JP2000325330A - Biomedical signal detection device and emitted light level control device - Google Patents

Biomedical signal detection device and emitted light level control device

Info

Publication number
JP2000325330A
JP2000325330A JP11135773A JP13577399A JP2000325330A JP 2000325330 A JP2000325330 A JP 2000325330A JP 11135773 A JP11135773 A JP 11135773A JP 13577399 A JP13577399 A JP 13577399A JP 2000325330 A JP2000325330 A JP 2000325330A
Authority
JP
Japan
Prior art keywords
light
light receiving
signal
level
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11135773A
Other languages
Japanese (ja)
Other versions
JP3815119B2 (en
Inventor
Hiroaki Suzuki
宏明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP13577399A priority Critical patent/JP3815119B2/en
Publication of JP2000325330A publication Critical patent/JP2000325330A/en
Application granted granted Critical
Publication of JP3815119B2 publication Critical patent/JP3815119B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain stable results of measurement constantly by a biomedical signal detection device and emitted light level control device for irradiating a subject (subject to be irradiated) and measuring the condition of the subject based on the transmitting light and reflected light without being affected by the light from outside. SOLUTION: In this device, a red LED 11a and an infrared LED 11b in a light emitting device 11 in the probe part 1 are made to emit light alternately to irradiate a subject 10. And the transmitting light is received at a photodiode 12a of a light receiving device 12, and the oxygen saturation ratio is measured based on the ratio between the received light level signals Va (R) and Va (IR) of each emitted light wavelength read into the CPU 25 from a current/voltage conversion circuit 22 by way of an A/D conversion circuit 24 according to the received light current 1F. In this case, the received light level signal Va with the light emitting device 11 emitting no light yet is read, and the standard voltage at the motion point in the current/voltage conversion circuit 22 is corrected by a voltage control circuit 26 so that the read signal Va is equal to a previously set reference voltage VREF of the light receiving motion according to the difference Vb (VREF-VA).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被検体もしくは被
照射体に光を照射しその透過光や反射光に基づき被検体
又は被照射体の状態を検出測定するための生体信号検出
装置及び発光レベル制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biological signal detecting device for irradiating an object or an illuminated object with light and detecting and measuring the state of the object or the illuminated object based on transmitted light or reflected light, and light emission. It relates to a level control device.

【0002】[0002]

【従来の技術】従来の代表的な生体信号検出装置として
は、パルスオキシメータがある。
2. Description of the Related Art A pulse oximeter is a typical conventional biosignal detection device.

【0003】このパルスオキしメータは、血液中のヘモ
グロビンのうち、酸素と結合した酸化ヘモグロビンと、
酸素と結合していない還元ヘモグロビンとの比率を検出
し、酸素飽和度%として演算表示するもので、酸化ヘモ
グロビンに対する吸光度が高い赤外発光LEDと還元ヘ
モグロビンに対する吸光度が高い赤色発光LEDとの2
のつ発光素子と、この発光波長の異なる2つの発光素子
を交互に発光させて生体(指や耳たぶ)に照射すること
で該生体を透過した透過光を受光する受光素子とを備
え、この受光素子による赤外発光時と赤色発光時との各
生体透過光の受光量の比、すなわち吸光度の比率を酸素
飽和度%として演算算出するものである。
[0003] This pulse oximeter is composed of oxygenated hemoglobin combined with oxygen among hemoglobin in blood,
The ratio of reduced hemoglobin not bound to oxygen is detected and calculated and displayed as oxygen saturation%. There are two types: an infrared-emitting LED having a high absorbance for oxyhemoglobin and a red-emitting LED having a high absorbance for reduced hemoglobin.
And a light-receiving element that receives transmitted light transmitted through the living body by irradiating the living body (finger or earlobe) alternately with the two light-emitting elements having different emission wavelengths and irradiating the living body with the light-emitting element. The ratio of the amount of received light of each living body transmitted light at the time of infrared light emission and the time of red light emission by the element, that is, the ratio of absorbance is calculated and calculated as oxygen saturation%.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記従
来のパルスオキシメータでは、受光素子により受光され
る透過光の受光レベルは、外来光が共にどの程度受光さ
れるかによって影響を受けるため、例えばメータの設置
環境が異なったり、あるいは発光素子及び受光素子とそ
の間に被検体として挟まれる指や耳たぶとの位置関係が
異なったり、あるいは被検体その物の形が異なる等して
受光素子に受光される外来光の光量が変化した場合に
は、実際に被検体の透過光を受光する以前の基準となる
受光レベルもその時々によって変化し、結局、透過光の
受光レベルをも変化させるので、正確な測定を常に安定
して行なうことができない問題がある。
However, in the conventional pulse oximeter, the light receiving level of the transmitted light received by the light receiving element is affected by the degree to which the external light is received together. The light is received by the light-receiving element because the installation environment of the light-receiving element is different, or the positional relationship between the light-emitting element and the light-receiving element and the finger or the ear lobe sandwiched between them is different, or the shape of the object itself is different. When the amount of extraneous light changes, the reference light reception level before actually receiving the transmitted light of the subject also changes from time to time, and eventually, the received light level of the transmitted light also changes. There is a problem that the measurement cannot always be performed stably.

【0005】例えば同一の被検体であっても、外来光の
受光量が変化することで透過光の受光量も変化し、測定
結果にばらつきが生じてしまう。
[0005] For example, even for the same subject, a change in the amount of extraneous light received causes a change in the amount of transmitted light received, resulting in variations in measurement results.

【0006】また、前記従来のパルスオキシメータで
は、被検体の個体差、例えば指の太さや体組織の違いに
応じてその光の透過率が異なり、受光素子により得られ
る受光レベルが大きく変化するため、極端に指が太く光
の透過率が非常に低いことで透過光の受光レベルが非常
に低かったり、極端に指が細く光の透過率が非常に高い
ことで透過光の受光レベルが非常に高かったりすると、
適正な測定を行なうことができない問題がある。
In the conventional pulse oximeter, the light transmittance varies depending on the individual difference of the subject, for example, the thickness of the finger or the difference of the body tissue, and the light receiving level obtained by the light receiving element greatly changes. Therefore, the extremely thick finger and extremely low light transmittance result in extremely low transmitted light reception level, and the extremely thin finger and extremely high light transmittance result in extremely low transmitted light reception level. Or higher,
There is a problem that proper measurement cannot be performed.

【0007】つまり、被検体の個体差によって測定精度
にばらつきが生じてしまう。
[0007] In other words, the measurement accuracy varies due to individual differences between the subjects.

【0008】本発明は前記のような問題に鑑みなされた
もので、その第1の目的は、外来光の影響を受けること
なく、常に安定した測定結果を得ることが可能になる生
体信号検出装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and a first object of the present invention is to provide a biological signal detecting apparatus capable of always obtaining a stable measurement result without being affected by extraneous light. Is to provide.

【0009】また、本発明の第2の目的は、被検体の個
体差に影響されることなく、常に適正な透過光の受光レ
ベルを得て測定を行なうことが可能になる生体信号検出
装置を提供することにある。
A second object of the present invention is to provide a biological signal detecting apparatus capable of always obtaining an appropriate transmitted light receiving level and performing measurement without being affected by individual differences between subjects. To provide.

【0010】さらに、本発明の第3の目的は、被照射体
(被検体)へ照射される光の発光レベルを適正なものに
補正する発光レベル制御装置を提供することにある。
Further, a third object of the present invention is to provide a light emission level control device for correcting the light emission level of light applied to an object to be irradiated (object) to an appropriate level.

【0011】[0011]

【課題を解決するための手段】すなわち、本発明の請求
項1に係る生体信号検出装置は、発光手段とこの発光手
段により発光される光を被検体に照射することにより得
られる被検体からの光を受光する受光手段とを有するプ
ローブと、このプローブの受光手段から出力される受光
信号の信号レベルに基づき前記被検体の状態を測定する
測定手段とを有する生体信号検出装置であって、前記発
光手段が未発光の状態で前記受光手段から出力される受
光信号の信号レベルに基づき、信号レベル測定の基準点
を補正する基準点補正手段を更に備えたことを特徴とす
る。
That is, a biological signal detecting apparatus according to a first aspect of the present invention comprises a light-emitting means and a light-emitting device which emits light emitted from the light-emitting means to the object. A probe having light receiving means for receiving light, and a biological signal detecting device having measuring means for measuring a state of the subject based on a signal level of a light receiving signal output from the light receiving means of the probe, The light emitting device further includes a reference point correction unit that corrects a reference point for signal level measurement based on a signal level of a light receiving signal output from the light receiving unit when the light emitting unit is not emitting light.

【0012】このような生体信号検出装置では、発光手
段が未発光の状態で、受光手段から出力される受光信号
の信号レベルに基づき、信号レベル測定の基準点が補正
されるので、前記発光手段からの発光に伴なう被検体か
らの光でない外来光が受光される環境にあっても、その
受光動作の基準点を基準のレベルに補正することがで
き、実際に発光手段からの発光に伴なう被検体からの光
を受光する際に外来光の影響なく、該被検体からの光に
応じた正確な受光信号レベルを得ることができる。
In such a biological signal detecting device, the reference point for signal level measurement is corrected based on the signal level of the light receiving signal output from the light receiving means when the light emitting means is not emitting light. Even in an environment where extraneous light that is not light from the subject accompanying light emission from the subject is received, the reference point of the light receiving operation can be corrected to the reference level, and the light emission from the light emitting means is actually performed. When receiving the accompanying light from the subject, an accurate light receiving signal level corresponding to the light from the subject can be obtained without being affected by extraneous light.

【0013】また、本発明の請求項2に係る生体信号検
出装置は、前記請求項1に係る生体信号検出装置にあっ
て、さらに、前記発光手段が発光の状態で前記受光手段
から出力される信号レベルに基づき、測定時の信号レベ
ルが予め設定された範囲に収まるように前記発光手段の
発光量を増減制御する発光制御手段を備えたことを特徴
とする。
A biological signal detecting device according to a second aspect of the present invention is the biological signal detecting device according to the first aspect, wherein the light emitting means is output from the light receiving means in a light emitting state. A light emission control means is provided for controlling the light emission amount of the light emission means to increase or decrease based on the signal level so that the signal level at the time of measurement falls within a preset range.

【0014】このような生体信号検出装置では、さら
に、発光手段が発光の状態での受光手段から出力される
信号レベルに基づき、測定時の信号レベルが該発光手段
の発光量を増減制御して予め設定された範囲に収まるよ
うに補正されるので、被検体の状態測定を適正に行なう
ために必要なレンジ範囲の測定信号レベルを得ることが
でき、被検体を経た光が著しく低い又は高い等、その個
体差に影響されず適正な状態測定が行なえることにな
る。
[0014] In such a biological signal detecting device, the signal level at the time of measurement controls the increase / decrease of the light emission amount of the light emitting means based on the signal level output from the light receiving means when the light emitting means emits light. Since the correction is made so as to fall within the preset range, it is possible to obtain a measurement signal level in a range range necessary for appropriately measuring the state of the subject, and the light passing through the subject is extremely low or high. Therefore, proper state measurement can be performed without being affected by the individual difference.

【0015】また、本発明の請求項7に係る発光レベル
制御装置は、被照射体に光を照射する発光手段と、この
発光手段による前記被照射体に対する光の照射に応じて
該被照射体から入射する光を受光する受光手段と、この
受光手段から出力される受光信号のレベルに基づいて、
この受光信号のレベルが予め設定された範囲に収まるよ
うに前記発光手段の発光レベルを増減制御する制御手段
とを備えたことを特徴とする。
According to a seventh aspect of the present invention, there is provided a light emission level control device, comprising: a light emitting means for irradiating an object to be illuminated; Light-receiving means for receiving light incident from the light-receiving means, based on the level of a light-receiving signal output from the light-receiving means,
Control means for controlling the light emission level of the light emitting means to increase or decrease so that the level of the light receiving signal falls within a preset range.

【0016】このような発光レベル制御装置では、受光
手段から出力される受光信号のレベルに基づき、この受
光信号レベルが該発光手段の発光レベルを増減制御して
予め設定された範囲に収まるように補正されるので、例
えば被照射体の状態検出を適正に行なうために必要なレ
ンジ範囲の信号レベルを得ることができ、被照射体の個
体差に影響されず適正な状態検出が行なえることにな
る。
In such a light emission level control device, based on the level of the light reception signal output from the light reception means, the light reception signal level is controlled to increase or decrease the light emission level of the light emission means so that it falls within a preset range. Since the correction is performed, for example, it is possible to obtain a signal level in a range range necessary for appropriately performing the state detection of the irradiation target, and to perform the appropriate state detection without being affected by the individual difference of the irradiation target. Become.

【0017】[0017]

【発明の実施の形態】以下図面により本発明の実施の形
態について説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】図1は本発明の実施形態に係る生体信号検
出装置の電子回路の構成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of an electronic circuit of a biological signal detecting device according to an embodiment of the present invention.

【0019】この生体信号検出装置は、被検体(例えば
指先)10に対し2つの波長の光を交互に照射してその
それぞれの透過光を受光するためのプローブ部1、及び
このプローブ部1における発光動作の制御を行なうと共
に、該プローブ部1にて得られる受光信号を取り込んで
動脈血の酸素飽和度%を演算算出し出力するためのシス
テム部2から構成される。
The biological signal detecting apparatus comprises a probe unit 1 for irradiating a subject (for example, a fingertip) 10 with light of two wavelengths alternately and receiving respective transmitted lights, The system unit 2 controls the light emission operation, and also receives the light reception signal obtained by the probe unit 1 to calculate and calculate the oxygen saturation% of arterial blood and outputs the calculated value.

【0020】プローブ部1には、発光装置11と受光装
置12が設けられる。
The probe unit 1 is provided with a light emitting device 11 and a light receiving device 12.

【0021】発光装置11には、660nmの発光波長
で発光する赤色LED11aと890nmの発光波長で
発光する赤外LED11bが備えられ、この発光装置1
1により交互に発光される赤色発光と赤外発光とが受光
装置12との間に挟まれた被検体10に対して照射され
る。
The light emitting device 11 includes a red LED 11a that emits light at an emission wavelength of 660 nm and an infrared LED 11b that emits light at an emission wavelength of 890 nm.
The subject 10 sandwiched between the light-receiving device 12 is irradiated with red light emission and infrared light emission alternately emitted by 1.

【0022】受光装置12には、前記発光装置11によ
る被検体10に対する光の照射によって該被検体10を
透過してくる透過光を受光するためのフォトダイオード
12aが備えられ、このフォトダイオード12aの受光
動作に応じて出力される受光電流IF は、システム部2
内の増幅回路(電流アンプ)21を介して増幅され、電
流/電圧変換回路22に供給されて電圧変換される。
The light receiving device 12 is provided with a photodiode 12a for receiving transmitted light transmitted through the subject 10 when the light emitting device 11 irradiates the subject 10 with light. The light receiving current IF output according to the light receiving operation is determined by the system unit 2
The current is amplified via an amplifier circuit (current amplifier) 21 in the internal circuit and supplied to a current / voltage conversion circuit 22 to be converted into a voltage.

【0023】この電流/電圧変換回路22により電圧変
換された生体(被検体10)透過光の受光信号は、一方
で増幅回路23を介してN倍(N=2,4,8,…)に
増幅されてA/D変換回路24の第1端子CH1に供給
され、デジタル変換された受光レベル信号Va1としてC
PU25に読み込まれる。また、他方で直接A/D変換
回路24の第2端子CH2に供給され、デジタル変換さ
れた受光レベル信号Va2としてCPU25に読み込まれ
る。
On the other hand, the light-receiving signal of the transmitted light of the living body (subject 10), which has been converted in voltage by the current / voltage conversion circuit 22, is multiplied N times (N = 2, 4, 8,...) Via the amplification circuit 23. The amplified light is supplied to the first terminal CH1 of the A / D conversion circuit 24, and is converted into a digitally converted light reception level signal Va1 as C1.
The data is read by the PU 25. On the other hand, it is directly supplied to the second terminal CH2 of the A / D conversion circuit 24 and is read by the CPU 25 as a digitally converted light receiving level signal Va2.

【0024】一方、前記電流/電圧変換回路22におけ
る、前記プローブ部1の発光装置11が未発光状態にあ
る時の動作基準電圧、つまり、受光装置12のフォトダ
イオード12aに対し被検体10を介した透過光が受光
されない状態での受光動作の基準となる動作点電圧は、
電圧制御回路26から与えられる基準電圧によって制御
設定されるもので、この電圧制御回路26から前記電流
/電圧変換回路22に与えるべく基準電圧を調整するた
めの信号は、前記プローブ部1における発光装置11の
未発光時において前記A/D変換回路24から読み込ま
れる各受光レベル信号Va1,Va2に基づきCPU25に
より生成されて電圧制御回路26内のD/A変換回路2
6aに出力される。
On the other hand, in the current / voltage conversion circuit 22, the operation reference voltage when the light emitting device 11 of the probe unit 1 is in a non-light emitting state, that is, the photodiode 12a of the light receiving device 12 is connected to the subject 10 via the subject 10. The operating point voltage that is the reference for the light receiving operation when the transmitted light is not received is
A signal for adjusting the reference voltage to be supplied to the current / voltage conversion circuit 22 from the voltage control circuit 26 is set by controlling the reference voltage supplied from the voltage control circuit 26. When the LED 11 is not emitting light, it is generated by the CPU 25 based on each of the light receiving level signals Va1 and Va2 read from the A / D conversion circuit 24, and the D / A conversion circuit 2 in the voltage control circuit 26.
6a.

【0025】すなわち、前記電流/電圧制御回路22で
は、プローブ部1における発光装置11が未発光状態に
ある受光装置12からの受光電流IF に応じた動作点基
準電圧をVREF として設定したいところ、プローブ部1
の設置環境における外来光が受光装置12のフォトダイ
オード12aに受光されると、発光装置11の未発光状
態にあっても、前記外来光の受光に応じた受光電流IF
が出力されて電流/電圧変換回路22における動作点基
準電圧VREF がシフトしてしまうもので、このため、本
発明の実施形態における生体信号検出装置では、この外
来光受光の影響による動作点基準電圧VREF の変動(シ
フト)を解消するための補正処理を行なう。
That is, in the current / voltage control circuit 22, when it is desired to set an operating point reference voltage according to the light receiving current IF from the light receiving device 12 where the light emitting device 11 in the probe unit 1 is not emitting light as VREF, Part 1
When the external light in the installation environment is received by the photodiode 12a of the light receiving device 12, the light receiving current IF corresponding to the reception of the external light is received even when the light emitting device 11 is not emitting light.
Is output and the operating point reference voltage VREF in the current / voltage conversion circuit 22 shifts. Therefore, in the biological signal detecting device according to the embodiment of the present invention, the operating point reference voltage VREF due to the influence of the extraneous light reception is provided. A correction process is performed to eliminate the fluctuation (shift) of VREF.

【0026】つまり、プローブ部1の発光装置11が未
発光状態での電流/電圧変換回路22の動作点基準電圧
VREF となるべき増幅回路23を介した受光レベル信号
Va1をCPU25において読み込み、前記増幅回路23
の増幅率Nを基準電圧VREFに掛けた値(N・VREF )
と前記受光レベル信号Va1が一致しない場合には、その
差(シフト量)であるVb(=N・VREF −Va1)を算
出して電圧制御回路26へ出力し、この電圧制御回路2
6から前記Vbを前記増幅率Nで割った電流/電圧変換
回路22における実シフト値Vb/NをVREF に加算し
た電圧を、基準電圧(VREF +Vb/N)として電流/
電圧変換回路22に与える。
That is, when the light emitting device 11 of the probe unit 1 is not emitting light, the CPU 25 reads the light receiving level signal Va1 via the amplifier circuit 23 which is to be the operating point reference voltage VREF of the current / voltage conversion circuit 22. Circuit 23
(N · VREF) obtained by multiplying the reference voltage VREF by the amplification factor N of
If the light receiving level signal Va1 does not match with the light receiving level signal Va1, the difference (shift amount) Vb (= N.VREF-Va1) is calculated and output to the voltage control circuit 26.
6, the voltage obtained by adding the actual shift value Vb / N in the current / voltage conversion circuit 22 obtained by dividing the Vb by the amplification factor N to VREF is defined as a reference voltage (VREF + Vb / N).
It is given to the voltage conversion circuit 22.

【0027】さらに同様に、プローブ部1の発光装置1
1が未発光状態での電流/電圧変換回路22の動作点基
準電圧VREF となるべきそのままの受光レベル信号Va2
をCPU25において読み込み、この受光レベル信号V
a2と基準電圧VREF とが一致しない場合には、その差
(シフト量)であるVb(=VREF −Va2)を算出して
電圧制御回路26へ出力し、この電圧制御回路26から
前記電流/電圧変換回路22における実シフト値Vbを
VREF に加算した電圧を、基準電圧(VREF +Vb)と
して電流/電圧変換回路22に与える。
Similarly, the light emitting device 1 of the probe unit 1
1 is a light receiving level signal Va2 that is to be the operating point reference voltage VREF of the current / voltage conversion circuit 22 in the non-light emitting state.
Is read by the CPU 25, and the light receiving level signal V
If a2 does not match the reference voltage VREF, the difference (shift amount) Vb (= VREF-Va2) is calculated and output to the voltage control circuit 26. A voltage obtained by adding the actual shift value Vb in the conversion circuit 22 to VREF is supplied to the current / voltage conversion circuit 22 as a reference voltage (VREF + Vb).

【0028】このように、増幅回路23を介した受光レ
ベル信号Va1とそのままの受光レベル信号Va2とに基づ
く2段階の電流/電圧変換回路22に対する動作点基準
電圧VREF の補正制御を行なうことにより、前記受光装
置12に対し外来光が受光されても、電流/電圧変換回
路22における動作点基準電圧VREF を一定に設定でき
るようになる。
As described above, by performing the correction control of the operating point reference voltage VREF for the two-stage current / voltage conversion circuit 22 based on the received light level signal Va1 passed through the amplifier circuit 23 and the received light level signal Va2 as it is, Even if external light is received by the light receiving device 12, the operating point reference voltage VREF in the current / voltage conversion circuit 22 can be set to be constant.

【0029】一方、CPU25には、さらに、発光電流
制御回路25a及びタイミング発生回路25bが備えら
れ、この発光電流制御回路25aからの発光電流制御信
号及びタイミング発生回路25bからの発光タイミング
制御信号は、LED駆動装置27へ出力される。
On the other hand, the CPU 25 further includes an emission current control circuit 25a and a timing generation circuit 25b. The emission current control signal from the emission current control circuit 25a and the emission timing control signal from the timing generation circuit 25b are: It is output to the LED drive device 27.

【0030】このLED駆動装置17には、前記プロー
ブ部1の発光装置11における赤色LED11aと赤外
LED11bとをそれぞれ点灯させるための赤色発光駆
動回路27aと赤外発光駆動回路27bとが備えられる
と共に、この各駆動回路27a,27bによるそれぞれ
の発光駆動電流を設定するための定電流回路27cが備
えられる。
The LED driving device 17 includes a red emission driving circuit 27a and an infrared emission driving circuit 27b for lighting the red LED 11a and the infrared LED 11b of the light emitting device 11 of the probe unit 1, respectively. A constant current circuit 27c for setting the respective light emission drive currents of the drive circuits 27a and 27b is provided.

【0031】そして、前記定電流回路27cにおける発
光駆動電流の設定値は前記CPU25内の発光電流制御
回路25aからの発光電流制御信号により調整され、ま
た、その発光駆動電流による各LED11a,11bそ
れぞれの駆動のタイミング(図4参照)は、前記CPU
25内のタイミング発生回路25bからの発光タイミン
グ制御信号により制御される。
The set value of the light emission drive current in the constant current circuit 27c is adjusted by the light emission current control signal from the light emission current control circuit 25a in the CPU 25, and each of the LEDs 11a and 11b is controlled by the light emission drive current. The drive timing (see FIG. 4) is determined by the CPU
25 is controlled by a light emission timing control signal from a timing generation circuit 25b.

【0032】ここで、前記LED駆動装置27の定電流
回路27cによる赤色LED11a用の発光駆動電流の
設定値と、赤外LED11b用の発光駆動電流の設定値
とは、そのそれぞれの発光により被検体10からの透過
光が受光装置12に受光された状態での、前記A/D変
換回路24からCPU25に読み込まれる受光レベル信
号Va1が、所定のレベルに設定されるよう発光電流制御
回路25aにより調整するもので、この場合、被検体1
0に対する動脈血の流れ込みが最小のタイミング、つま
り、被検体10の組織及び静脈血による固定的な吸光が
主で該動脈血による吸光が最小になりフォトダイオード
12aにおける受光量が最大となってCPU25に読み
込まれる受光レベル信号Va1が最大となるタイミング
(図2及び図5参照)において、当該受光レベル信号V
a1が、所定のレベルに設定されるよう前記各LED11
a,11bの発光量は調整される。
Here, the set value of the light emission drive current for the red LED 11a and the set value of the light emission drive current for the infrared LED 11b by the constant current circuit 27c of the LED drive device 27 are determined by the respective light emission. The light receiving level signal Va1 read from the A / D conversion circuit 24 to the CPU 25 while the transmitted light from the light receiving device 10 is received by the light receiving device 12 is adjusted by the light emitting current control circuit 25a so as to be set to a predetermined level. In this case, the subject 1
The timing at which the flow of arterial blood with respect to 0 is the minimum, that is, the fixed absorption by the tissue and the venous blood of the subject 10 is mainly performed, the absorption by the arterial blood is minimized, and the amount of light received by the photodiode 12a is maximized and read into the CPU 25. At the timing when the received light level signal Va1 becomes maximum (see FIGS. 2 and 5), the received light level signal V
a1 is set to a predetermined level.
The light emission amounts of a and 11b are adjusted.

【0033】このように、発光装置11の発光時におけ
る被検体10からの透過光の受光装置12による受光に
伴ない、赤色及び赤外発光時それぞれの受光レベル信号
Va1が所定のレベルとして得られるようにLED発光量
の補正を行なうことで、被検体10の光の透過率が非常
に低かったり高かったりする等の個体差があっても、安
定した受光レベル信号Va1を読み込んで動脈血酸素飽和
度%の適正な測定ができるようになる。
As described above, as the transmitted light from the subject 10 is received by the light receiving device 12 when the light emitting device 11 emits light, the light receiving level signals Va1 for red and infrared light are obtained as predetermined levels. By correcting the LED light emission amount in this way, even if there is an individual difference such as the light transmittance of the subject 10 being very low or high, the stable light reception level signal Va1 is read and the arterial blood oxygen saturation is read. % Can be measured properly.

【0034】さらに、前記CPU25には、入力装置2
8、外部記憶装置29、表示部30、該表示部30のバ
ックライト31を点灯制御するためのバックライト制御
装置32、そして出力装置33が接続される。
Further, the CPU 25 has an input device 2
8, an external storage device 29, a display unit 30, a backlight control device 32 for controlling lighting of a backlight 31 of the display unit 30, and an output device 33 are connected.

【0035】入力装置28には、本装置による生体信号
検出処理の開始を指示するための測定開始スイッチ及び
バックライト30の点灯スイッチが備えられる。
The input device 28 is provided with a measurement start switch for instructing the start of the biological signal detection processing by the present device and a switch for turning on the backlight 30.

【0036】外部記憶装置29には、CPU25を中心
とする生体信号検出処理に応じて測定された種々のデー
タが記憶される。
The external storage device 29 stores various data measured in accordance with the biological signal detection processing centered on the CPU 25.

【0037】バックライト制御装置32は、表示部30
のバックライト31に対する点灯,消灯の制御、及びそ
の点灯時における点灯レベル制御を行なうもので、前記
電流/電圧変換回路22における受光動作の基準電圧補
正処理に伴ない、前記発光装置11が未発光状態での受
光装置12による外来光の受光量に応じた受光レベル信
号Va1がCPU25に読み込まれた際に、当該受光レベ
ル信号Va1により外部環境の明るさが判定され、これに
応じてバックライト31に対する点灯レベルが最適なレ
ベルに制御される。
The backlight control device 32 includes a display unit 30
Control of turning on and off the backlight 31 and lighting level control at the time of turning on the backlight 31. The light emitting device 11 does not emit light due to the reference voltage correction processing of the light receiving operation in the current / voltage conversion circuit 22. When the light receiving level signal Va1 corresponding to the amount of external light received by the light receiving device 12 in the state is read into the CPU 25, the brightness of the external environment is determined by the received light level signal Va1, and the backlight 31 Is controlled to an optimal level.

【0038】ここで、前記生体信号検出装置により被検
体10の動脈血酸素飽和度を測定するための原理につい
て説明する。
Here, the principle for measuring the arterial oxygen saturation of the subject 10 by the biological signal detecting device will be described.

【0039】本装置は、脈拍による動脈の血液量変動を
利用することによって、動脈血酸素飽和度を測定する装
置であり、採血の必要がなく、被検体10(例えば指)
に光を当てるだけで測定できるため、麻酔や集中治療の
領域モニタをはじめ、各種検査,臨床研究機器として使
用される。
The present apparatus measures arterial blood oxygen saturation by utilizing the change in arterial blood volume due to the pulse, and eliminates the need for blood collection.
It can be measured simply by illuminating it, so it is used as an equipment for various tests and clinical research equipment, including an anesthesia and intensive care area monitor.

【0040】血液中のヘモグロビンのうち、酸素と結合
したヘモグロビンを酸化ヘモグロビン(HbO2 )、酸
素と結合していないヘモグロビンを還元ヘモグロビン
(Hb)と呼び、この比率を%で表わしたものが酸素飽
和度(SpO2 )である。
Of the hemoglobin in the blood, hemoglobin bound to oxygen is referred to as oxyhemoglobin (HbO 2 ), and hemoglobin not bound to oxygen is referred to as reduced hemoglobin (Hb). Degree (SpO 2 ).

【0041】血液は酸素を含めば赤くなり、酸素を失え
ば黒くなる。よって、血液の色を見れば酸素量の評価が
行なえる。体外から測定する場合、動脈流と静脈流が混
ざった状態で得られてしまうが、実際に測定したいのは
動脈流単独の飽和度であるので、動脈流の脈動を利用す
る。
Blood becomes red if it contains oxygen, and black if it loses oxygen. Therefore, the amount of oxygen can be evaluated by looking at the color of the blood. When measuring from outside the body, the arterial flow and the venous flow are obtained in a mixed state. However, since it is actually desired to measure the saturation of the arterial flow alone, the pulsation of the arterial flow is used.

【0042】図2は人体に光を透過させた場合の吸光度
全体に対する各吸光成分の割合とその脈動に伴なう吸光
度の変化状態を示す図である。
FIG. 2 is a diagram showing the ratio of each light-absorbing component to the total light absorbance when light is transmitted through the human body, and the change in the light absorbance due to the pulsation.

【0043】被検体10に対し光を透過させた場合の光
の吸収の度合いは、当然脈動成分を持っている。この脈
動成分は動脈の拍動によって起こる。
The degree of light absorption when light is transmitted through the subject 10 naturally has a pulsating component. This pulsating component is caused by the pulsation of the artery.

【0044】心臓の拍動に一致して変化するのは動脈成
分であり、従ってこの拍動部分の血液の色を取り出すこ
とで、動脈血の色だけを分離して測定することが可能で
ある。
It is the arterial component that changes in accordance with the pulsation of the heart. Therefore, by extracting the color of the blood in the pulsating portion, it is possible to separately measure only the color of the arterial blood.

【0045】すなわち、図2に示すように、血管以外の
組織と静脈血による光の吸収は心拍の影響を受けないの
で一定なのに対し、動脈血は脈動するのでその成分によ
る光の吸収は心拍に同期して変動する。
That is, as shown in FIG. 2, the absorption of light by tissues other than blood vessels and venous blood is constant because it is not affected by the heartbeat, whereas the absorption of light by its components is synchronized with the heartbeat because arterial blood pulsates. And fluctuate.

【0046】このように、動脈血による吸光が心拍に伴
ない変動しているので、吸光全体から変動の不変な成分
を数値的に差し引けば、人体組織や静脈血による吸光の
成分は除去され、動脈血による吸光成分のみが残り、こ
れが動脈血酸素飽和度を示すものとなる。
As described above, since the light absorption due to arterial blood fluctuates with the heartbeat, by subtracting the invariant component of the fluctuation numerically from the total light absorption, the light absorption component due to human body tissue and venous blood is removed. Only the light-absorbing component due to arterial blood remains, which indicates the arterial oxygen saturation.

【0047】酸素を光により測定する原理は、Lamb
ert−Beerの法則と吸光による測定の原理に基づ
く。
The principle of measuring oxygen by light is described in Lamb
Based on ert-Beer's law and the principle of measurement by absorption.

【0048】(Lambert−Beer)の法則 基本:“吸光量は、入る光と溶質濃度の積に比例する” 液体に物質が溶けている溶液で、入射光Iinと透過光I
out の比が物質の濃度と光路長に比例した分だけ減衰す
る。
(Lambert-Beer's Law) Basic: "The amount of light absorbed is proportional to the product of the incident light and the solute concentration." A solution in which a substance is dissolved in a liquid.
The out ratio attenuates by an amount proportional to the concentration of the substance and the optical path length.

【0049】A=log(Iin/Iout )=E・C・D A:吸光度 C:濃度 E:吸光係数 D:厚み 吸光係数Eとは、試料固有の光吸収の強さを表わす定数
であり、入射光の波長に依存する。
A = log (Iin / Iout) = E · C · D A: Absorbance C: Concentration E: Absorption coefficient D: Thickness The extinction coefficient E is a constant representing the intensity of light absorption specific to a sample. It depends on the wavelength of the incident light.

【0050】ここで、厚みがΔDだけ増加して透過光が
減少し(Iin−ΔI)になったとする。これは、あたか
も厚みΔDに入射光Iout が入射し(Iout −ΔI)な
る透過光が得られたことに等しい。従って次式が成立す
る。
Here, it is assumed that the thickness increases by ΔD and the transmitted light decreases (Iin−ΔI). This is equivalent to the fact that the incident light Iout is incident on the thickness ΔD and transmitted light (Iout−ΔI) is obtained. Therefore, the following equation is established.

【0051】ΔA=log{Iout /(Iout −Δ
I)}=E・C・ΔD 本装置では、動脈血の脈動によって厚みの変化ΔDが生
じ、その結果吸光度がΔAだけ変化したと考える。
ΔA = log {Iout / (Iout−Δ
I)} = E · C · ΔD In this apparatus, it is considered that the thickness change ΔD is caused by the pulsation of the arterial blood, and as a result, the absorbance is changed by ΔA.

【0052】ここで、2つの波長でΔAを測定すると、 ΔA1 =E1 ・C・ΔD ΔA2 =E2 ・C・ΔD E1 :波長1の動脈血の吸光係数 E2 :波長2の動脈血の吸光係数 吸光度の比ΔA1 /ΔA2 をφとして求めると、濃度C
と厚みの変化ΔDは波長によらず一定であるので、 φ=ΔA1 /ΔA2 =E1 /E2 と表現される。
Here, when ΔA is measured at two wavelengths, ΔA 1 = E 1 · C · ΔD ΔA 2 = E 2 · C · ΔD E 1: Absorption coefficient of arterial blood at wavelength 1 E 2: Absorption coefficient of arterial blood at wavelength 2 Absorbance ratio When ΔA1 / ΔA2 is obtained as φ, the concentration C
And the change ΔD in thickness are constant irrespective of the wavelength, so that φ = ΔA1 / ΔA2 = E1 / E2.

【0053】酸素飽和度Sとφは、1対1の関係にある
ことから、φが決まればSも決定する。
Since the oxygen saturation S and φ have a one-to-one relationship, once φ is determined, S is also determined.

【0054】よって、異なる2波長の光源を用い、酸化
ヘモグロビンと還元ヘモグロビンの比率により動脈血酸
素飽和度を求めることが可能となる。
Therefore, it is possible to obtain the arterial oxygen saturation from the ratio of oxyhemoglobin to reduced hemoglobin using light sources of two different wavelengths.

【0055】図3は赤色発光波長と赤外発光波長におけ
る酸化ヘモグロビン及び還元ヘモグロビンに対する吸光
度の変化とその吸光度比に応じた酸素飽和度の変化を示
す図であり、同図(A)は酸化ヘモグロビンと還元ヘモ
グロビンに対する発光波長と吸光度の関係を示す図、同
図(B)は赤色光と赤外光の吸光度比と酸素飽和度との
関係を示す図である。
FIG. 3 is a graph showing a change in absorbance for oxyhemoglobin and reduced hemoglobin at a red emission wavelength and an infrared emission wavelength, and a change in oxygen saturation in accordance with the absorbance ratio. FIG. 3A shows oxyhemoglobin. FIG. 4B is a diagram showing the relationship between the light emission wavelength and the absorbance for the reduced hemoglobin, and FIG. 4B is a diagram showing the relationship between the absorbance ratio of the red light and the infrared light and the oxygen saturation.

【0056】図4は前記生体信号検出装置の赤色LED
11aと赤外LED11bにおける発光駆動間隔を示す
タイミングチャートである。
FIG. 4 shows a red LED of the biological signal detecting device.
It is a timing chart which shows the light emission drive interval in 11a and infrared LED11b.

【0057】図5は前記生体信号検出装置の赤色LED
11aと赤外LED11bの発光に伴なう脈動に応じた
各受光信号波形を示す図である。
FIG. 5 shows a red LED of the biological signal detecting device.
It is a figure which shows each light-receiving signal waveform according to the pulsation accompanying the light emission of 11a and infrared LED11b.

【0058】すなわち、プローブ部1の発光装置11に
おける赤色LED11aと赤外LED11bとは、図4
に示すように、CPU25内のタイミング発生回路25
bからLED駆動装置27へ出力される発光タイミング
制御信号に応じて時分割駆動され、図5に示すように、
A/D変換回路24からCPU25に読込まれる脈動に
応じた受光合成信号から分離される各発光波長毎の受光
レベル信号Vaの比率(A/B)により、動脈血酸素飽
和度(SpO2 )が演算算出される。
That is, the red LED 11a and the infrared LED 11b in the light emitting device 11 of the probe unit 1
As shown in FIG.
b is time-divisionally driven according to a light emission timing control signal output to the LED driving device 27, and as shown in FIG.
The arterial blood oxygen saturation (SpO 2 ) is determined by the ratio (A / B) of the received light level signal Va for each emission wavelength separated from the combined received light signal corresponding to the pulsation read from the A / D conversion circuit 24 to the CPU 25. It is calculated.

【0059】この場合、被検体10に対する動脈血の流
れ込みが最大のタイミング、つまり、被検体10の組織
及び静脈血による固定的な吸光と共に該動脈血による吸
光が最大になりフォトダイオード12aにおける受光量
が最小となってCPU25に読み込まれる受光レベル信
号Vaが最小(図5では暗レベル最大)となるタイミン
グにおいて、赤色発光に伴なう受光レベル信号VaR と
赤外発光に伴なう受光レベル信号VaIRとが分離され、
その比率(A/B)に対応した動脈血酸素飽和度(Sp
2 )が測定される。
In this case, the timing at which arterial blood flows into the subject 10 is the maximum, that is, the fixed absorption by the tissue and the venous blood of the subject 10 and the absorption by the arterial blood are maximized, and the amount of light received by the photodiode 12a is minimized. At the timing when the light receiving level signal Va read by the CPU 25 becomes minimum (the dark level is maximum in FIG. 5), the light receiving level signal VaR accompanying red light emission and the light receiving level signal VaIR accompanying infrared light emission are changed. Separated,
Arterial blood oxygen saturation (Sp) corresponding to the ratio (A / B)
O 2 ) is measured.

【0060】なお、赤色光Rと赤外光IRの受光レベル
の比率に対応する酸素飽和度(SpO2 )は、予めRO
Mテーブルとして格納し測定時に対応するデータを読み
出す構成としてもよいし、その都度、前記脈動に伴なう
吸光度比(ΔA1 /ΔA2 )に基づき演算算出する構成
としてもよい。
The oxygen saturation (SpO 2 ) corresponding to the ratio of the light receiving levels of the red light R and the infrared light IR is determined in advance by RO
The data may be stored as an M table and the corresponding data may be read out at the time of measurement, or may be calculated and calculated based on the absorbance ratio (ΔA1 / ΔA2) accompanying the pulsation each time.

【0061】次に、前記構成による生体信号検出装置の
一連の動作について説明する。
Next, a series of operations of the biological signal detecting device having the above configuration will be described.

【0062】図6は前記生体信号検出装置による生体信
号検出処理を示すフローチャートである。
FIG. 6 is a flowchart showing a biological signal detection process by the biological signal detection device.

【0063】プローブ部1における発光装置11と受光
装置12との間に被検体10を挟み込み、入力装置28
に備えられる測定開始キーを操作すると、CPU25の
内部ROMあるいは外部記憶装置29に記憶されている
システムプログラムに従って図6における生体信号検出
処理が起動される。
The subject 10 is sandwiched between the light emitting device 11 and the light receiving device 12 in the probe unit 1 and the input device 28
When the measurement start key provided in the CPU 25 is operated, the biological signal detection processing in FIG. 6 is started in accordance with the system program stored in the internal ROM of the CPU 25 or the external storage device 29.

【0064】この生体信号検出処理が起動されると、ま
ず、発光装置11の未発光時における増幅回路23を介
した側の受光レベル信号Va1、つまり、被検体10を通
した透過光の受光以前でもプローブ部1の設置環境に応
じた受光装置12での外来光の受光動作に伴ない増幅回
路23によりN倍されてA/D変換回路24から出力さ
れる受光レベル信号Va1がCPU25に読み込まれる
(ステップS1)。
When the biological signal detection processing is started, first, when the light emitting device 11 does not emit light, the light receiving level signal Va1 on the side via the amplifier circuit 23, that is, before receiving the transmitted light through the subject 10. However, the light receiving level signal Va1 multiplied by N by the amplifying circuit 23 and output from the A / D converting circuit 24 is read by the CPU 25 in accordance with the external light receiving operation of the light receiving device 12 according to the installation environment of the probe unit 1. (Step S1).

【0065】すると、このCPU25に読み込まれた発
光装置11の未発光時における増幅側受光レベル信号V
a1がN倍にした受光動作の基準電圧(N・VREF )と等
しいか否か、つまり、電圧/電流変換回路22から出力
される受光装置12での受光動作に応じた出力電圧が、
予め設定された基準電圧VREF となっているか否か判断
される(ステップS2)。
Then, the amplification-side light-receiving level signal V read by the CPU 25 when the light emitting device 11 does not emit light.
Whether or not a1 is equal to the reference voltage (N · VREF) of the light receiving operation multiplied by N, that is, the output voltage according to the light receiving operation in the light receiving device 12 output from the voltage / current conversion circuit 22 is:
It is determined whether or not the reference voltage is a preset reference voltage VREF (step S2).

【0066】ここで、前記プローブ部1の設置環境に応
じた外来光が受光装置12のフォトダイオード12aに
受光されていることで、その受光電流IF の上昇に応じ
電流/電圧変換回路22からの出力電圧が前記基準電圧
VREF からシフトし、これにより前記CPU25に読み
込まれた増幅側の受光レベル信号Va1が基準電圧(N・
VREF )に等しくないと判断されると、その差(シフト
量)であるVb(=N・VREF −Va1)が算出されて電
圧制御回路26へ出力される(ステップS2→S3)。
Here, since extraneous light corresponding to the installation environment of the probe section 1 is received by the photodiode 12a of the light receiving device 12, the light from the current / voltage conversion circuit 22 is increased in accordance with the rise of the received light current IF. The output voltage shifts from the reference voltage VREF, whereby the light receiving level signal Va1 on the amplification side read by the CPU 25 is changed to the reference voltage (N ·
If it is determined that they are not equal to (VREF), the difference (shift amount), Vb (= N.VREF-Va1), is calculated and output to the voltage control circuit 26 (step S2 → S3).

【0067】すると、この電圧制御回路26から前記V
bを前記増幅率Nで割った電流/電圧変換回路22にお
ける実シフト値Vb/NをVREF に加算した電圧が、基
準電圧(VREF +Vb/N)として電流/電圧変換回路
22に与えられる(ステップS4)。
Then, the voltage control circuit 26 outputs the V
The voltage obtained by adding the actual shift value Vb / N in the current / voltage conversion circuit 22 obtained by dividing b by the amplification factor N to VREF is given to the current / voltage conversion circuit 22 as a reference voltage (VREF + Vb / N) (step). S4).

【0068】こうして、増幅回路23を介した受光レベ
ル信号Va1に基づく第1段階の電流/電圧変換回路22
に対する動作点基準電圧VREF の補正制御により、前記
受光装置12に対し外来光が受光されていても、発光装
置11の未発光時における増幅側受光レベル信号Va1が
N倍にした受光動作の基準電圧(N・VREF )と等しく
設定されたと判断されると、さらに同様に、プローブ部
1の発光装置11が未発光状態での電流/電圧変換回路
22の動作点基準電圧VREF となるべきそのままの受光
レベル信号Va2が、CPU25において読み込まれる
(ステップS1,S2→S5)。
Thus, the first-stage current / voltage conversion circuit 22 based on the light reception level signal Va1 through the amplification circuit 23
Is controlled by the correction of the operating point reference voltage VREF with respect to the light receiving device 12, even if extraneous light is received by the light receiving device 12, the amplification-side light receiving level signal Va1 when the light emitting device 11 does not emit light is N times the reference voltage of the light receiving operation. If it is determined that the setting is equal to (N · VREF), the light receiving device 11 of the probe unit 1 receives light as it is to be the operating point reference voltage VREF of the current / voltage conversion circuit 22 when the light emitting device 11 is not emitting light. The level signal Va2 is read by the CPU 25 (steps S1, S2 → S5).

【0069】そして、前記CPU25に読み込まれた受
光レベル信号Va2と基準電圧VREFとが一致しないと判
断された場合には、その差(シフト量)であるVb(=
VREF −Va2)が算出されて電圧制御回路26へ出力さ
れる(ステップS6→S7)。
If it is determined that the received light level signal Va2 read by the CPU 25 does not match the reference voltage VREF, the difference (shift amount) Vb (= shift amount) is obtained.
(VREF-Va2) is calculated and output to the voltage control circuit 26 (step S6 → S7).

【0070】すると、この電圧制御回路26から前記電
流/電圧変換回路22における実シフト値VbをVREF
に加算した電圧が、基準電圧(VREF +Vb)として電
流/電圧変換回路22に与えられる(ステップS8)。
Then, the actual shift value Vb in the current / voltage conversion circuit 22 is changed from the voltage control circuit 26 to VREF.
Is supplied to the current / voltage conversion circuit 22 as a reference voltage (VREF + Vb) (step S8).

【0071】こうして、電流/電圧変換回路22からの
そのままの受光レベル信号Va2に基づく第2段階の電流
/電圧変換回路22に対する動作点基準電圧VREF の補
正制御により、前記受光装置12に対し外来光が受光さ
れていても、発光装置11の未発光時における受光レベ
ル信号Va2が受光動作の基準電圧(VREF )と等しく設
定されたと判断されると、ステップS9〜S16におけ
る発光レベルの制御処理に移行される(ステップS5,
S6→S9)。
In this way, by controlling the correction of the operating point reference voltage VREF with respect to the current / voltage conversion circuit 22 in the second stage based on the received light level signal Va2 from the current / voltage conversion circuit 22 as it is, the external light to the light receiving device 12 is controlled. Is received, when it is determined that the light receiving level signal Va2 when the light emitting device 11 does not emit light is set to be equal to the reference voltage (VREF) of the light receiving operation, the process proceeds to the light emitting level control processing in steps S9 to S16. (Step S5,
S6 → S9).

【0072】このように、増幅回路23を介した受光レ
ベル信号Va1とそのままの受光レベル信号Va2とに基づ
く2段階の電流/電圧変換回路22に対する動作点基準
電圧VREF の補正制御を行なうことにより、前記受光装
置12に対し外来光が受光されても、電流/電圧変換回
路22における動作点基準電圧VREF を高精度に一定に
設定することができる。
As described above, by performing the correction control of the operating point reference voltage VREF for the two-stage current / voltage conversion circuit 22 based on the received light level signal Va1 via the amplifier circuit 23 and the received light level signal Va2 as it is, Even when external light is received by the light receiving device 12, the operating point reference voltage VREF in the current / voltage conversion circuit 22 can be set at a high accuracy and constant.

【0073】前記ステップS1〜S8における動作点基
準電圧VREF の補正制御が行なわれると、ステップS9
〜S16における発光レベルの制御処理に移行され、ま
ず、CPU25の発光電流制御回路25aから所定初期
レベルの赤色発光駆動用の発光電流制御信号がLED駆
動装置27の定電流回路27cへ出力され、赤色発光駆
動回路27aによりプローブ部1の発光装置11におけ
る赤色LED11aが所定初期レベルの発光量で点灯さ
れる(ステップS9)。
When the correction control of the operating point reference voltage VREF in steps S1 to S8 is performed, step S9 is performed.
First, a light emission current control circuit 25a of the CPU 25 outputs a light emission current control signal for driving a red light emission of a predetermined initial level to the constant current circuit 27c of the LED driving device 27, and the process proceeds to S16. The red LED 11a of the light emitting device 11 of the probe unit 1 is turned on by the light emission drive circuit 27a at a predetermined initial level light emission amount (step S9).

【0074】すると、被検体10を通した赤色発光の透
過光が受光装置12のフォトダイオード12aに受光さ
れ、このフォトダイオード12aから出力される受光電
流IF に応じて、電流/電圧変換回路22からは前記基
準電圧VREF から受光量分シフトした受光電圧信号が出
力されるもので、これに対応してA/D変換回路24か
ら出力される受光レベル信号Va1がCPU25に読み込
まれ、当該赤色発光の透過光に応じた受光レベル信号V
a1が適正な測定処理を行なうために必要なレンジ範囲の
所定の受光レベルに等しいか否か判断される(ステップ
S10,S11)。
Then, the transmitted light of red emission passing through the subject 10 is received by the photodiode 12a of the light receiving device 12, and the current / voltage conversion circuit 22 outputs the light according to the light receiving current IF output from the photodiode 12a. Is a light reception voltage signal shifted from the reference voltage VREF by the light reception amount. In response to this, a light reception level signal Va1 output from the A / D conversion circuit 24 is read into the CPU 25, and the red light emission is output. Light reception level signal V according to transmitted light
It is determined whether or not a1 is equal to a predetermined light receiving level in a range necessary for performing an appropriate measurement process (steps S10 and S11).

【0075】ここで、例えば前記プローブ部1に挟み込
んだ被検体10である指が非常に太いことでその光の透
過率が極めて低く、赤色透過光の受光動作により得られ
る前記基準電圧VREF からのシフト量が非常に小さいこ
とで、これに対応する受光レベル信号Va1は所定の受光
レベルより大幅に小さいと判断されると、CPU25の
発光電流制御回路25aからLED駆動装置27の定電
流回路27cへ出力されている赤色発光駆動用の発光電
流制御信号により、赤色発光駆動回路27aからの赤色
LED11aに対する発光駆動電流が増加制御される
(ステップS11→S12)。
Here, for example, since the finger as the subject 10 sandwiched between the probe portions 1 is very thick, its light transmittance is extremely low, and the light from the reference voltage VREF obtained by the light receiving operation of the red transmitted light is obtained. When the shift amount is very small and the light receiving level signal Va1 corresponding thereto is determined to be significantly smaller than the predetermined light receiving level, the light emitting current control circuit 25a of the CPU 25 sends the signal to the constant current circuit 27c of the LED driving device 27. The emission drive current for the red LED 11a from the red emission drive circuit 27a is controlled to increase by the output emission current control signal for red emission drive (steps S11 → S12).

【0076】こうして、赤色LED11aによる発光量
が増加されるのに伴ない、被検体10を通した赤色透過
光の受光装置12における受光量も増大され、前記A/
D変換回路24からCPU25に読み込まれる受光レベ
ル信号Va1が適正な測定処理を行なうために必要なレン
ジ範囲の所定の受光レベルに等しくなったと判断される
と、続いて同様に、CPU25の発光電流制御回路25
aから所定初期レベルの赤外発光駆動用の発光電流制御
信号がLED駆動装置27の定電流回路27cへ出力さ
れ、赤外発光駆動回路27bによりプローブ部1の発光
装置11における赤外LED11bが所定初期レベルの
発光量で点灯される(ステップS10,S11→S1
3)。
As described above, as the amount of light emitted by the red LED 11a is increased, the amount of red light transmitted through the subject 10 and received by the light receiving device 12 is also increased.
When it is determined that the light receiving level signal Va1 read from the D conversion circuit 24 to the CPU 25 has become equal to a predetermined light receiving level in a range necessary for performing an appropriate measurement process, the light emitting current control of the CPU 25 is similarly performed. Circuit 25
a, an emission current control signal for infrared emission drive of a predetermined initial level is output to the constant current circuit 27c of the LED drive device 27, and the infrared emission drive circuit 27b sets the infrared LED 11b in the light emission device 11 of the probe unit 1 to a predetermined value. The light is emitted at the initial light emission amount (steps S10, S11 → S1).
3).

【0077】すると、被検体10を通した赤外発光の透
過光が受光装置12のフォトダイオード12aに受光さ
れ、このフォトダイオード12aから出力される受光電
流IF に応じて、電流/電圧変換回路22からは前記基
準電圧VREF から受光量分シフトした受光電圧信号が出
力されるもので、これに対応してA/D変換回路24か
ら出力される受光レベル信号Va1がCPU25に読み込
まれ、当該赤外発光の透過光に応じた受光レベル信号V
a1が適正な測定処理を行なうために必要なレンジ範囲の
所定の受光レベルに等しいか否か判断される(ステップ
S14,S15)。
Then, the transmitted light of the infrared emission passing through the subject 10 is received by the photodiode 12a of the light receiving device 12, and the current / voltage conversion circuit 22 is output in accordance with the received light current IF output from the photodiode 12a. Outputs a received light voltage signal shifted from the reference voltage VREF by the amount of received light. In response to this, a received light level signal Va1 output from the A / D conversion circuit 24 is read into the CPU 25, and Light receiving level signal V according to transmitted light of light emission
It is determined whether or not a1 is equal to a predetermined light receiving level in a range necessary for performing an appropriate measurement process (steps S14 and S15).

【0078】ここで、例えば前記同様にプローブ部1に
挟み込んだ被検体10である指が非常に太いことでその
光の透過率が極めて低く、赤外透過光の受光動作により
得られる前記基準電圧VREF からのシフト量も非常に小
さいことで、これに対応する受光レベル信号Va1は所定
の受光レベルより大幅に小さいと判断されると、CPU
25の発光電流制御回路25aからLED駆動装置27
の定電流回路27cへ出力されている赤外発光駆動用の
発光電流制御信号により、赤外発光駆動回路27bから
の赤外LED11bに対する発光駆動電流が増加制御さ
れる(ステップS15→S16)。
Here, for example, the finger which is the subject 10 sandwiched between the probe portions 1 is very thick as described above, so that the transmittance of the light is extremely low, and the reference voltage obtained by the operation of receiving infrared transmitted light is obtained. Since the shift amount from VREF is also very small, the corresponding light receiving level signal Va1 is determined to be significantly smaller than the predetermined light receiving level.
25 light emitting current control circuit 25a to LED driving device 27
The emission drive current for the infrared LED 11b from the infrared emission drive circuit 27b is controlled to increase in response to the infrared emission drive emission control signal output to the constant current circuit 27c (steps S15 → S16).

【0079】こうして、赤外LED11aによる発光量
が増加されるのに伴ない、被検体10を通した赤外透過
光の受光装置12における受光量も増大され、前記A/
D変換回路24からCPU25に読み込まれる受光レベ
ル信号Va1が適正な測定処理を行なうために必要なレン
ジ範囲の所定の受光レベルに等しくなったと判断される
と、前述の動脈血酸素飽和度(SpO2 )の測定原理に
従った測定処理に移行される(ステップS14,S15
→S17)。
As described above, as the amount of light emitted by the infrared LED 11a is increased, the amount of infrared transmitted light passing through the subject 10 and received by the light receiving device 12 is also increased.
When it is determined that the light reception level signal Va1 read from the D conversion circuit 24 to the CPU 25 has become equal to a predetermined light reception level in a range necessary for performing an appropriate measurement process, the arterial blood oxygen saturation (SpO 2 ) is determined. (Steps S14, S15)
→ S17).

【0080】この場合、被検体10に対する動脈血の流
れ込みが最小のタイミング、つまり、被検体10の組織
及び静脈血による固定的な吸光が主で該動脈血による吸
光が最小になりフォトダイオード12aにおける受光量
が最大となってCPU25に読み込まれる各受光レベル
信号Va1(R) ,Va1(IR)が最大となるタイミング(図5
中では光量大)において、当該受光レベル信号Va1(R)
,Va1(IR)が、それぞれ所定の受光レベルに設定され
るよう前記各LED11a,11bの発光量が制御され
る。
In this case, the timing at which the arterial blood flows into the subject 10 is the minimum, that is, the fixed absorption by the tissue and the venous blood of the subject 10 is the main, the absorption by the arterial blood is the minimum, and the light receiving amount in the photodiode 12a is minimized. At which the light receiving level signals Va1 (R) and Va1 (IR) read by the CPU 25 become the maximum (FIG. 5).
In this case, the received light level signal Va1 (R)
, Va1 (IR) are set to predetermined light receiving levels, and the light emission amounts of the LEDs 11a and 11b are controlled.

【0081】このように、赤色及び赤外発光時それぞれ
の受光レベル信号Va1(R) ,Va1(IR)が所定のレベルと
して得られるようにLED発光量の補正を行なうこと
で、被検体10の光の透過率が非常に低かったり高かっ
たりする等の個体差があっても、安定した受光レベル信
号Va1を読み込んで動脈血酸素飽和度の適正な測定をお
こなうことができる。
As described above, by correcting the LED light emission amount so that the respective light receiving level signals Va1 (R) and Va1 (IR) at the time of red and infrared light emission are obtained as predetermined levels, the subject 10 Even if there is an individual difference such as a very low or high light transmittance, it is possible to read the stable received light level signal Va1 and appropriately measure the arterial blood oxygen saturation.

【0082】すなわち、これ以降継続的に交互発光駆動
される赤色LED11aからの赤色光と赤外LED11
bからの赤外光とに対応する各透過光の受光レベル信号
Va1(R) とVa1(IR)が順次読み込まれ、被検体10に対
する動脈血の流れ込みが最大となるタイミング、つま
り、該動脈血による吸光が最大となり、フォトダイオー
ド12aにおける受光量が最小となってCPU25に読
み込まれる受光レベル信号Vaが最小(図5では暗レベ
ル最大)となるタイミングにおいて、この赤色光と赤外
光による受光レベル信号Va1(R) ,Va1(IR)の比として
得られる被検体10における吸光度の比率(A/B)に
基づき動脈血酸素飽和度(SpO2 )が演算算出されて
外部記憶装置29に記憶され、表示部30に表示される
(ステップS17)。
That is, the red light from the red LED 11a and the infrared LED 11
The received light level signals Va1 (R) and Va1 (IR) of the respective transmitted lights corresponding to the infrared light from b are sequentially read, and the timing at which the inflow of the arterial blood into the subject 10 becomes maximum, that is, the absorption by the arterial blood At the timing when the amount of light received by the photodiode 12a becomes the minimum and the light receiving level signal Va read into the CPU 25 becomes the minimum (the maximum dark level in FIG. 5), the light receiving level signal Va1 based on the red light and the infrared light. The arterial oxygen saturation (SpO 2 ) is calculated based on the ratio (A / B) of the absorbance in the subject 10 obtained as the ratio of (R), Va1 (IR), stored in the external storage device 29, and displayed on the display unit. 30 is displayed (step S17).

【0083】一方、前記ステップS1〜S8におけるL
ED未発光時の電流/電圧変換回路22における受光動
作の基準電圧補正処理に伴ない、A/D変換回路24か
らCPU25に読み込まれる受光レベル信号Vaに応じ
て外部環境の明るさが判定され、これに応じてバックラ
イト制御装置32によりバックライト31に対する点灯
レベルが最適なレベルに制御される。
On the other hand, L in steps S1 to S8
The brightness of the external environment is determined according to the light receiving level signal Va read from the A / D converting circuit 24 to the CPU 25 in accordance with the reference voltage correcting process of the light receiving operation in the current / voltage converting circuit 22 when the ED is not emitting light, In response, the backlight control device 32 controls the lighting level for the backlight 31 to an optimal level.

【0084】すなわち、例えば前記LED未発光時にお
ける受光装置12での外来光の受光量に対応した受光レ
ベル信号Va1が、予め設定される第1レベル以下に低下
し、周囲の明るさが若干暗くなったと判定されると、バ
ックライト制御装置32により表示部30のバックライ
ト31が第1レベルの発光量で点灯駆動される。
That is, for example, the light receiving level signal Va1 corresponding to the amount of extraneous light received by the light receiving device 12 when the LED is not emitting light drops below the first level set in advance, and the surrounding brightness becomes slightly dark. If it is determined that the backlight 31 has become light, the backlight controller 32 drives the backlight 31 of the display unit 30 to emit light at the first level of light emission.

【0085】また、前記LED未発光時における受光装
置12での外来光の受光量に対応した受光レベル信号V
a1が、さらに低下して予め設定される第2レベル以下と
なり、周囲の明るさが非常に暗くなったと判定される
と、バックライト制御装置32により表示部30のバッ
クライト31が第2レベルの発光量で点灯駆動される。
The light receiving level signal V corresponding to the amount of external light received by the light receiving device 12 when the LED is not emitting light.
If it is determined that the surrounding brightness has become extremely dark, the backlight controller 32 switches the backlight 31 of the display unit 30 to the second level. Lighting drive is performed based on the light emission amount.

【0086】これにより、外部環境の明るさの変化に関
係なく、何時でも見易い明るさの表示画面を提供でき、
前記測定された動脈血酸素飽和度(SpO2 )のデータ
を常時明瞭に表示できるようになる。
As a result, it is possible to provide a display screen with a brightness that is easy to see at any time, regardless of the change in the brightness of the external environment.
The measured arterial blood oxygen saturation (SpO 2 ) data can always be clearly displayed.

【0087】したがって、前記構成の生体信号検出装置
によれば、プローブ部1の発光装置11における赤色L
ED11aと赤外LED11bを交互に発光させて被検
体10に照射すると共に、その透過光を受光装置12の
フォトダイオード12aで受光し、その受光電流IF に
応じて電流/電圧変換回路22からA/D変換回路24
を介しCPU25に読み込まれる各発光波長での受光レ
ベル信号Va(R),Va(IR) の比率に基づき酸素飽和度
(SpO2 )を測定するものにあって、前記発光装置1
1が未発光状態での前記受光レベル信号Va を読み込
み、これが予め設定された受光動作の基準電圧VREF と
等しくなるように、その差分Vb(=VREF−Va )に
応じて、電圧制御回路26により前記電流/電圧変換回
路22における動作点基準電圧が補正されるので、前記
被検体10を透過した透過光とは別に環境外来光のフォ
トダイオード12aでの受光による受光電流IF の余分
なシフトが生じても、その受光動作の基準電圧を常に予
め設定された基準電圧VREF に設定することができ、前
記各LED11a,11bの発光による受光レベル信号
Va(R),Va(IR) の比率に基づく酸素飽和度(Sp
2 )の測定を常に正確に安定して行なうことができ
る。
Therefore, according to the biological signal detecting device having the above structure, the red light L in the light emitting device 11 of the probe unit 1 is
The ED 11a and the infrared LED 11b emit light alternately to irradiate the subject 10, and the transmitted light is received by the photodiode 12a of the light receiving device 12, and the current / voltage conversion circuit 22 outputs an A / A signal in accordance with the received light current IF. D conversion circuit 24
The oxygen saturation (SpO 2 ) is measured based on the ratio of the received light level signals Va (R) and Va (IR) at each emission wavelength read into the CPU 25 via the light emitting device 1.
1 reads the light receiving level signal Va in a non-light emitting state, and controls the voltage control circuit 26 in accordance with the difference Vb (= VREF−Va) so that this signal becomes equal to a preset reference voltage VREF of the light receiving operation. Since the operating point reference voltage in the current / voltage conversion circuit 22 is corrected, an extra shift of the received light current IF occurs due to the reception of the environment extraneous light by the photodiode 12a separately from the transmitted light transmitted through the subject 10. However, the reference voltage for the light receiving operation can always be set to the preset reference voltage VREF, and the oxygen based on the ratio of the light receiving level signals Va (R) and Va (IR) by the light emission of the LEDs 11a and 11b. Saturation (Sp
Measurement of O 2 ) can always be performed accurately and stably.

【0088】また、前記構成の生体信号検出装置によれ
ば、発光装置11の赤色LED11aと赤外LED11
bの交互発光に伴なう被検体透過光の受光装置12での
受光に応じて、CPU25に読み込まれる各発光波長で
の受光レベル信号Va(R),Va(IR) が、適正な測定処理
を行なうために必要なレンジ範囲の所定の受光レベルに
等しくなるように、発光電流制御回路25aからLED
駆動装置27の定電流回路27cに出力される発光電流
制御信号により、各LED11a,11bにおける発光
量が増減調整されて補正されるので、例えば被検体10
としての指が太く光の透過率が非常に低かったり、逆に
指が細く該透過率が非常に高かったりしても、このよう
な被検体10の個体差に影響されず、測定精度にばらつ
きの生じない適正な酸素飽和度(SpO2 )の測定を行
なうことができる。またそればかりでなく、各LED1
1a,11b自体の個体差の影響による発光量のばらつ
きに伴なう、透過光受光レベル変動の問題も解消するこ
とができる。
Further, according to the biological signal detecting device having the above configuration, the red LED 11 a and the infrared LED 11
The light receiving level signals Va (R) and Va (IR) at each light emitting wavelength read by the CPU 25 are converted into an appropriate measurement process in response to the light received by the light receiving device 12 in the subject transmitted light accompanying the alternate light emission of b. From the light-emitting current control circuit 25a so as to be equal to a predetermined light receiving level in a range required for performing
The light emission amount control signal output to the constant current circuit 27c of the driving device 27 increases or decreases the light emission amount of each of the LEDs 11a and 11b and corrects the light emission amount.
Even if the finger is thick and the light transmittance is very low, or if the finger is thin and the transmittance is very high, the measurement accuracy is not affected by such individual differences of the subject 10. The measurement of the appropriate oxygen saturation (SpO 2 ) which does not cause the generation can be performed. Not only that, each LED1
It is also possible to solve the problem of the transmitted light reception level fluctuation accompanying the fluctuation of the light emission amount due to the individual difference between 1a and 11b itself.

【0089】さらに、前記構成の生体信号検出装置によ
れば、発光装置11が未発光状態での電流/電圧変換回
路22における受光動作の基準電圧を、A/D変換回路
24を介して得られる受光レベル信号Va に基づき予め
設定された基準電圧VREF に補正する処理は、まず、電
流/電圧変換回路22からN倍の増幅回路を介した受光
レベル信号Va1をN倍の基準電圧(N・VREF )に等し
くする補正処理と、次に、電流/電圧変換回路22から
のそのままの受光レベル信号Va2を基準電圧VREF に等
しくする補正処理との2段階の補正処理によって成され
るので、受光装置12に対し外来光が受光されても、電
流/電圧変換回路22における動作点基準電圧VREF を
高精度に一定に設定することができ、その後の各LED
11a,11bの発光による受光レベル信号Va(R),V
a(IR) の比率に基づく酸素飽和度(SpO2 )の測定処
理をより正確に行なうことができる。
Further, according to the biological signal detecting device having the above configuration, the reference voltage for the light receiving operation of the current / voltage conversion circuit 22 when the light emitting device 11 is not emitting light can be obtained via the A / D conversion circuit 24. The process of correcting the reference voltage VREF to a preset reference voltage VREF based on the received light level signal Va is performed by first converting the received light level signal Va1 from the current / voltage conversion circuit 22 through the N-fold amplification circuit to an N-fold reference voltage (N · VREF). ) And a correction process for making the received light level signal Va2 from the current / voltage conversion circuit 22 equal to the reference voltage VREF. However, even if extraneous light is received, the operating point reference voltage VREF in the current / voltage conversion circuit 22 can be set with high accuracy and constant, and each LED thereafter can be set.
Light receiving level signals Va (R) and V due to light emission of 11a and 11b
Measurement processing of oxygen saturation (SpO 2 ) based on the ratio of a (IR) can be performed more accurately.

【0090】なお、前記実施形態における生体信号検出
装置では、プローブ部1を、発光装置11により発光さ
れる光を被検体10に透過させ、その透過光を受光装置
12で受光するものとして構成したが、同発光装置11
により発光される光を被検体10に反射させ、その反射
光を受光装置12で受光するものとして構成してもよ
い。このような被検体反射光受光型のプローブ部とした
生体信号検出装置であっても、前記実施形態と全く同様
の未発光時における受光動作基準電圧の補正処理及び発
光時の発光電流制御による受光レベル信号Va の所定値
補正処理を行なうことにより、外来光や被検体10の個
体差等に影響を受けない安定した測定処理を行なうこと
ができる。
In the biological signal detecting device according to the above-described embodiment, the probe unit 1 is configured to transmit the light emitted by the light emitting device 11 to the subject 10 and receive the transmitted light by the light receiving device 12. But the light emitting device 11
May be configured to reflect the light emitted by the light source to the subject 10 and receive the reflected light by the light receiving device 12. Even in such a biological signal detecting device as a probe of the subject reflected light receiving type, the light receiving operation is performed by correcting the light receiving operation reference voltage when light is not emitted and controlling the light emitting current when emitting light, just like the above embodiment. By performing the predetermined value correction processing of the level signal Va, it is possible to perform a stable measurement processing that is not affected by extraneous light, individual differences of the subject 10, and the like.

【0091】[0091]

【発明の効果】以上のように、本発明の請求項1に係る
生体信号検出装置によれば、発光手段が未発光の状態
で、受光手段から出力される受光信号の信号レベルに基
づき、信号レベル測定の基準点が補正されるので、前記
発光手段からの発光に伴なう被検体からの光でない外来
光が受光される環境にあっても、その受光動作の基準点
を基準のレベルに補正することができ、実際に発光手段
からの発光に伴なう被検体からの光を受光する際に外来
光の影響なく、該被検体からの光に応じた正確な受光信
号レベルを得ることができる。
As described above, according to the biological signal detecting device of the first aspect of the present invention, when the light emitting means is not emitting light, the signal is obtained based on the signal level of the light receiving signal output from the light receiving means. Since the reference point of the level measurement is corrected, even in an environment where extraneous light that is not light from the subject accompanying light emission from the light emitting unit is received, the reference point of the light receiving operation is set to the reference level. It is possible to obtain an accurate light receiving signal level according to the light from the subject without being affected by extraneous light when receiving the light from the subject accompanying the light emission from the light emitting means. Can be.

【0092】よって、外来光の影響を受けることなく、
常に安定した測定結果を得ることが可能になる。
Therefore, without being affected by extraneous light,
It is possible to always obtain stable measurement results.

【0093】また、本発明の請求項2に係る生体信号検
出装置によれば、前記請求項1に係る生体信号検出装置
にあって、さらに、発光手段が発光の状態での受光手段
から出力される信号レベルに基づき、測定時の信号レベ
ルが該発光手段の発光量を増減制御して予め設定された
範囲に収まるように補正されるので、被検体の状態測定
を適正に行なうために必要なレンジ範囲の測定信号レベ
ルを得ることができ、被検体を経た光が著しく低い又は
高い等、その個体差に影響されず適正な状態測定が行な
えるようになる。
According to the biological signal detecting device of the second aspect of the present invention, there is provided the biological signal detecting device of the first aspect, wherein the light emitting means further outputs the light from the light receiving means in a light emitting state. Based on the signal level, the signal level at the time of measurement is corrected so that the light emission amount of the light emitting means is increased or decreased so as to be within a preset range, so that it is necessary to appropriately measure the state of the subject. It is possible to obtain a measurement signal level in a range range, and it is possible to perform appropriate state measurement without being affected by individual differences such as extremely low or high light passing through the subject.

【0094】よって、被検体の個体差に影響されること
なく、常に適正な透過光の受光レベルを得て測定を行な
うことが可能になる。
Accordingly, it is possible to always obtain an appropriate level of transmitted light and perform measurement without being affected by individual differences between subjects.

【0095】さらに、本発明の請求項7に係る発光レベ
ル制御装置によれば、受光手段から出力される受光信号
のレベルに基づき、この受光信号レベルが該発光手段の
発光レベルを増減制御して予め設定された範囲に収まる
ように補正されるので、例えば被照射体の状態検出を適
正に行なうために必要なレンジ範囲の信号レベルを得る
ことができ、被照射体の個体差に影響されず適正な状態
検出が行なえることになる。
Further, according to the light emission level control device according to the seventh aspect of the present invention, based on the level of the light reception signal output from the light receiving means, this light reception signal level controls the increase or decrease of the light emission level of the light emission means. Since the correction is made so as to fall within the preset range, it is possible to obtain a signal level in a range range necessary for appropriately detecting the state of the irradiation target, for example, without being affected by individual differences of the irradiation target. Appropriate state detection can be performed.

【0096】よって、被照射体(被検体)へ照射される
光の発光レベルを適正なものに補正することができる。
Accordingly, it is possible to correct the light emission level of the light irradiated to the irradiation object (test object) to an appropriate level.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る生体信号検出装置の電
子回路の構成を示すブロック図。
FIG. 1 is a block diagram showing a configuration of an electronic circuit of a biological signal detection device according to an embodiment of the present invention.

【図2】人体に光を透過させた場合の吸光度全体に対す
る各吸光成分の割合とその脈動に伴なう吸光度の変化状
態を示す図。
FIG. 2 is a diagram showing the ratio of each light-absorbing component to the total light absorbance when light is transmitted through a human body, and the change in the light absorbance due to the pulsation thereof.

【図3】赤色発光波長と赤外発光波長における酸化ヘモ
グロビン及び還元ヘモグロビンに対する吸光度の変化と
その吸光度比に応じた酸素飽和度の変化を示す図であ
り、同図(A)は酸化ヘモグロビンと還元ヘモグロビン
に対する発光波長と吸光度の関係を示す図、同図(B)
は赤色光と赤外光の吸光度比と酸素飽和度との関係を示
す図。
FIG. 3 is a diagram showing a change in absorbance with respect to oxyhemoglobin and reduced hemoglobin at a red emission wavelength and an infrared emission wavelength, and a change in oxygen saturation in accordance with the absorbance ratio. FIG. Diagram showing the relationship between emission wavelength and absorbance for hemoglobin, FIG.
FIG. 3 is a diagram showing the relationship between the absorbance ratio between red light and infrared light and oxygen saturation.

【図4】前記生体信号検出装置の赤色LEDと赤外LE
Dにおける発光駆動間隔を示すタイミングチャート。
FIG. 4 shows a red LED and an infrared LE of the biological signal detection device.
9 is a timing chart showing light emission drive intervals in D.

【図5】前記生体信号検出装置の赤色LEDと赤外LE
Dの発光に伴なう脈動に応じた各受光信号波形を示す
図。
FIG. 5 shows a red LED and an infrared LE of the biological signal detection device.
FIG. 9 is a diagram showing each light reception signal waveform corresponding to a pulsation accompanying light emission of D.

【図6】前記生体信号検出装置による生体信号検出処理
を示すフローチャート。
FIG. 6 is a flowchart showing a biological signal detection process by the biological signal detection device.

【符号の説明】[Explanation of symbols]

1 …プローブ部、 10 …被検体、 11 …発光装置、 11a…赤色LED、 11b…赤外LED、 12 …受光装置、 12a…フォトダイオード、 2 …システム部、 21 …増幅回路(電流アンプ)、 22 …電流/電圧変換回路、 23 …増幅回路(電圧アンプ)、 24 …A/D変換回路、 25 …CPU、 25a…発光電流制御回路、 25b…タイミング発生回路、 26 …電圧制御回路、 26a…D/A変換回路、 27 …LED駆動装置、 27a…赤色LED駆動回路、 27b…赤外LED駆動回路、 28 …入力装置、 29 …外部記憶装置、 30 …表示部 31 …バックライト、 32 …バックライト制御装置、 33 …出力装置(コネクタ)、 Va(R)…赤色透過光受光信号、 Va(IR) …赤外透過光受光信号。 DESCRIPTION OF SYMBOLS 1 ... Probe part, 10 ... Subject, 11 ... Light emitting device, 11a ... Red LED, 11b ... Infrared LED, 12 ... Light receiving device, 12a ... Photodiode, 2 ... System part, 21 ... Amplifier circuit (current amplifier), Reference numeral 22: current / voltage conversion circuit, 23: amplification circuit (voltage amplifier), 24: A / D conversion circuit, 25: CPU, 25a: emission current control circuit, 25b: timing generation circuit, 26: voltage control circuit, 26a: D / A conversion circuit, 27: LED drive device, 27a: Red LED drive circuit, 27b: Infrared LED drive circuit, 28: Input device, 29: External storage device, 30: Display unit 31: Backlight, 32: Back light Light control device, 33: output device (connector), Va (R): red transmitted light received signal, Va (IR): infrared transmitted light received signal.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 発光手段とこの発光手段により発光され
る光を被検体に照射することにより得られる被検体から
の光を受光する受光手段とを有するプローブと、このプ
ローブの受光手段から出力される受光信号の信号レベル
に基づき前記被検体の状態を測定する測定手段とを有す
る生体信号検出装置であって、 前記発光手段が未発光の状態で前記受光手段から出力さ
れる受光信号の信号レベルに基づき、信号レベル測定の
基準点を補正する基準点補正手段を更に備えたことを特
徴とする生体信号検出装置。
1. A probe having light emitting means, light receiving means for receiving light from a subject obtained by irradiating the object with light emitted by the light emitting means, and output from the light receiving means of the probe. A measuring means for measuring a state of the subject based on a signal level of the light receiving signal, wherein the signal level of the light receiving signal output from the light receiving means when the light emitting means is not emitting light A biological signal detection device, further comprising a reference point correcting means for correcting a reference point for signal level measurement based on the above.
【請求項2】 さらに、 前記発光手段が発光の状態で前記受光手段から出力され
る信号レベルに基づき、測定時の信号レベルが予め設定
された範囲に収まるように前記発光手段の発光量を増減
制御する発光制御手段を備えたことを特徴とする請求項
1に記載の生体信号検出装置。
2. The method according to claim 1, further comprising: increasing and decreasing a light emission amount of the light emitting means based on a signal level output from the light receiving means in a state where the light emitting means emits light so that a signal level at the time of measurement falls within a preset range. The biological signal detection device according to claim 1, further comprising a light emission control unit that controls the light emission.
【請求項3】 さらに、前記基準点補正手段は、 前記受光手段から出力される受光信号を増幅する増幅手
段と、 この増幅手段によって増幅された受光信号の信号レベル
を入力する第1の入力手段と、 前記受光手段から出力される受光信号のそのままの信号
レベルを入力する第2の入力手段とを備え、 前記第1の入力手段から出力される信号レベルと、前記
第2の入力手段から出力される信号レベルとに基づき、
信号レベル測定の基準点を補正することを特徴とする請
求項1又は請求項2に記載の生体信号検出装置。
3. The amplifying means for amplifying a light receiving signal output from the light receiving means, and a first input means for inputting a signal level of the light receiving signal amplified by the amplifying means. And a second input means for inputting a signal level of a light receiving signal output from the light receiving means, a signal level output from the first input means, and an output from the second input means. Based on the signal level
The biological signal detection device according to claim 1 or 2, wherein a reference point for signal level measurement is corrected.
【請求項4】 さらに、 前記測定手段により測定した被検体の状態を表示する表
示手段と、 この表示手段の表示画面を照明する照明手段と、 前記発光手段が未発光の状態で前記受光手段から出力さ
れる受光信号の信号レベルに応じて前記照明手段による
照明の明るさを制御する照明制御手段とを備えたことを
特徴とする請求項1乃至請求項3の何れか1項に記載の
生体信号検出装置。
4. A display means for displaying a state of the subject measured by the measuring means; an illuminating means for illuminating a display screen of the display means; The living body according to any one of claims 1 to 3, further comprising: an illumination control unit configured to control brightness of illumination by the illumination unit in accordance with a signal level of the output light reception signal. Signal detection device.
【請求項5】 前記受光手段は、前記発光手段により発
光される光を被検体に透過させ、その透過光を被検体か
らの光として受光することを特徴とする請求項1乃至請
求項4の何れか1項に記載の生体信号検出装置。
5. The apparatus according to claim 1, wherein the light receiving unit transmits light emitted by the light emitting unit to a subject, and receives the transmitted light as light from the subject. The biological signal detection device according to claim 1.
【請求項6】 前記受光手段は、前記発光手段により発
光される光を被検体に反射させ、その反射光を被検体か
らの光として受光することを特徴とする請求項1乃至請
求項4の何れか1項に記載の生体信号検出装置。
6. The apparatus according to claim 1, wherein the light receiving unit reflects light emitted by the light emitting unit to a subject, and receives the reflected light as light from the subject. The biological signal detection device according to claim 1.
【請求項7】 被照射体に光を照射する発光手段と、 この発光手段による前記被照射体に対する光の照射に応
じて該被照射体から入射する光を受光する受光手段と、 この受光手段から出力される受光信号のレベルに基づい
て、この受光信号のレベルが予め設定された範囲に収ま
るように前記発光手段の発光レベルを増減制御する制御
手段とを備えたことを特徴とする発光レベル制御装置。
7. A light emitting means for irradiating light to an object to be illuminated, a light receiving means for receiving light incident from the object to be illuminated in response to irradiation of light to the object to be illuminated by the light emitting means; Control means for increasing or decreasing the light emitting level of the light emitting means based on the level of the light receiving signal output from the controller so that the level of the light receiving signal falls within a preset range. Control device.
JP13577399A 1999-05-17 1999-05-17 Biological signal detector Expired - Lifetime JP3815119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13577399A JP3815119B2 (en) 1999-05-17 1999-05-17 Biological signal detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13577399A JP3815119B2 (en) 1999-05-17 1999-05-17 Biological signal detector

Publications (2)

Publication Number Publication Date
JP2000325330A true JP2000325330A (en) 2000-11-28
JP3815119B2 JP3815119B2 (en) 2006-08-30

Family

ID=15159531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13577399A Expired - Lifetime JP3815119B2 (en) 1999-05-17 1999-05-17 Biological signal detector

Country Status (1)

Country Link
JP (1) JP3815119B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005519714A (en) * 2002-03-13 2005-07-07 シーメンス メディカル ソリューションズ ユーエスエー インコーポレイテッド Power-saving adaptive system for generating signals in portable medical devices
JP2005278758A (en) * 2004-03-29 2005-10-13 Nippon Koden Corp Concentration measuring instrument of light absorbing substance in blood
JP2009066119A (en) * 2007-09-12 2009-04-02 Konica Minolta Sensing Inc Pulse oximeter
JP2011041699A (en) * 2009-08-21 2011-03-03 Konica Minolta Sensing Inc Biological information measuring apparatus
JP2015157020A (en) * 2014-02-25 2015-09-03 ローム株式会社 pulse wave sensor
JP2017516533A (en) * 2014-05-22 2017-06-22 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Method and apparatus for optical sensing of tissue variation with increased accuracy
JP2018029870A (en) * 2016-08-26 2018-03-01 セイコーエプソン株式会社 Detection device and detection method
JP2018075343A (en) * 2016-11-10 2018-05-17 宏達國際電子股▲ふん▼有限公司 Method for detecting heart rate, and heart rate monitoring device using the same
JPWO2018123676A1 (en) * 2016-12-27 2019-07-11 アルプスアルパイン株式会社 Sensor module and biological information display system
US10660552B2 (en) 2016-08-26 2020-05-26 Seiko Epson Corporation Detection device and detection method
US20200268313A1 (en) * 2009-08-14 2020-08-27 David Burton Anaesthesia and Consciousness Depth Monitoring System
CN111820912A (en) * 2019-04-17 2020-10-27 深圳市理邦精密仪器股份有限公司 Medical equipment and display method of light intensity of medical equipment

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005519714A (en) * 2002-03-13 2005-07-07 シーメンス メディカル ソリューションズ ユーエスエー インコーポレイテッド Power-saving adaptive system for generating signals in portable medical devices
JP2005278758A (en) * 2004-03-29 2005-10-13 Nippon Koden Corp Concentration measuring instrument of light absorbing substance in blood
JP4614047B2 (en) * 2004-03-29 2011-01-19 日本光電工業株式会社 Blood light absorption substance concentration measuring device.
JP2009066119A (en) * 2007-09-12 2009-04-02 Konica Minolta Sensing Inc Pulse oximeter
US20200268313A1 (en) * 2009-08-14 2020-08-27 David Burton Anaesthesia and Consciousness Depth Monitoring System
JP2011041699A (en) * 2009-08-21 2011-03-03 Konica Minolta Sensing Inc Biological information measuring apparatus
JP2015157020A (en) * 2014-02-25 2015-09-03 ローム株式会社 pulse wave sensor
US10433738B2 (en) 2014-05-22 2019-10-08 Koninklijke Philips N.V. Method and apparatus for optical sensing of tissue variation at increased accuracy
JP2017516533A (en) * 2014-05-22 2017-06-22 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Method and apparatus for optical sensing of tissue variation with increased accuracy
US10660552B2 (en) 2016-08-26 2020-05-26 Seiko Epson Corporation Detection device and detection method
JP2018029870A (en) * 2016-08-26 2018-03-01 セイコーエプソン株式会社 Detection device and detection method
CN108065927A (en) * 2016-11-10 2018-05-25 宏达国际电子股份有限公司 Rhythm of the heart method and heart rate monitoring unit
JP2018075343A (en) * 2016-11-10 2018-05-17 宏達國際電子股▲ふん▼有限公司 Method for detecting heart rate, and heart rate monitoring device using the same
JPWO2018123676A1 (en) * 2016-12-27 2019-07-11 アルプスアルパイン株式会社 Sensor module and biological information display system
US11096592B2 (en) 2016-12-27 2021-08-24 Alps Alpine Co., Ltd. Sensor module and biological information display system
CN111820912A (en) * 2019-04-17 2020-10-27 深圳市理邦精密仪器股份有限公司 Medical equipment and display method of light intensity of medical equipment
CN111820912B (en) * 2019-04-17 2022-06-07 深圳市理邦精密仪器股份有限公司 Medical equipment and display method of light intensity of medical equipment

Also Published As

Publication number Publication date
JP3815119B2 (en) 2006-08-30

Similar Documents

Publication Publication Date Title
US7257433B2 (en) Apparatus for measuring concentration of light-absorbing substance in blood
US6018674A (en) Fast-turnoff photodiodes with switched-gain preamplifiers in photoplethysmographic measurement instruments
USRE39268E1 (en) Simulation for pulse oximeter
US5193543A (en) Method and apparatus for measuring arterial blood constituents
US6741876B1 (en) Method for determination of analytes using NIR, adjacent visible spectrum and discrete NIR wavelenths
US4819752A (en) Blood constituent measuring device and method
US7254431B2 (en) Physiological parameter tracking system
US8515514B2 (en) Compensation of human variability in pulse oximetry
US6501974B2 (en) Compensation of human variability in pulse oximetry
US4653498A (en) Pulse oximeter monitor
US5069214A (en) Flash reflectance oximeter
JP3818211B2 (en) Biological signal detection device and calibration processing program for biological signal detection device
US20050168722A1 (en) Device and method for measuring constituents in blood
EP0104771B1 (en) Pulse oximeter monitor
US20070149864A1 (en) Monitoring device for multiple tissue sites
JP3815119B2 (en) Biological signal detector
US20070123760A1 (en) Signal transmitter and control circuit for a physiological variable
JP2004290544A (en) Blood analyzer
JPH04256733A (en) Measuring apparatus and method for blood parameter
US5203342A (en) Peripheral blood circulation state detecting apparatus
JP2005334424A (en) Biological signal detecting device
US20180085039A1 (en) Optical analysis system and method
JP2004290412A (en) Blood analyzer
WO2022050368A1 (en) Pulse wave signal acquisition device
JP2018159663A (en) Nondestructive inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060529

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

EXPY Cancellation because of completion of term