization method, and has no concern about residual toxicity like the ethylene oxide gas method. Unlike the γ-ray irradiation method, the sterilization treatment time is not long and the treatment can be performed in a short time. When the power is turned off, the irradiation stops instantly,
There is no need to consider the storage of radioactive materials such as γ-ray irradiation facilities, and it has advantages such as high environmental safety and low cost. Further, the difference from γ-rays is that it is said that material deterioration is small. For this reason, there is an advantage that the range of material selection is wide.

【0005】しかし、電子線照射の欠点はγ線照射と異
なり透過力が小さく、その透過距離は照射される物質の
密度と厚みの積に依存すると言われている。従って、こ
れまで電子線照射法を滅菌法として採用したほとんどの
製品は、手術用手袋、手術用シート、手術着、縫合糸、
等の比較的形状が均一で単一部材からなっているもので
あり、比較的容易に照射可能であった。しかしながら、
中空糸からなる人工透析装置や人工肺などの人工臓器と
呼ばれる医療用具は、前記したように立体的で複雑な形
状を有している。特に前記のように血液透析用ダイアラ
イザ1は、単なる円筒形状ではなく、厚肉の円筒ケース
20の両端に、リング状毛管ホルダ21やキャップ2
2、23が取り付けられており、又ケース20側面に、
細筒状の透析液流入口24と流出口25が突設されてお
り、この為、軸方向にも周方向にも厚肉(高密度)で且
つ複雑な形状となっていた。
However, the drawback of electron beam irradiation is that, unlike γ-ray irradiation, the penetrating power is small, and it is said that the transmission distance depends on the product of the density and thickness of the substance to be irradiated. Therefore, most products that have used electron beam irradiation as a sterilization method so far are surgical gloves, surgical sheets, surgical gowns, sutures,
And the like were relatively uniform in shape and made of a single member, and could be irradiated relatively easily. However,
A medical device called an artificial organ such as an artificial dialysis device or an artificial lung made of a hollow fiber has a three-dimensional and complicated shape as described above. In particular, as described above, the dialyzer 1 for hemodialysis is not merely a cylindrical shape, but a ring-shaped capillary holder 21 and a cap 2 at both ends of a thick cylindrical case 20.
2 and 23 are attached, and on the side of the case 20,
The dialysate inflow port 24 and the outflow port 25 in the form of a small cylinder are provided so as to protrude, so that the wall is thick (high density) and complicated in both the axial direction and the circumferential direction.

【0006】従って、血液透析用ダイアライザ1におい
ては各部位の面密度の違いが大きく、電子線照射時に一
製品中の線量分布(最大線量と最小線量との比)が大き
くなり、その値が大きいほど、安全性、製品管理、性能
等に問題を生じていた。具体的には、照射基準を最大線
量に合わせると、最小線量位置での滅菌が不十分にな
り、又照射基準を最小線量に合わせると、前記人工臓器
は一般に有機樹脂で製造されているために、最大線量位
置で過大照射となり、材料の劣化や着色が生じてしま
う。
[0006] Therefore, in the dialyzer 1 for hemodialysis, the difference in the surface density of each part is large, and the dose distribution (the ratio between the maximum dose and the minimum dose) in one product at the time of electron beam irradiation is large, and the value is large. As a result, problems in safety, product management, performance, and the like have arisen. Specifically, if the irradiation standard is adjusted to the maximum dose, sterilization at the minimum dose position becomes insufficient, and if the irradiation standard is adjusted to the minimum dose, the artificial organ is generally made of an organic resin. In addition, excessive irradiation occurs at the position of the maximum dose, resulting in deterioration and coloring of the material.

【0007】この為、照射による線量分布のバラツキを
抑えるために、表裏両面から電子線を照射する両面照射
方式が考えられるが、血液透析用ダイアライザ1のよう
に面密度の大きい被照射物を照射する高エネルギの電子
線照射装置は金額的にも極めて高く、これらの高価な装
置を複数設置する事は採算性の面からも極めて困難であ
り、而も前記のような高密度で円筒形の組み合わせから
なるような複雑な形状をした被照射物に両面照射を実施
したとしても、線量分布(最大線量と最小線量との比)
が2倍以上と十分大きく、尚、実用性に届かないもので
あった。
For this reason, in order to suppress variations in the dose distribution due to irradiation, a double-sided irradiation method in which electron beams are irradiated from both front and back sides can be considered. However, an irradiation target having a large surface density such as the dialyzer 1 for hemodialysis is irradiated. High-energy electron beam irradiators are extremely expensive in terms of cost, and it is extremely difficult to install a plurality of these expensive devices in terms of profitability. Dose distribution (ratio between maximum and minimum doses) even when irradiation is performed on both sides of an object with a complex shape such as a combination
Was more than twice as large, and was not practical.

【0008】[0008]

【発明が解決しようとする課題】かかる欠点を解消する
ために、特開平8−275991号において、高い線量
が当たる部位に線量を吸収するためのシールド部材を用
いる従来技術が開示されている。かかる技術は、被照射
物夫々に、例えばタングステンを含有させた軟質塩化ビ
ニルからなるシールドシートを線量が過多となる部分に
固定して電子線照射を行なうものであるが、個々の被照
射物全てに線量が過多となる部分にシールドシートを固
定することは、その固定作業が極めて煩雑化し、実用的
でない。
In order to solve such a drawback, Japanese Patent Application Laid-Open No. Hei 8-275991 discloses a prior art in which a shield member for absorbing a high dose is used to absorb the dose. In this technique, an electron beam irradiation is performed by fixing a shielding sheet made of, for example, soft vinyl chloride containing tungsten to a portion where the dose is excessive, for each of the irradiated objects. It is not practical to fix the shield sheet to a portion where the dose is excessively large, since the fixing operation becomes extremely complicated.

【0009】さて、このような複雑な立体照射物に対し
ては、エネルギの大きい電子線を用いて滅菌を行なう
が、産業応用として許される電子線エネルギの最大値は
10MeVとなっている。従って、エネルギ5MeV、
10MeVの高エネルギ電子線照射装置であれば市販さ
れており、そして、10MeVの電子線の飛程は略5g
/cm2であるが、この10MeVの電子線を照射した
場合に、例えば図1、図2に示すように、密度と厚みの
積が略3〜5(g/cm2)までは線量比が増加すると
ともに、被照射物(ダイアライザ)にそのまま10Me
Vの電子線を照射すると、直径が5cm前後において、
中心域と表面域との線量分布比が1.5倍を越えてしま
う恐れがある。ここで、図1、図2において、φ:ダイ
アライザの直径(cm)、ρ:ダイアライザ比重(g/
cm3)、σ:10MeVの電子線の飛程(5.192
g/cm2)である。またY軸は線量比(=中心線量/
評定線量)を示す。なお評定線量とは非回転時における
線量のことをいう。
Now, such a complex three-dimensional irradiation object is sterilized using an electron beam having a large energy. The maximum value of the electron beam energy allowed for industrial application is 10 MeV. Therefore, energy 5MeV,
A 10 MeV high energy electron beam irradiation device is commercially available, and the range of the 10 MeV electron beam is approximately 5 g.
/ Cm 2 , when the electron beam of 10 MeV is irradiated, as shown in FIGS. 1 and 2, for example, the dose ratio is about 3 to 5 (g / cm 2 ) when the product of the density and the thickness is about 3 to 5 (g / cm 2 ). 10 Me as it is on the irradiated object (dialyzer)
When irradiated with an electron beam of V, when the diameter is around 5 cm,
The dose distribution ratio between the central region and the surface region may exceed 1.5 times. Here, in FIGS. 1 and 2, φ: the diameter of the dialyzer (cm), ρ: the specific gravity of the dialyzer (g /
cm 3 ), σ: 10 MeV electron beam range (5.192)
g / cm 2 ). The Y-axis is the dose ratio (= center dose /
(Rated dose). The evaluation dose refers to the dose at the time of non-rotation.

【0010】本発明はかかる技術的課題に鑑み、中心域
と表面域との線量分布(最大線量と最小線量との比)の
開きが大きくなることなく、その電子線量分布を1.5
倍以内に抑えることの出来る高エネルギ電子線照射装置
を提供することを目的とする。
In view of the above technical problem, the present invention reduces the electron dose distribution by 1.5 without increasing the dose distribution (the ratio between the maximum dose and the minimum dose) between the central region and the surface region.
It is an object of the present invention to provide a high-energy electron beam irradiating apparatus capable of suppressing the energy irradiation to within twice.

【0011】[0011]

【課題を解決するための手段】請求項1記載の発明は、
立体被照射物の表面域から中心域までに高エネルギの電
子線を照射しながら殺菌等の所期の目的を達成する電子
線照射方法において、一又は複数の被照射物を筒状容器
内に収納した状態で電子線照射を行なうとともに、前記
表面域と中心域との間の線量分布を1.5以内になるよ
うに、前記筒状容器の肉厚と材質を選択したことを特徴
とする。
According to the first aspect of the present invention,
In an electron beam irradiation method for achieving an intended purpose such as sterilization while irradiating a high-energy electron beam from a surface region to a central region of a three-dimensional irradiation object, one or more irradiation objects are placed in a cylindrical container. The thickness and material of the cylindrical container are selected so that electron beam irradiation is performed in the housed state and the dose distribution between the surface area and the central area is within 1.5. .

【0012】この場合、密度と厚みの積が3(g/cm
2)以上である血液処理モジュールを電子線照射する場
合においては、請求項2に記載のように、電子線照射方
向に対し、被照射物が回転若しくは電子線照射域通過毎
に逐次角度変位させながら電子線照射を行なうのがよ
い。ここで電子線照射域通過毎に逐次角度変位させると
は、前記被照射物をベルトコンベア等で電子線照射域を
通過する毎に、前記円筒形部の中心軸線を中心として所
定角度ずつ被照射物の照射位置を変更させながら繰り返
し電子線照射域を通過させるもので、例えば3回通過さ
せる場合には120°ずつ角度変位させて累積照射を行
ない、又5回通過させる場合には72°ずつ角度変位さ
せて累積照射を行なうものである。
In this case, the product of the density and the thickness is 3 (g / cm).
2 ) When irradiating the blood processing module with the electron beam, the object to be irradiated is angularly displaced with respect to the direction of electron beam irradiation every time the object rotates or passes through the electron beam irradiation area. It is preferable to perform electron beam irradiation while performing. Here, successively displacing the angle every time the electron beam irradiation area passes means that each time the object to be irradiated passes through the electron beam irradiation area by a belt conveyor or the like, the object is irradiated by a predetermined angle around the center axis of the cylindrical portion. It repeatedly passes through the electron beam irradiation area while changing the irradiation position of the object. For example, when passing three times, cumulative irradiation is performed by changing the angle by 120 °, and when passing five times, 72 ° each. Cumulative irradiation is performed with an angular displacement.

【0013】前記筒状容器は、薄肉ステンレスからなる
円筒若しくは略楕円状容器であるのがよいが、好ましく
は請求項3に記載のように、前記筒状容器の肉厚と材質
を前記表面域と中心域との間の線量分布が1.5以内に
なるように、前記筒状容器に約0.1〜2.0mmの肉
厚、好ましくは0.3〜1mmのステンレス容器を選択
するのがよい。
Preferably, the cylindrical container is a cylindrical or substantially elliptical container made of thin stainless steel, and preferably, the thickness and the material of the cylindrical container are changed to the surface area. It is preferable to select a stainless steel container having a thickness of about 0.1 to 2.0 mm, preferably 0.3 to 1 mm for the cylindrical container so that the dose distribution between the container and the central region is within 1.5. Is good.

【0014】即ち、前記筒容器に有機樹脂を用いてもよ
いが、有機樹脂は電子線の照射により着色や劣化が生じ
てしまい、この点ステンレスはこのようなことがなく、
而も衛生面及び取扱いの容易さを有するとともに、その
肉厚を0.1〜2.0mm、好ましくは、0.3〜1.
0mm程度に収めることにより、図1及び図2に示すよ
うに、筒なしで高エネルギ電子線を照射した場合に比較
して、表面線量が上昇し且つ中心線量の凸カーブがゼロ
点側にずれるために、結果として中心域と表面域との線
量分布比が1.5倍より大幅に低くすることが出来、照
射物の肉厚が異なるものにおいても、走査方向各部位の
電子線吸収量の均一化を可能とし、これにより例えば前
記容器においては照射ムラが無く、かつ無用な電子線の
過剰照射に起因する樹脂製被照射物の着色や劣化を阻止
しつつ、一方電子線の照射不足に起因する殺菌不良等の
品質の悪化の発生を防止し得る。
That is, an organic resin may be used for the cylindrical container. However, the organic resin is colored or deteriorated by irradiation with an electron beam.
It has hygiene and ease of handling, and has a thickness of 0.1 to 2.0 mm, preferably 0.3 to 1.
1 and 2, the surface dose increases and the convex curve of the central dose shifts to the zero point side as compared with the case where the high energy electron beam is irradiated without a cylinder as shown in FIGS. 1 and 2. Therefore, as a result, the dose distribution ratio between the central region and the surface region can be made significantly lower than 1.5 times, and even if the irradiation object has a different thickness, the electron beam absorption amount of each part in the scanning direction can be reduced. This enables uniformization, for example, in the above-described container, which has no irradiation unevenness, and prevents coloring and deterioration of the resin-made irradiation object caused by excessive irradiation of unnecessary electron beams, while reducing irradiation of electron beams. Deterioration of quality such as poor sterilization can be prevented.

【0015】勿論本発明は、ステンレス筒のみに限定さ
れるものではなく、その他に、ポリスルホン、ポリカー
ボネート、ポリスチレンに代表される有機物樹脂やSi
C等のセラミック材若しくは石英ガラスを用いることが
出来る。
Of course, the present invention is not limited to stainless steel cylinders, but also includes organic resin represented by polysulfone, polycarbonate, polystyrene and Si.
A ceramic material such as C or quartz glass can be used.

【0016】[0016]

【発明の実施の形態】以下、図面を参照して本発明の好
適な実施形態を例示的に詳しく説明する。但しこの実施
形態に記載されている構成部品の寸法、材質、形状、そ
の相対的配置等は特に特定的な記載がないかぎりは、こ
の発明の範囲をそれに限定する趣旨ではなく、単なる説
明例にすぎない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will now be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, and are merely illustrative examples. Only.

【0017】本実施形態では、図5に示す血液透析用ダ
イアライザ1を用いて電子線照射を行なった。尚、本発
明が最も有効に活用できる医療機器は、これ以外の血液
処理モジュールが好ましい。特にメディカル用途におい
て、照射滅菌線量として水浸漬状態で15〜35KGy
程度が好ましく用いられている。血液処理モジュールと
は、血漿交換治療や人工透析治療(HD、HDF、H
F)、人工肝臓、エンドトキシンフィルタ、バイオリア
クター等の医療及び産業用途等、各種用途に用いられて
いる。なお、HDはHemo Dialysis(血液透析)、HD
FはHemo DiaFiltration(血液濾過透析)、HFはHemo
Filtration(血液濾過)である。
In this embodiment, electron beam irradiation was performed using the dialyzer 1 for hemodialysis shown in FIG. It is to be noted that a medical device to which the present invention can be most effectively utilized is preferably another blood processing module. Particularly in medical applications, the irradiation sterilization dose is 15 to 35 KGy in water immersion.
The degree is preferably used. Blood processing modules include plasma exchange therapy and artificial dialysis treatment (HD, HDF, H
F), artificial livers, endotoxin filters, bioreactors, and other medical and industrial uses. HD is Hemo Dialysis (hemodialysis), HD
F is Hemo DiaFiltration (hemofiltration dialysis), HF is Hemo
Filtration (blood filtration).

【0018】そしてこのようなモジュールは、前記した
ように片面照射では電子線が届きにくいため、回転照射
若しくは電子線照射域通過毎に逐次角度変位させながら
電子線照射を行なうことにより、後記に詳細に説明する
ように、均等な線量(具体的には最大線量と最小線量の
比が1.5倍以下)での電子線滅菌を可能とすることが
出来る。又、このような複雑な立体形状のモジュールの
電子線滅菌装置として10MeVの電子線照射装置を用
いた。
As described above, since the electron beam is difficult to reach by single-sided irradiation as described above, the module is irradiated with the electron beam while gradually changing the angle every time the laser beam is rotated or passed through the irradiation region of the electron beam. As described above, electron beam sterilization can be performed with a uniform dose (specifically, the ratio between the maximum dose and the minimum dose is 1.5 times or less). An electron beam irradiation device of 10 MeV was used as an electron beam sterilization device for such a complicated three-dimensional module.

【0019】本発明の実施形態について、図1及び図2
を参照して説明する。本実施形態に用いる被照射物(ダ
イアライザ)1は、円筒ケース内に透析液等の液体が充
填された図5に示す血液透析用ダイアライザ1を0.3
mmと0.6mm肉厚の夫々のステンレス製円筒容器内
に入れたものと、前記ステンレス製円筒容器内に入れず
に裸のまま露出させたもの、夫々について、10MeV
の電子線を照射し、その表面線量と中心線量について、
夫々測定した結果を図1及び図2に示す。尚、図中φ:
ダイアライザの直径(cm)、ρ:ダイアライザ比重
(g/cm 3)、σ:10MeVの電子線の飛程(5.
192g/cm2)である。
FIGS. 1 and 2 show an embodiment of the present invention.
This will be described with reference to FIG. The object to be irradiated (da
1) is filled with a liquid such as a dialysate in a cylindrical case.
The hemodialysis dialyzer 1 shown in FIG.
mm and 0.6 mm thickness in each stainless steel cylindrical container
And not put in the stainless steel cylindrical container
10MeV for each exposed naked
Irradiating the electron beam, the surface dose and the central dose,
The results of the respective measurements are shown in FIGS. In the figure, φ:
Dializer diameter (cm), ρ: dialyzer specific gravity
(G / cm Three), Σ: 10 MeV electron beam range (5.
192 g / cmTwo).

【0020】本測定結果について検討してみるに、筒な
しの場合は、例えば血液透析用ダイアライザ1の場合、
被照射物密度が略1前後の為に、線量分布(表面線量/
中心線量)の最も大きい直径が5cmの場合の表面線量
は0.8、中心線量は1.2とその線量分布は1.5倍
あった。一方、ステンレス筒内に収納して電子線を照射
した場合は、ステンレス筒の肉厚が0.3mmの場合は
表面線量は0.9、中心線量は1.12とその線量分布
は1.24倍と大幅に縮小されている。又、ステンレス
筒の肉厚が0.6mmの場合は表面線量は0.92、中
心線量は1.07とその線量分布は1.16倍と更に縮
小されている。
When examining the measurement results, when there is no cylinder, for example, in the case of the dialyzer 1 for hemodialysis,
The dose distribution (surface dose /
When the largest diameter of the central dose was 5 cm, the surface dose was 0.8, the central dose was 1.2, and the dose distribution was 1.5 times. On the other hand, when the stainless steel cylinder is irradiated with an electron beam, the surface dose is 0.9, the central dose is 1.12 and the dose distribution is 1.24 when the thickness of the stainless steel cylinder is 0.3 mm. It has been greatly reduced by a factor of two. When the thickness of the stainless steel cylinder is 0.6 mm, the surface dose is 0.92, the central dose is 1.07, and the dose distribution is further reduced to 1.16 times.

【0021】次に本発明を達成するための具体的な装置
を説明する。図3及び図4は前記ステンレス筒体を用い
た本発明の実施形態に係る電子線滅菌装置で、図3は平
面図、図4はそのコンベア搬送側から見た側面図であ
る。図3及び図4において、前記ダイアライザ1を収納
する中空筒体8には、前記図1及び図2に示す肉厚0.
3mmと肉厚0.6mmの円筒状ステンレス筒体8を用
いたが、該ステンレス筒は必ずしも円筒にする必要はな
く、収納するダイアライザ1の外接円に合わせて、断面
楕円、断面長円形等に形成できる。
Next, a specific apparatus for achieving the present invention will be described. 3 and 4 show an electron beam sterilizing apparatus according to an embodiment of the present invention using the stainless steel cylinder. FIG. 3 is a plan view, and FIG. 4 is a side view as seen from the conveyor transport side. 3 and 4, a hollow cylinder 8 accommodating the dialyzer 1 has a thickness of 0.1 mm as shown in FIGS.
Although a cylindrical stainless steel cylinder 8 having a thickness of 3 mm and a wall thickness of 0.6 mm was used, the stainless steel cylinder does not necessarily have to be a cylinder, and may have an elliptical cross section, an oblong cross section, etc. Can be formed.

【0022】図において、ベルトコンベア2のベルト面
上には搬送方向に沿って置き台3を配設し、該置き台3
上に前記筒体8が垂直に立設するように配列する。又置
き台3のベルトコンベア2下方には回転軸4aが垂設さ
れており、該回転軸端に従動スプロケット4を設ける。
In the drawing, a placing table 3 is arranged on the belt surface of the belt conveyor 2 along the conveying direction.
The cylinders 8 are arranged on the upper side so as to stand vertically. A rotating shaft 4a is vertically provided below the belt conveyor 2 of the placing table 3, and a driven sprocket 4 is provided at the end of the rotating shaft.

【0023】電子線照射装置7は、末広がり状に形成し
た偏平角錐状の走査ホーンを垂直に配設し、該ホーン基
側に設けた一対の走査磁石(不図示)により筒体8の中
心軸線上に沿って垂直方向にビーム走査を行なうように
構成される。そして前記電子線照射装置7はエネルギー
10MeVの電子線が走査ホーン出口部の照射窓より出
射可能に構成されている。
The electron beam irradiator 7 has a flat horn-shaped scanning horn formed in a divergent shape and is vertically arranged, and a pair of scanning magnets (not shown) provided on the base side of the horn provides a central axis of the cylindrical body 8. It is configured to perform beam scanning in the vertical direction along the line. The electron beam irradiation device 7 is configured so that an electron beam having an energy of 10 MeV can be emitted from the irradiation window at the exit of the scanning horn.

【0024】一方、前記従動スプロケット4と対面する
位置には、無端状の駆動チェーン5が配設され、該駆動
チェーン5は、左右両側に設けたスプロケット6A、6
Bにより張設されるとともに、その一のスプロケット6
Aを調速モータに連結された駆動スプロケットとし、そ
して、ベルトコンベア2上に沿って電子線照射域内に搬
送された置き台3は、その下面側に設けた前記従動スプ
ロケット4を前記無端状チェーン5に歯合するととも
に、前記チェーン5を歯合する駆動スプロケット6を調
速制御機構11を以て回転可能に構成している。
On the other hand, an endless drive chain 5 is disposed at a position facing the driven sprocket 4, and the drive chain 5 includes sprockets 6A and 6 provided on both left and right sides.
B and the first sprocket 6
A is a driving sprocket connected to a speed control motor, and the placing table 3 conveyed along the belt conveyor 2 into the electron beam irradiation area uses the driven sprocket 4 provided on its lower surface side as the endless chain. A drive sprocket 6 meshing with the chain 5 is rotatable by a speed control mechanism 11.

【0025】かかる実施形態により、前記一列状の置き
台3上に夫々ダイアライザ1を収納した筒体8を置いた
状態で、ベルトコンベア2を搬送しながら前記チェーン
5を所定速度で周回させることにより前記電子線照射装
置7よりエネルギー10MeVの電子線を筒体8を介し
てダイアライザ1にビーム照射しながら、前記筒体8が
電子線照射装置7の有効電子線照射域を回転しながら搬
送させることにより前記電子線照射装置7よりエネルギ
ー10MeVの電子線が筒体8を介してダイアライザに
ムラなく照射される。かかる装置において図1及び図2
に示す効果を円滑に達成することが出来る。
According to this embodiment, the chain 5 is circulated at a predetermined speed while the belt conveyor 2 is conveyed in a state where the cylinders 8 each containing the dialyzer 1 are placed on the row of the pedestals 3. While irradiating the dialyzer 1 with an electron beam having an energy of 10 MeV from the electron beam irradiation device 7 via the cylinder 8, the cylinder 8 is transported while rotating the effective electron beam irradiation area of the electron beam irradiation device 7. Accordingly, the electron beam having an energy of 10 MeV is irradiated from the electron beam irradiation device 7 to the dialyzer through the cylinder 8 without unevenness. 1 and 2 in such an apparatus.
Can be smoothly achieved.

【0026】[0026]

【発明の効果】以上記載のごとく本発明によれば、中心
域と表面域との線量分布(最大線量と最小線量との比)
の開きが大きくなることなく、その電子線量分布を1.
5倍以内に抑えることが出来る。
As described above, according to the present invention, the dose distribution between the central area and the surface area (the ratio between the maximum dose and the minimum dose).
Of the electron dose distribution without increasing the aperture of 1.
It can be suppressed within 5 times.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図5に示すダイアライザを0.3mm肉厚の
ステンレス製円筒容器内に入れたものと、円筒容器に入
れずに裸のまま露出させたもの、夫々について電子線を
照射し、その表面線量と中心線量について、夫々測定し
たグラフ図である。
FIG. 1 shows an example in which the dialyzer shown in FIG. 5 is placed in a 0.3 mm-thick stainless steel cylindrical container, and the dialyzer exposed without being exposed in a cylindrical container is irradiated with an electron beam. It is the graph figure which measured the surface dose and the center dose, respectively.

【図2】 図5に示すダイアライザを0.6mm肉厚の
ステンレス製円筒容器内に入れたものと、円筒容器に入
れずに裸のまま露出させたもの、夫々について電子線を
照射し、その表面線量と中心線量について、夫々測定し
たグラフ図である。
FIG. 2 shows an example in which the dialyzer shown in FIG. 5 is placed in a 0.6 mm-thick stainless steel cylindrical container, and the one exposed naked without being put in the cylindrical container is irradiated with an electron beam. It is the graph figure which measured the surface dose and the center dose, respectively.

【図3】 本発明の実施形態に係る電子線滅菌装置の平
面図である。
FIG. 3 is a plan view of the electron beam sterilizer according to the embodiment of the present invention.

【図4】 図3のコンベア搬送側から見た側面図であ
る。
FIG. 4 is a side view as viewed from a conveyor conveyance side in FIG. 3;

【図5】 本発明の被照射物である血液透析用ダイアラ
イザの形状を示す。
FIG. 5 shows the shape of a dialyzer for hemodialysis, which is an object to be irradiated according to the present invention.

【符号の説明】[Explanation of symbols]

1 血液透析用ダイアライザ 2 コンベア 3 置き台 7 電子線照射装置 8 筒体 Reference Signs List 1 dialyzer for hemodialysis 2 conveyor 3 table 7 electron beam irradiation device 8 cylinder

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 立体被照射物の表面域から中心域までに
高エネルギの電子線を照射しながら殺菌等の所期の目的
を達成する電子線照射方法において、 一又は複数の被照射物を筒状容器内に収納した状態で電
子線照射を行なうとともに、前記表面域と中心域との間
の線量分布を1.5以内になるように、前記筒状容器の
肉厚と材質を選択したことを特徴とする電子線照射方
法。
1. An electron beam irradiation method for achieving an intended purpose such as sterilization while irradiating a high-energy electron beam from a surface region to a central region of a three-dimensional irradiated object. The thickness and material of the cylindrical container were selected so that the electron beam irradiation was performed while being housed in the cylindrical container, and the dose distribution between the surface area and the central area was within 1.5. An electron beam irradiation method, characterized in that:
【請求項2】 密度と厚みの積が3(g/cm2)以上
である血液処理モジュールを電子線照射する場合におい
て、 電子線照射方向に対し、被照射物が回転若しくは電子線
照射域通過毎に逐次角度変位させながら電子線照射を行
なうことを特徴とする請求項1記載の電子線照射装置。
2. When irradiating an electron beam to a blood processing module having a product of density and thickness of 3 (g / cm 2 ) or more, the object to be irradiated rotates or passes through an electron beam irradiation area with respect to the electron beam irradiation direction. 2. The electron beam irradiation apparatus according to claim 1, wherein the electron beam irradiation is performed while sequentially changing the angle every time.
【請求項3】 前記筒状容器が0.2〜1.0mmの肉
厚のステンレス容器であることを特徴とする請求項1記
載の電子線照射方法。
3. The electron beam irradiation method according to claim 1, wherein said cylindrical container is a stainless steel container having a thickness of 0.2 to 1.0 mm.
JP11142062A 1999-05-21 1999-05-21 Electron beam irradiating device Withdrawn JP2000325434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11142062A JP2000325434A (en) 1999-05-21 1999-05-21 Electron beam irradiating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11142062A JP2000325434A (en) 1999-05-21 1999-05-21 Electron beam irradiating device

Publications (1)

Publication Number Publication Date
JP2000325434A true JP2000325434A (en) 2000-11-28

Family

ID=15306554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11142062A Withdrawn JP2000325434A (en) 1999-05-21 1999-05-21 Electron beam irradiating device

Country Status (1)

Country Link
JP (1) JP2000325434A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102418A1 (en) 2010-02-22 2011-08-25 旭化成クラレメディカル株式会社 Medical device and hollow fiber membrane medical device
JP2013523268A (en) * 2010-04-02 2013-06-17 アボット カーディオヴァスキュラー システムズ インコーポレイテッド Radiation sterilization of implantable medical devices

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102418A1 (en) 2010-02-22 2011-08-25 旭化成クラレメディカル株式会社 Medical device and hollow fiber membrane medical device
KR101393658B1 (en) 2010-02-22 2014-05-13 아사히 가세이 메디컬 가부시키가이샤 Medical device and hollow fiber membrane medical device
JP2013523268A (en) * 2010-04-02 2013-06-17 アボット カーディオヴァスキュラー システムズ インコーポレイテッド Radiation sterilization of implantable medical devices

Similar Documents

Publication Publication Date Title
JP2787724B2 (en) Blood processing equipment
KR101184153B1 (en) Methods for uniformly treating biological samples with electromagnetic radiation
JP6100696B2 (en) Continuous sterilizer
EP2055320A1 (en) Process and equipment for decontamination by radiation of a product
JP2011098222A (en) Device and method for pathogen inactivation of therapeutic fluid with sterilizing radiation
JP2009233346A (en) Device and method for pathogen inactivation of therapeutic fluids with sterilizing radiation
PT1962905E (en) Method for the inactivation of pathogens in donor blood, blood plasma or erythrocyte concentrations in flexible containers using agitation
JP2008296955A (en) Electron ray sterilizer
CN110215525B (en) Method for sufficiently irradiating and sterilizing hollow capsules by using lower-dose electron beams
JP2024515740A (en) Method for sterilizing an assembly including at least a disposable device for biopharmaceutical fluids - Patents.com
JP2000325434A (en) Electron beam irradiating device
JP2002078780A (en) Electron beam irradiation method and apparatus therefor
JP2000325441A (en) Electron beam irradiation method
WO2014071117A1 (en) System and method for treatment of a surface of an injection device
JP2000325436A (en) Method and device for irradiating electron beam
JP2000325439A (en) Electron beam irradiation method
JP2000325438A (en) Electron beam irradiation method
JP2000325440A (en) Electron beam irradiation method
JP2002000704A (en) Electron beam radiating method
JPH10268100A (en) Electron beam irradiation device
JP2000325437A (en) High energy electron beam irradiation device
JP4489857B2 (en) Method and apparatus for sterilizing medical equipment
US10596279B2 (en) Apparatus and method for sterilizing blood
JP2000312708A (en) Electron beam irradiation device
JP2002211520A (en) Device and method for electron beam sterilization of vessel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801