JP2000322783A - Magnetooptical recording medium, its recording and recording/reproducing device - Google Patents
Magnetooptical recording medium, its recording and recording/reproducing deviceInfo
- Publication number
- JP2000322783A JP2000322783A JP11129856A JP12985699A JP2000322783A JP 2000322783 A JP2000322783 A JP 2000322783A JP 11129856 A JP11129856 A JP 11129856A JP 12985699 A JP12985699 A JP 12985699A JP 2000322783 A JP2000322783 A JP 2000322783A
- Authority
- JP
- Japan
- Prior art keywords
- recording
- layer
- magnetization
- recording layer
- reproducing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は情報記録に用いる光
磁気記録媒体及びその記録方法並びに記録再生装置に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording medium used for recording information, a recording method thereof, and a recording / reproducing apparatus.
【0002】[0002]
【従来の技術】光磁気記録媒体は、高密度、低コストの
書換え可能な情報記録媒体として実用化されている。特
に希土類元素と遷移金属のアモルファス合金の記録層を
用いた媒体は非常に優れた特性を示している。光磁気デ
ィスクは非常に大容量の記録媒体であるが、社会の情報
量の増大に伴いさらなる大容量化が望まれている。光デ
ィスクの記録密度は通常の場合、その再生光のスポット
の大きさで決まってしまう。スポットの大きさはレーザ
ーの波長が短いほど小さくすることができるため、レー
ザーの短波長化の検討が進められているが、非常に困難
を伴っておりまた短波長レーザーの使用は高コストの要
因となる。2. Description of the Related Art A magneto-optical recording medium has been put to practical use as a high-density, low-cost rewritable information recording medium. In particular, a medium using a recording layer made of an amorphous alloy of a rare earth element and a transition metal shows very excellent characteristics. Magneto-optical disks are extremely large-capacity recording media, but with the increase in the amount of information in society, further increase in capacity is desired. In general, the recording density of an optical disc is determined by the size of the spot of the reproduction light. Since the spot size can be reduced as the wavelength of the laser becomes shorter, studies on shortening the wavelength of the laser are underway. However, it is very difficult and the use of the short wavelength laser is a high cost factor. Becomes
【0003】一方、レーザーの波長によって決定される
以上の分解能を色々な工夫によって得ようとする、いわ
ゆる超解像技術の試みが近年行われている。そのひとつ
として、光磁気ディスクにおいて多層膜間の交換結合力
を用いた超解像(Magnetically induced super resoluti
on、以下MSR) 方式が報告されている。本方式は、基
本的に、情報を記録した層(記録層)と情報を再生する
層(再生層)とからなり、記録は記録層に対して行い、
再生時に記録層の磁化方向を再生層に転写して読み出
す。本方式によれば、再生光スポット内に温度分布があ
るのを利用し、この温度分布により再生層の磁区を変形
させることで再生信号の波形干渉を軽減できるため、高
密度の記録情報を品質よく再生することができる。On the other hand, so-called super-resolution techniques have been attempted in recent years to obtain a resolution higher than that determined by the wavelength of the laser by various means. One of them is a magnetically induced super resoluti
on, hereinafter referred to as MSR). This method basically includes a layer on which information is recorded (recording layer) and a layer for reproducing information (reproducing layer). Recording is performed on the recording layer.
During reproduction, the magnetization direction of the recording layer is transferred to the reproduction layer and read. According to this method, it is possible to reduce the interference of the waveform of the reproduced signal by utilizing the temperature distribution in the reproduction light spot and deforming the magnetic domain of the reproduction layer by the temperature distribution, thereby improving the quality of the high-density recording information. Can be played well.
【0004】MSR方式の形態としては様々なものある
が、そのひとつとして本発明者らは特開平7−1470
29号において、保磁力の小さい再生層、キュリー温度
の低い切断層、さらにキュリー温度が高く保磁力が大き
い記録層の互いに交換結合した3層からなる媒体を用い
る「反転型MSR」と呼ばれる方式を提案している。反
転型MSR方式では、再生光スポット内の低温部で再生
層と記録層とが切断層を通して交換結合される。このと
き再生層の副格子磁化の方向と記録層の副格子磁化の方
向が一致する。[0004] There are various forms of the MSR system, and one of them is disclosed in Japanese Patent Laid-Open No. 7-1470.
No. 29, a method called “inversion type MSR” using a medium composed of three layers exchange-coupled to each other, a reproducing layer having a low coercive force, a cutting layer having a low Curie temperature, and a recording layer having a high Curie temperature and a large coercive force. is suggesting. In the inversion type MSR system, the reproducing layer and the recording layer are exchange-coupled through the cutting layer at a low temperature portion in the reproducing light spot. At this time, the direction of the sublattice magnetization of the reproducing layer matches the direction of the sublattice magnetization of the recording layer.
【0005】一方、高温部では切断層の温度がキュリー
温度を超えてしまうため再生層と記録層との交換結合が
切断される。このため再生層と記録層の関係は静磁結合
が支配的になり、再生層の磁化方向と記録層の磁化方向
とが一致する。従って、再生層と記録層がともに希土類
金属磁化優勢(REリッチ)あるいはともに遷移金属磁
化優勢(TMリッチ)であれば、再生層と記録層の磁化
方向は同じになる。しかし、再生層がREリッチかつ記
録層がTMリッチで相違するときには、再生層と記録層
の副格子磁化方向を一致させた場合と、再生層と記録層
の磁化方向を一致させた場合とでは、再生層の磁化状態
は逆になる。On the other hand, in a high temperature part, the exchange coupling between the reproducing layer and the recording layer is broken because the temperature of the cutting layer exceeds the Curie temperature. For this reason, the magnetostatic coupling is dominant in the relationship between the reproducing layer and the recording layer, and the magnetization direction of the reproducing layer matches the magnetization direction of the recording layer. Therefore, if both the reproducing layer and the recording layer are predominant in rare earth metal magnetization (RE rich) or both are transition metal magnetization predominant (TM rich), the magnetization directions of the reproducing layer and the recording layer are the same. However, when the reproducing layer is RE-rich and the recording layer is TM-rich, there is a difference between the case where the sublattice magnetization directions of the reproducing layer and the recording layer are matched and the case where the magnetization directions of the reproducing layer and the recording layer are matched. The magnetization state of the reproducing layer is reversed.
【0006】すなわち、再生光を照射し媒体が加熱され
るとまず低温部で記録層との交換結合により再生層の磁
化があらわれ、さらに加熱され高温になると交換結合が
切れ再生層の磁化は反転する。高密度の垂直磁気記録に
おいては、この反転した磁化が反転していない隣接マー
クと信号を強め合う働きをするため、高い分解能が実現
できるのである。反転型MSR方式ではさらに、磁気デ
ィスクと同様、マーク(磁区)の中心部ではなくマーク
の端部(磁区の境界部)において信号強度が最大となる
ため、信号のピーク位置を検出することでマーク端部が
容易に検出できる。このため、安価な磁気ディスクの信
号検出系回路をそのまま利用してマーク長変調記録信号
の再生ができるというコスト的な長所がある。That is, when the medium is heated by irradiating the reproducing light, the magnetization of the reproducing layer first appears due to exchange coupling with the recording layer at a low temperature portion, and when further heated to a high temperature, the exchange coupling is broken and the magnetization of the reproducing layer is reversed. I do. In high-density perpendicular magnetic recording, the inverted magnetization functions to reinforce signals with adjacent marks that have not been inverted, so that high resolution can be realized. Further, in the inversion type MSR system, the signal intensity is maximized not at the center of the mark (magnetic domain) but at the end of the mark (boundary of the magnetic domain) as in the case of the magnetic disk. The end can be easily detected. For this reason, there is a cost advantage that the mark length modulation recording signal can be reproduced by using the signal detection system circuit of the inexpensive magnetic disk as it is.
【0007】一方、MSR方式のひとつとして、特開平
8−221818号のような、記録層と再生層の間に非
磁性の遮断層を設け、静磁結合力だけで記録層の磁化方
向を再生層に転写する「静磁結合CAD」と呼ばれる方
式も提案されている。静磁結合CAD方式では再生層が
低温では面内磁化を有し、高温になり磁化が低下するに
つれて垂直磁化膜となる。このため高温でのみ記録層の
磁化が再生層に転写され信号が読み出せる。本方式では
低温で記録層磁化方向の転写が行われないので、記録ト
ラック外の隣接トラックとの信号干渉(クロストーク)
を小さくすることができる点で優れる。On the other hand, as one of the MSR methods, a non-magnetic blocking layer is provided between a recording layer and a reproducing layer as disclosed in JP-A-8-221818, and the magnetization direction of the recording layer is reproduced only by the magnetostatic coupling force. A method called “magnetostatic coupling CAD” for transferring to a layer has also been proposed. In the magnetostatic coupling CAD method, the reproducing layer has in-plane magnetization at a low temperature, and becomes a perpendicular magnetization film as the temperature increases and the magnetization decreases. Therefore, the magnetization of the recording layer is transferred to the reproducing layer only at a high temperature, and the signal can be read. In this method, the transfer of the magnetization direction of the recording layer is not performed at a low temperature, so that signal interference (crosstalk) with an adjacent track outside the recording track is performed.
In that it can be reduced.
【0008】[0008]
【発明が解決しようとする課題】上述した反転型MSR
方式や静磁結合CAD方式のように静磁結合力を利用し
て再生層に記録層の磁化方向を転写する方式において
は、好適に再生を行うためには、静磁結合力の源たる、
記録層から再生層に及ぼされる漏洩磁界を大きくする必
要がある。このためには記録層及び再生層の持つ磁化を
大きくすればよい。例えば、再生層がREリッチかつ記
録層がTMリッチである反転型MSRの場合、記録層
を、希土類と遷移金属の組成比を両者の磁化が打ち消し
合う補償組成よりも大きく遷移金属優勢(TMリッチ)
側にすれば良い。ところがこのような再生に好適な組成
を用いた場合、情報記録時に問題が発生してしまう。SUMMARY OF THE INVENTION The above-mentioned inverted MSR
In the method of transferring the magnetization direction of the recording layer to the reproducing layer using the magnetostatic coupling force, such as the method or the magnetostatic coupling CAD method, in order to preferably perform reproduction, a source of the magnetostatic coupling force is used.
It is necessary to increase the leakage magnetic field applied from the recording layer to the reproduction layer. This can be achieved by increasing the magnetization of the recording layer and the reproducing layer. For example, in the case of a reversal type MSR in which the reproducing layer is RE-rich and the recording layer is TM-rich, the recording layer is set such that the composition ratio of the rare earth and the transition metal is larger than the compensating composition in which the magnetizations of both cancel each other (TM rich). )
You can do it on the side. However, when a composition suitable for such reproduction is used, a problem occurs at the time of recording information.
【0009】記録層の磁化が一様方向に揃っている領域
では、記録層表面磁子からの磁束は記録層内部で反磁
界、すなわち反転磁化を形成しようとする力として働
く。このため、外部磁界が加わっていなくても、あるい
は外部磁界に逆らって、意図しない磁化反転が起こって
しまう。記録層に大きな磁化を与えるほど、同時にこの
反磁界が増大してこのような磁化反転が起こりやすくな
り、また記録/消去時には大きな記録/消去磁界が必要
となってしまう。ところで、光磁気記録には光変調記録
方式と磁界変調記録方式とがある。前者は照射する光の
強度を変えて記録を行い、後者は光強度は一定とし記録
磁界を変化(反転)させることで記録を行う。In a region where the magnetization of the recording layer is uniform in a uniform direction, the magnetic flux from the surface layer magnet of the recording layer acts as a demagnetizing field inside the recording layer, that is, a force for forming reversal magnetization. For this reason, unintended magnetization reversal occurs even when no external magnetic field is applied or against the external magnetic field. As the larger magnetization is applied to the recording layer, the demagnetizing field increases at the same time, so that such magnetization reversal is more likely to occur, and a larger recording / erasing magnetic field is required at the time of recording / erasing. Incidentally, magneto-optical recording includes a light modulation recording method and a magnetic field modulation recording method. The former performs recording by changing the intensity of light to be irradiated, and the latter performs recording by changing (inverting) the recording magnetic field while keeping the light intensity constant.
【0010】上述の反磁界による磁化反転は、特に磁界
変調記録には極めて不都合である。なぜならば、記録を
正確に行うためには記録磁界を反磁界より大きくする必
要があるが、記録磁界を大きくすると高速で変化させに
くくなり高速記録が困難になってしまうのである。従っ
て高速記録を行う場合には磁界強度は弱いものにならざ
るを得ず、このとき特に反磁界による磁化反転の影響が
問題になってくる。光変調記録においては、消去した領
域に記録磁区を形成する際には反磁界は都合が良いが、
あまりに大きな反磁界は一様な消去を行うためにはやは
り問題になる。[0010] The above-described magnetization reversal due to the demagnetizing field is extremely inconvenient, especially for magnetic field modulation recording. This is because the recording magnetic field must be larger than the demagnetizing field in order to perform the recording accurately, but if the recording magnetic field is increased, it is difficult to change the recording magnetic field at a high speed, which makes high-speed recording difficult. Therefore, when high-speed recording is performed, the magnetic field intensity must be weak. At this time, the influence of the magnetization reversal due to the demagnetizing field becomes a problem. In light modulation recording, a demagnetizing field is convenient when forming a recording magnetic domain in an erased area,
Too large a demagnetizing field still poses a problem for uniform erasure.
【0011】反磁界を低下させるには記録層の磁化を小
さなものにすれば良く、従来の媒体では補償組成近傍の
組成が良いとされている。しかしこれでは再生時の漏洩
磁界も低下するため、静磁結合を用いた超解像の原理
上、再生特性に悪影響を及ぼしてしまう。具体的には再
生層への磁化方向の転写が不十分となりやすい。すなわ
ち、従来は静磁結合を用いたMSRにおいては、磁界変
調記録に適した特性と再生層への転写性とを両立させる
のは困難であった。In order to reduce the demagnetizing field, the magnetization of the recording layer may be reduced, and it is said that a conventional medium has a composition near the compensation composition. However, this also reduces the leakage magnetic field during reproduction, which adversely affects the reproduction characteristics due to the principle of super-resolution using magnetostatic coupling. Specifically, the transfer of the magnetization direction to the reproducing layer tends to be insufficient. That is, conventionally, it has been difficult for an MSR using magnetostatic coupling to achieve both characteristics suitable for magnetic field modulation recording and transferability to a reproduction layer.
【0012】[0012]
【課題を解決するための手段】本発明らは検討の結果、
記録層を異なる特性を持った複数層構成とすることで、
低記録磁界での記録と再生層への良好な転写性とを両立
できることを見いだし、本発明に至った。すなわち、本
発明の要旨は、基板上に少なくとも記録層、切断層及び
再生層を有し、記録層には情報に応じた磁化方向が記録
され、室温以上の温度において記録層からの静磁結合力
により再生層に記録層の磁化方向が転写される光磁気記
録媒体であって、該記録層は希土類金属と遷移金属の合
金よりなり互いに交換結合してなる複数層で構成され、
かつ、少なくとも室温で希土類金属優勢磁化を有する層
と室温で遷移金属優勢磁化を有する層とを含むことを特
徴とする光磁気記録媒体に存する。Means for Solving the Problems The present inventors have studied and found that
By making the recording layer a multi-layer configuration with different characteristics,
The present inventors have found that both recording under a low recording magnetic field and good transferability to the reproducing layer can be achieved, and the present invention has been accomplished. That is, the gist of the present invention is that the recording layer has at least a recording layer, a cutting layer, and a reproducing layer, a magnetization direction corresponding to information is recorded on the recording layer, and magnetostatic coupling from the recording layer at a temperature equal to or higher than room temperature. A magneto-optical recording medium in which a magnetization direction of a recording layer is transferred to a reproducing layer by a force, wherein the recording layer is composed of a plurality of layers made of an alloy of a rare earth metal and a transition metal and exchange-coupled to each other,
The present invention also provides a magneto-optical recording medium characterized by including at least a layer having rare earth metal dominant magnetization at room temperature and a layer having transition metal dominant magnetization at room temperature.
【0013】また、本発明の別の要旨はこのような光磁
気記録媒体を用い、これに磁界変調記録方式により情報
の記録を行うことを特徴とする光磁気記録媒体の記録方
法に存する。さらに本発明の別の要旨は、このような光
磁気記録媒体と浮上型または接触型磁気ヘッドとを備え
てなることを特徴とする記録再生装置に存する。Another aspect of the present invention resides in a recording method for a magneto-optical recording medium, characterized by using such a magneto-optical recording medium and recording information on the magneto-optical recording medium by a magnetic field modulation recording method. Still another aspect of the present invention resides in a recording / reproducing apparatus comprising such a magneto-optical recording medium and a floating or contact magnetic head.
【0014】[0014]
【発明の実施の形態】以下、本発明について詳細に説明
する。本発明の光磁気記録媒体は、基板上に、情報に応
じた磁化方向が記録される記録層と、切断層と、室温以
上の温度において記録層からの静磁結合力により記録層
の磁化方向が転写される再生層を有しており、記録層を
2層以上の複数層とする。なお、必要に応じて記録層は
3層以上にすることも考えられる。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. The magneto-optical recording medium of the present invention has a recording layer on which a magnetization direction corresponding to information is recorded on a substrate, a cutting layer, and a magnetization direction of the recording layer by a magnetostatic coupling force from the recording layer at a temperature equal to or higher than room temperature. Has a reproducing layer to be transferred, and the recording layer is a plurality of layers of two or more layers. It is to be noted that the number of recording layers may be three or more as necessary.
【0015】次に、図面を用いて本発明を説明する。図
2に従来の光磁気記録媒体の層構成の一例を示す。再生
層1、切断層2、記録層13からなり、各層間には静磁
結合力5、記録層の反磁界16が働いている。先に述べ
たように、記録層の磁化を大きくすると反磁界16が大
きくなり記録消去に必要な記録磁界も大きくなる。逆に
記録層の磁化を小さくすると静磁結合力5が小さくなり
再生に悪影響がある。これは静磁結合力5も反磁界16
も同じように記録層の表面磁子から発生するからであ
る。Next, the present invention will be described with reference to the drawings. FIG. 2 shows an example of a layer configuration of a conventional magneto-optical recording medium. It comprises a reproducing layer 1, a cutting layer 2, and a recording layer 13, and a magnetostatic coupling force 5 and a demagnetizing field 16 of the recording layer act between the layers. As described above, when the magnetization of the recording layer is increased, the demagnetizing field 16 is increased, and the recording magnetic field required for recording / erasing is also increased. Conversely, when the magnetization of the recording layer is reduced, the magnetostatic coupling force 5 is reduced, which has an adverse effect on reproduction. This is because the magnetostatic coupling force 5 and the demagnetizing field 16
Is also generated from the surface magnetons of the recording layer.
【0016】ここで図2に示す反磁界16と静磁結合力
5の違いを考えると、反磁界16は記録層13の一部が
周囲の記録層自身から受ける力であり、静磁結合力5は
記録層13と再生層1の間の力である点である。記録層
には両表面(多層膜の記録層の場合は記録層間にも)磁
子が発生するが、記録層自身の反磁界16には全ての磁
子からの磁界が影響する。Considering the difference between the demagnetizing field 16 and the magnetostatic coupling force 5 shown in FIG. 2, the demagnetizing field 16 is a force that a part of the recording layer 13 receives from the surrounding recording layer itself. 5 is a force between the recording layer 13 and the reproducing layer 1. Magnets are generated on both surfaces of the recording layer (and also between the recording layers in the case of a multilayer recording layer), but the demagnetizing field 16 of the recording layer itself is affected by magnetic fields from all the magnetons.
【0017】一方、図1に本発明の光磁気記録媒体の層
構成の一例を示す。再生層1、切断層2、第1記録層
3、第2記録層4からなり、各層間には静磁結合力5、
第1記録層の反磁界6、第2記録層の反磁界7が働いて
いる。再生層に近い側の層を第1記録層、遠い側の層を
第2記録層と呼ぶ。図1のように記録層を2層化し、第
1記録層3が遷移金属磁化優勢であり、第2記録層4が
希土類金属磁化優勢で互いに交換結合している場合、各
々からの反磁界6、7は打ち消し合い、総和として小さ
くすることが可能である。なお反磁界はその大部分が記
録部分(加熱部分)周囲の室温部分から発生するので、
室温において磁化を小さくすることが必要である。従っ
て、室温において、第1記録層3は遷移金属磁化優勢で
あり、第2記録層4は希土類金属磁化優勢である必要が
ある。なお、室温とは代表的には25℃程度である。FIG. 1 shows an example of the layer structure of the magneto-optical recording medium of the present invention. It comprises a reproducing layer 1, a cutting layer 2, a first recording layer 3, and a second recording layer 4, with a magnetostatic coupling force 5,
The demagnetizing field 6 of the first recording layer and the demagnetizing field 7 of the second recording layer operate. A layer closer to the reproduction layer is called a first recording layer, and a layer farther from the reproduction layer is called a second recording layer. When the recording layer is divided into two layers as shown in FIG. 1 and the first recording layer 3 is dominated by transition metal magnetization and the second recording layer 4 is dominated by rare earth metal magnetization and exchange-coupled to each other, the demagnetizing field 6 , 7 cancel each other out and can be reduced as a sum. Most of the demagnetizing field is generated from the room temperature around the recording part (heating part).
It is necessary to reduce the magnetization at room temperature. Therefore, at room temperature, the first recording layer 3 needs to have transition metal magnetization dominance, and the second recording layer 4 needs to have rare earth metal magnetization dominance. Note that room temperature is typically about 25 ° C.
【0018】一方、静磁結合力5は記録層外部の再生層
1との間の結合であるから、再生層1近くにある第1記
録層3からの磁界の影響(すなわち記録層の再生層側表
面の磁子からの磁束)が、遠くにある第2記録層4から
の影響よりはるかに強い。これは、磁界の強度が距離の
二乗に反比例することを考えればよく理解できる。従っ
て、遷移金属磁化優勢の第1記録層3、希土類金属磁化
優勢の第2記録層4の積層を用いることで、強い静磁結
合力を保ちつつ、記録層磁化の総和を抑制でき、結果的
に反磁界(反磁界6、7の総和)を小さくできる。On the other hand, since the magnetostatic coupling force 5 is a coupling between the recording layer and the reproducing layer 1 outside the recording layer, it is affected by the magnetic field from the first recording layer 3 near the reproducing layer 1 (that is, the reproducing layer of the recording layer). Magnetic flux from the magnet on the side surface) is much stronger than the influence from the second recording layer 4 located far away. This can be well understood by considering that the strength of the magnetic field is inversely proportional to the square of the distance. Therefore, by using the lamination of the first recording layer 3 with the transition metal magnetization dominant and the second recording layer 4 with the rare earth metal magnetization dominant, it is possible to suppress the total sum of the recording layer magnetization while maintaining a strong magnetostatic coupling force. In addition, the demagnetizing field (sum of the demagnetizing fields 6, 7) can be reduced.
【0019】希土類金属と遷移金属の合金においては、
温度を上げると一般に希土類金属磁化の減少が早く起こ
り、希土類金属磁化優勢から遷移金属磁化優勢に変化す
る。希土類金属と遷移金属の磁化が完全に釣り合う温度
を補償温度と呼び、これより低温では希土類金属磁化優
勢、高温では遷移金属磁化優勢となる。従って媒体の温
度を上げながら再生すると、記録層では全体が遷移金属
磁化が強くなってくるので、室温時よりも強い静磁結合
力を得ることができる。In an alloy of a rare earth metal and a transition metal,
In general, when the temperature is increased, the rare earth metal magnetization decreases quickly, and the rare earth metal magnetization is changed to the transition metal magnetization dominant. The temperature at which the magnetization of the rare earth metal and the transition metal perfectly balance is called the compensation temperature. At lower temperatures, the rare earth metal magnetization becomes dominant, and at higher temperatures, the transition metal magnetization becomes dominant. Therefore, when reproduction is performed while raising the temperature of the medium, the transition layer magnetization becomes stronger in the entire recording layer, so that a stronger magnetostatic coupling force than at room temperature can be obtained.
【0020】こういった媒体に記録を行う方法として
は、光パルスに記録情報を載せる光変調方式と、磁界方
向に記録情報を載せる磁界変調方式の二通りがあるが、
本発明は記録磁界を低くすることが可能になるという点
で磁界変調記録に用いると高速記録が行いやすくなり特
に効果が大きい。なお、記録層より希土類金属優勢磁化
の磁界を発生させて再生層と静磁結合させようとする場
合は、第1記録層を希土類金属磁化優勢とし第2記録層
を遷移金属磁化優勢とすることも可能である。このとき
第1記録層は温度上昇とともに磁化が減少するので、高
温で静磁結合力を小さくしたいようなMSR方式に用い
ると有効である。There are two methods for recording on such a medium: an optical modulation method in which recording information is carried on an optical pulse, and a magnetic field modulation method in which recording information is carried in the direction of a magnetic field.
When the present invention is used for magnetic field modulation recording in that the recording magnetic field can be reduced, high-speed recording is easily performed, and the effect is particularly large. When a magnetic field of rare earth metal dominant magnetization is generated from the recording layer to make magnetostatic coupling with the reproducing layer, the first recording layer should have rare earth metal magnetization dominance and the second recording layer should have transition metal magnetization dominance. Is also possible. At this time, since the magnetization of the first recording layer decreases as the temperature rises, it is effective to use the MSR method in which the magnetostatic coupling force is desired to be reduced at a high temperature.
【0021】以下に反転型MSR方式、ならびに静磁結
合CAD方式を例に出して各層の特性についてさらに詳
細に説明する。ただし、本発明は静磁結合を用いるタイ
プの記録方式全般に適用でき、本発明はこれらの例に限
定されない。反転型MSR方式、ならびに静磁結合CA
D方式において、再生層は希土類金属磁化優勢の組成が
好ましい。反転型MSR方式においては、これは交換結
合力と静磁結合力の方向を逆にするための必須条件であ
る。また静磁結合CAD方式においては、低温で面内磁
化膜であり高温で磁化の減少により垂直磁化膜に推移す
る必須条件である。Hereinafter, the characteristics of each layer will be described in more detail by taking the inversion type MSR system and the magnetostatic coupling CAD system as examples. However, the present invention is applicable to all types of recording systems using magnetostatic coupling, and the present invention is not limited to these examples. Inversion type MSR method and magnetostatic coupling CA
In the D system, the reproducing layer preferably has a composition in which rare earth metal magnetization is dominant. In the reversal type MSR, this is an essential condition for reversing the directions of the exchange coupling force and the magnetostatic coupling force. Further, in the magnetostatic coupling CAD system, it is an essential condition that the film is an in-plane magnetic film at a low temperature and changes to a perpendicular magnetic film due to a decrease in magnetization at a high temperature.
【0022】こういった再生層に用いられる物質として
は、GdFeCo、GdCo、GdFe、GdDyF
e、GdDyCo、GdDyFeCo、GdTbFe、
GdTbCo、GdTbFeCo、DyFeCo、Dy
Co、TbCo、TbFeCo、TbDyFeCo、T
bDyCo等の希土類金属と遷移金属の合金が用いられ
る。中でも、Gdを含有する合金を用いるのがキュリー
温度や保磁力の点から好ましい。特に好ましいのはGd
FeCoやGdFeである。キュリー温度としては、2
50℃以上であることが好ましい。PtCoや、Ptと
Coの超格子等の磁性体を再生層上に積層させることも
できる。これらは短波長でのカー回転角が大きいため、
青色レーザーなどを用いた高密度記録媒体に適用でき
る。Materials used for such a reproducing layer include GdFeCo, GdCo, GdFe, and GdDyF.
e, GdDyCo, GdDyFeCo, GdTbFe,
GdTbCo, GdTbFeCo, DyFeCo, Dy
Co, TbCo, TbFeCo, TbDyFeCo, T
An alloy of a rare earth metal such as bDyCo and a transition metal is used. Among them, it is preferable to use an alloy containing Gd from the viewpoint of the Curie temperature and the coercive force. Particularly preferred is Gd
FeCo and GdFe. Curie temperature is 2
It is preferably at least 50 ° C. A magnetic material such as PtCo or a superlattice of Pt and Co can be laminated on the reproducing layer. These have large Kerr rotation angles at short wavelengths,
It can be applied to a high density recording medium using a blue laser or the like.
【0023】再生層の垂直磁気異方性を大きくするに
は、磁性層にある程度の膜応力をもたせて逆磁歪効果に
よる異方性を発生させるのが好ましいため、再生層の膜
厚が薄い方が磁化が垂直に立ちやすく好ましい。好まし
くは100nm以下、さらに好ましくは70nm以下、
特に好ましくは60nm以下である。しかし、薄すぎる
場合、漏洩磁束が小さくなり静磁結合力が減少するので
好ましくは10nm以上、さらに好ましくは15nm以
上、特に好ましくは20nm以上である。In order to increase the perpendicular magnetic anisotropy of the reproducing layer, it is preferable to apply a certain film stress to the magnetic layer to generate the anisotropy by the inverse magnetostriction effect. Is preferable because the magnetization easily stands perpendicularly. Preferably 100 nm or less, more preferably 70 nm or less,
Particularly preferably, it is 60 nm or less. However, if it is too thin, the leakage magnetic flux becomes small and the magnetostatic coupling force decreases, so it is preferably at least 10 nm, more preferably at least 15 nm, particularly preferably at least 20 nm.
【0024】再生層と記録層の間に交換結合を切断する
ための切断層を設ける。切断層は反転型MSR方式にお
いてはキュリー温度が記録層及び再生層より低い層と
し、キュリー温度を超える高温において交換結合を遮断
する。静磁結合CAD方式では全ての温度領域において
交換結合を遮断するように主に非磁性の膜を用いる。反
転型MSR方式において切断層は、キュリー温度が再生
層や記録層と比べて小さいものを用いる。切断層のキュ
リー温度Tc2は、90〜180℃程度が好ましい。T
c2が低すぎると交換結合している領域(再生光スポッ
ト内の低温領域)からの信号が小さくなるが、一方、高
すぎると高い再生パワー及び高い記録パワーを必要が必
要になる。A cutting layer for cutting exchange coupling is provided between the reproducing layer and the recording layer. In the inversion type MSR system, the cutting layer is a layer having a lower Curie temperature than the recording layer and the reproducing layer, and blocks exchange coupling at a high temperature exceeding the Curie temperature. In the magnetostatic coupling CAD method, a non-magnetic film is mainly used so as to block exchange coupling in all temperature regions. In the inversion type MSR method, a cutting layer having a lower Curie temperature than the reproducing layer and the recording layer is used. The Curie temperature Tc2 of the cutting layer is preferably about 90 to 180 ° C. T
If c2 is too low, the signal from the exchange-coupled area (low-temperature area in the reproduction light spot) will be small, while if c2 is too high, high reproduction power and high recording power will be required.
【0025】反転型MSR方式の切断層は垂直磁気異方
性が高く、再生層の磁化に強い力を発生させるものが好
ましい。切断層に用いられる物質としては、TbFe、
TbFeCo、DyFeCo、DyFe、TbDyFe
Co等の希土類と遷移金属の合金が好ましい。膜厚は2
nm以上、30nm以下であることが好ましい。薄すぎ
ると交換結合の遮断が不十分であり、厚過ぎると静磁結
合の磁束が届かなくなる。The inversion type MSR type cutting layer preferably has a high perpendicular magnetic anisotropy and generates a strong force in the magnetization of the reproducing layer. Materials used for the cutting layer include TbFe,
TbFeCo, DyFeCo, DyFe, TbDyFe
An alloy of a rare earth such as Co and a transition metal is preferable. The film thickness is 2
It is preferably not less than nm and not more than 30 nm. If it is too thin, the interruption of exchange coupling is insufficient, and if it is too thick, the magnetic flux of the magnetostatic coupling does not reach.
【0026】静磁結合CAD方式において、切断層は金
属、誘電体等が用いられる。例えばAl、Ta、Cr、
Ti、W、Si、Pt、Cu、Si3 N4 、AlN、T
iN、カーボン、水素化カーボン等である。ただし透磁
率の高いもの、例えばFe、Ni等は磁束を再生層まで
透過せず静磁結合を低下させるため好ましくない。膜厚
は2nm以上、30nm以下であることが好ましい。薄
すぎると交換結合の遮断が不十分であり、厚過ぎると静
磁結合の磁束が届かなくなる。In the magnetostatic coupling CAD system, a metal, a dielectric or the like is used for the cutting layer. For example, Al, Ta, Cr,
Ti, W, Si, Pt, Cu, Si 3 N 4 , AlN, T
iN, carbon, hydrogenated carbon and the like. However, those having high magnetic permeability, such as Fe and Ni, are not preferable because they do not transmit the magnetic flux to the reproducing layer and reduce the magnetostatic coupling. The thickness is preferably 2 nm or more and 30 nm or less. If it is too thin, the interruption of exchange coupling is insufficient, and if it is too thick, the magnetic flux of the magnetostatic coupling does not reach.
【0027】本発明では、記録層は2層以上の複数層よ
りなり、遷移金属磁化優勢の層と希土類金属磁化優勢の
層を両方有している。室温において互いの磁化が打ち消
し合い、層間に磁壁のない状態で記録層全体の磁化が1
00emu/cc以下であることが好ましい。さらに好
ましくは80emu/cc以下である。反転型MSR方
式においては、希土類金属優勢磁化を有する再生層に対
して遷移金属優勢磁化の磁化を結合させたいので、再生
層に最も近い第1記録層が室温で遷移金属磁化優勢であ
ることが好ましい。In the present invention, the recording layer is composed of two or more layers, and has both a layer in which transition metal magnetization is dominant and a layer in which rare earth metal magnetization is dominant. At room temperature, the magnetizations of the recording layers cancel each other out, and the magnetization of the entire recording layer becomes 1 with no domain wall between the layers.
It is preferably not more than 00 emu / cc. More preferably, it is 80 emu / cc or less. In the inversion type MSR method, since it is desired to couple the transition metal dominant magnetization to the reproducing layer having rare earth metal dominant magnetization, the first recording layer closest to the reproducing layer has transition metal dominant at room temperature. preferable.
【0028】静磁結合CAD方式では、室温で希土類金
属磁化優勢でも遷移金属磁化優勢でも良いが、室温で希
土類金属磁化優勢の場合は高温で再生時に磁化が低下し
てしまうという問題があり、室温で遷移金属磁化優勢で
あることが好ましい。希土類金属磁化優勢の層と遷移金
属磁化優勢の層が含まれていれば記録層中の記録層の数
は3層以上としても良いが、生産上の簡便さからは2層
であることが好ましい。In the magnetostatically coupled CAD system, either rare-earth metal magnetization or transition metal magnetization may be predominant at room temperature. However, in the case of rare-earth metal magnetization predominant at room temperature, there is a problem that magnetization is reduced at high temperature during reproduction. It is preferred that the transition metal magnetization is dominant. The number of recording layers in the recording layer may be three or more if the rare earth metal magnetization predominant layer and the transition metal magnetization predominant layer are included, but two layers are preferable from the viewpoint of simplicity in production. .
【0029】記録層は安定して記録を蓄えている層であ
るから、各記録層は再生光による加熱で劣化しない大き
さのキュリー温度を有していることが必要である。2層
の記録層が保磁力の低い層(例えばGdFeCo)と保
磁力の高い層(例えばTbFeCo)との組み合わせで
ある場合、高保磁力層に記録すれば交換結合力により低
保磁力層に転写されるため、記録感度は高保磁力層で決
まる。Since the recording layers are layers in which recording is stably stored, it is necessary that each recording layer has a Curie temperature that is not deteriorated by heating by reproducing light. When the two recording layers are a combination of a layer having a low coercive force (for example, GdFeCo) and a layer having a high coercive force (for example, TbFeCo), if recording is performed on the high coercive force layer, the information is transferred to the low coercive force layer by exchange coupling force. Therefore, the recording sensitivity is determined by the high coercivity layer.
【0030】従って高保磁力層のキュリー温度が高すぎ
ると、記録に要するレーザーパワーが大きくなりすぎて
しまうので、高保磁力層のキュリー温度は低いほうが好
ましい。また、記録層が高い垂直磁気異方性を持つこと
も、再生層の磁化に強い力を与えるために必要である。
両記録層のうち少なくとも一つの記録層が高い保磁力を
持ち、記録を安定に蓄え得ることが必要である。この高
保磁力記録層としてはTbFeCo、TbCo、DyF
eCo、TbDyFeCo、GdTbFe、GdTbF
eCo等が好ましく用いられる。中でもTbFeCoが
垂直磁気異方性が高く、保磁力が大きいので特に好まし
い。高保磁力層以外の層は、高保磁力層と交換結合して
いれば、単独で保磁力が小さいものでもかまわない。例
えばGdFe、GdFeCo、GdCoなどである。各
記録層の膜厚は20nm以上であり、100nm以下で
あることが好ましく、さらに好ましくは25nm以上で
あり、70nm以下である。記録層が薄過ぎれば十分な
静磁界を発生できない。また、厚過ぎれば感度及び生産
性が悪くなる。Therefore, if the Curie temperature of the high coercive force layer is too high, the laser power required for recording becomes too large, and therefore the Curie temperature of the high coercive force layer is preferably low. It is also necessary that the recording layer has high perpendicular magnetic anisotropy in order to give a strong force to the magnetization of the reproducing layer.
It is necessary that at least one of the two recording layers has a high coercive force and that recording can be stably stored. This high coercivity recording layer is made of TbFeCo, TbCo, DyF
eCo, TbDyFeCo, GdTbFe, GdTbF
eCo and the like are preferably used. Among them, TbFeCo is particularly preferable because of its high perpendicular magnetic anisotropy and large coercive force. The layers other than the high coercive force layer may have a small coercive force alone as long as they are exchange-coupled to the high coercive force layer. For example, GdFe, GdFeCo, GdCo, etc. The thickness of each recording layer is 20 nm or more, preferably 100 nm or less, more preferably 25 nm or more, and 70 nm or less. If the recording layer is too thin, a sufficient static magnetic field cannot be generated. On the other hand, if the thickness is too large, the sensitivity and productivity deteriorate.
【0031】高キュリー温度の低保磁力層を第1記録層
とし、それよりも低キュリー温度の高保磁力層を第2記
録層とする組み合わせによる記録層は、再生時に第2記
録層のキュリー温度付近まで温度が上がっても第1記録
層の磁化が低下せずに強い静磁結合を得ることができる
ので特に好ましい形態である。この場合具体的には、第
1記録層としてGdFeCo、第2記録層としてTbF
eCoが好ましく用いられる。高保磁力層を遷移金属磁
化優勢とすると、再生時に保磁力が低下して記録が消失
しやすくなる可能性があるため、高保磁力層は希土類金
属磁化優勢であることが好ましい。The recording layer formed by combining the low coercive force layer having a high Curie temperature with the first recording layer and the high coercive force layer having a lower Curie temperature as the second recording layer has the Curie temperature of the second recording layer during reproduction. This is a particularly preferable mode because even when the temperature rises to the vicinity, strong magnetostatic coupling can be obtained without lowering the magnetization of the first recording layer. In this case, specifically, GdFeCo is used as the first recording layer, and TbF is used as the second recording layer.
eCo is preferably used. If the high coercivity layer has transition metal magnetization dominance, the coercive force may decrease during reproduction and recording may be easily lost. Therefore, the high coercivity layer preferably has rare earth metal magnetization dominance.
【0032】各々の記録層の磁化があまり大きすぎる場
合、垂直磁気異方性の低下によって再生信号特性が低下
するため、記録層に補償組成から極端に離れた組成を用
いることは好ましくない。従って、記録層中の遷移金属
磁化優勢層は、希土類金属を18%以上含有することが
好ましい。さらに好ましくは19%以上である。特に好
ましくは20%以上である。希土類金属組成の上限は補
償組成である。希土類金属磁化優勢層は希土類金属を3
2%以下含有することが好ましい。さらに好ましくは3
1%以下であり、特に好ましくは26%以上30%以下
である。希土類金属組成の下限は補償組成である。尚、
本明細書中では組成に全て原子%を用いる。If the magnetization of each recording layer is too large, the readout signal characteristics are reduced due to a decrease in perpendicular magnetic anisotropy. Therefore, it is not preferable to use a composition that is extremely far from the compensation composition for the recording layer. Therefore, it is preferable that the transition metal magnetization dominant layer in the recording layer contains 18% or more of the rare earth metal. More preferably, it is at least 19%. It is particularly preferably at least 20%. The upper limit of the rare earth metal composition is the compensation composition. The rare earth metal magnetization dominant layer contains three rare earth metals.
It is preferable to contain 2% or less. More preferably, 3
It is at most 1%, particularly preferably at least 26% and at most 30%. The lower limit of the rare earth metal composition is the compensation composition. still,
In this specification, the composition is expressed by atomic percent.
【0033】以上の磁性層は、希土類金属と遷移金属の
合金を用いた場合、非常に酸化しやすいため、磁性層の
両側に保護層を設けた態様をとることが好ましい。保護
層としては、酸化Si、酸化Al、酸化Ta、酸化T
i、窒化Si、窒化Al、炭化Siなどの単体あるいは
それらの混合物が好ましく用いられる。保護層の膜厚は
50nm〜150nm程度が好ましい。基板側の保護層
を作製後、表面をプラズマエッチングすることで磁性層
の磁気異方性を向上させることができる。When an alloy of a rare earth metal and a transition metal is used for the above magnetic layer, it is very easily oxidized. Therefore, it is preferable to adopt a mode in which protective layers are provided on both sides of the magnetic layer. As the protective layer, Si oxide, Al oxide, Ta oxide, T oxide
A simple substance such as i, Si nitride, Al nitride, Si carbide or a mixture thereof is preferably used. The thickness of the protective layer is preferably about 50 nm to 150 nm. After forming the protective layer on the substrate side, the magnetic anisotropy of the magnetic layer can be improved by plasma etching the surface.
【0034】磁性層の記録層側に直接あるいは保護層を
介して、放熱層としてAl、Cu、Au、Ag等の単
体、あるいはそれを主体とした合金よりなる高熱伝導物
質を設けることは、再生時の熱分布を安定させるうえで
望ましい構成である。放熱層の膜厚は10nm〜100
nm程度が好ましい。静磁結合力をより確実に発生させ
るため、記録層の再生層とは反対の側に透磁率が記録層
よりも大きい層、例えばFe、Ni、Co、FeNi、
AlSiFe等を直接あるいは非磁性層を介して10〜
50nm程度設けても良い。こういった層の効果により
記録層の漏洩磁束がより効率的に発生し再生層と結合す
る。記録層と直接接すれば記録層の垂直磁気異方性が低
下するので非磁性層を介することが好ましい。The provision of a high thermal conductive material made of Al, Cu, Au, Ag, or the like or an alloy mainly composed of Al, Cu, Au, or the like as a heat dissipation layer directly or through a protective layer on the recording layer side of the magnetic layer is not suitable for reproduction. This is a desirable configuration for stabilizing the heat distribution at the time. The thickness of the heat radiation layer is 10 nm to 100
About nm is preferable. In order to more reliably generate the magnetostatic coupling force, a layer having a higher magnetic permeability than the recording layer, for example, Fe, Ni, Co, FeNi,
AlSiFe, etc., directly or through a non-magnetic layer
It may be provided about 50 nm. Due to the effect of these layers, the leakage magnetic flux of the recording layer is more efficiently generated and coupled to the reproducing layer. If the recording layer is in direct contact with the recording layer, the perpendicular magnetic anisotropy of the recording layer is reduced.
【0035】本発明は記録磁界依存性を悪化させること
なしに静磁結合力を強くする方法であるので、静磁結合
力だけで再生層に記録層の磁化方向を転写させる媒体以
外にも、静磁結合力が交換結合力を補助するような媒
体、例えばRAD媒体、ダブルマスクRAD媒体に用い
ることも可能である。Since the present invention is a method for increasing the magnetostatic coupling force without deteriorating the recording magnetic field dependence, other than a medium in which the magnetization direction of the recording layer is transferred to the reproducing layer only by the magnetostatic coupling force, It is also possible to use a medium in which the magnetostatic coupling force assists the exchange coupling force, for example, a RAD medium or a double mask RAD medium.
【0036】以上述べたような光磁気記録媒体を用いる
記録再生装置について述べる。記録再生装置としては、
従来から用いられている、光ディスク基板の記録面と反
対側に光ヘッドが設けられ、光ヘッドから出射した再生
光又は記録光は基板を通過して記録面に到達する、いわ
ゆる基板面入射方式と、近年提案されている、記録面側
に光ヘッドを設ける膜面入射方式とがある。後者はヘッ
ドを記録面に近づけることができ高密度記録かつ高速再
生に好ましい。A recording / reproducing apparatus using the above-described magneto-optical recording medium will be described. As a recording and playback device,
Conventionally used, an optical head is provided on the opposite side of the recording surface of the optical disk substrate, and the so-called substrate surface incidence method is used in which the reproducing light or the recording light emitted from the optical head reaches the recording surface through the substrate. There is a film surface incidence method in which an optical head is provided on the recording surface side, which has been recently proposed. The latter allows the head to be close to the recording surface, and is preferable for high-density recording and high-speed reproduction.
【0037】基板面入射方式では、光を記録面で焦点を
結ぶようにするために、光ヘッドにはアクチュエーター
によって光軸方向に制御される対物レンズが設けられて
いるため、光ヘッドとディスクとの距離は通常1mm程
度の間隔が設けられている。磁界変調記録の場合、通
常、記録面側に浮上型磁気ヘッド又は接触型磁気ヘッド
が設けられる。膜面入射方式では、1枚或いは同軸に固
定された2枚以上の光ディスクを内蔵し、各記録面に対
し浮上型或いは接触型光ヘッドを対向させて設け、基板
を通過させずに記録面側から光を照射する。磁界変調記
録に用いる浮上型磁気ヘッド又は接触型磁気ヘッドも記
録面側に設けられる。In the substrate surface incidence method, an optical head is provided with an objective lens controlled in the optical axis direction by an actuator in order to focus light on a recording surface. Is usually provided with an interval of about 1 mm. In the case of magnetic field modulation recording, a floating magnetic head or a contact magnetic head is usually provided on the recording surface side. In the film surface incidence method, one or two or more optical disks fixed coaxially are built in, and a floating type or contact type optical head is provided to face each recording surface, and the recording surface side without passing through the substrate. Irradiates light from A floating magnetic head or a contact magnetic head used for magnetic field modulation recording is also provided on the recording surface side.
【0038】従来の基板面入射方式では基板の傾きや基
板厚さのバラツキ等により光スポットの収差が増大する
ために、対物レンズの開口数を大きくすることができな
かったが、膜面入射とすることにより対物レンズの開口
数を大きくし、光スポットを小さくすることが可能とな
り、光ディスクの大容量化とハードディスクのような高
速アクセスが可能となる。膜面入射方式ではさらに、記
録時にはレーザー光により加熱しつつ記録し、再生時に
は光を用いずに磁気ヘッドのみで読み出しを行う、光磁
気記録/磁気再生方法も提案されている。本発明の光磁
気記録媒体を用いたこれら記録再生装置によれば、高密
度記録かつ高速記録再生が可能となる。In the conventional substrate surface incidence method, the numerical aperture of the objective lens could not be increased because the aberration of the light spot was increased due to the inclination of the substrate and the variation in the thickness of the substrate. By doing so, it is possible to increase the numerical aperture of the objective lens and reduce the light spot, thereby increasing the capacity of the optical disk and enabling high-speed access like a hard disk. Further, in the film surface incidence method, a magneto-optical recording / magnetic reproducing method has been proposed in which recording is performed while heating with a laser beam during recording, and reading is performed only with a magnetic head without using light during reproduction. According to these recording / reproducing apparatuses using the magneto-optical recording medium of the present invention, high-density recording and high-speed recording / reproducing can be performed.
【0039】[0039]
【実施例】以下に実施例をもって本発明をさらに詳細に
説明するが、本発明はその要旨を超えない限り以下の実
施例に限定されるものではない。EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the scope of the invention.
【0040】実施例1 反転型MSR媒体を作製するためスパッタリング装置に
0.85μmのトラックピッチの案内溝を持ったポリカ
ーボネート基板を導入し、5×10-5Pa以下の真空度
まで排気を行った。この後、保護層として基板上に反応
性スパッタリングを用い80nmの酸化Taを形成し
た。次に酸化Ta上に、Gd35(Fe80Co20)65より
なる30nmの再生層、Tb20(Fe95Co5 )80より
なる10nmの切断層、Gd22(Fe80Co20)78より
なる30nmの第1記録層、Tb26(Fe80Co20)74
よりなる80nmの第2記録層を設けた。最後にSiN
よりなる50nmの保護層を設けた。Example 1 A polycarbonate substrate having a guide groove with a track pitch of 0.85 μm was introduced into a sputtering apparatus to produce an inverted type MSR medium, and evacuated to a degree of vacuum of 5 × 10 −5 Pa or less. . Thereafter, 80 nm of Ta oxide was formed on the substrate as a protective layer by using reactive sputtering. Next, a 30 nm reproducing layer made of Gd 35 (Fe 80 Co 20 ) 65 , a 10 nm cut layer made of Tb 20 (Fe 95 Co 5 ) 80 , and Gd 22 (Fe 80 Co 20 ) 78 are formed on Ta oxide. 30 nm first recording layer, Tb 26 (Fe 80 Co 20 ) 74
A second recording layer of 80 nm was formed. Finally, SiN
A protective layer having a thickness of 50 nm was provided.
【0041】再生層、切断層、第1記録層、第2記録層
のキュリー温度を測定したところ、各々300℃以上、
150℃、300℃以上、270℃であった。再生層は
室温においては希土類金属の磁化が優勢であった。切断
層は室温において遷移金属の磁化が優勢であった。第1
記録層は室温で遷移金属磁化優勢であり、保磁力はほぼ
零であった。第2記録層は室温で希土類金属磁化優勢で
あり、保磁力は8kOeであった。記録層全体の磁化は
室温で希土類金属磁化優勢で50emu/ccであっ
た。When the Curie temperatures of the reproducing layer, the cutting layer, the first recording layer, and the second recording layer were measured, each of them was 300 ° C. or more.
The temperature was 150 ° C, 300 ° C or more, and 270 ° C. At room temperature, the magnetization of the rare earth metal was dominant in the reproducing layer. The cut layer was dominated by the transition metal magnetization at room temperature. First
The recording layer had a transition metal dominance at room temperature, and the coercive force was almost zero. The second recording layer had a predominance of rare earth metal magnetization at room temperature and a coercive force of 8 kOe. The magnetization of the entire recording layer was 50 emu / cc at room temperature due to the predominance of rare earth metal magnetization.
【0042】このようにして作製したディスクにまず光
変調記録を行った。波長680nm、開口数0.55の
評価機を用いてCN比の評価を行った。記録条件は線速
8m/s、周波数10.53MHz(マーク長0.38
μm)で記録光を変調させて記録を行った。記録前に8
mWの消去パワーで消去方向に300Oeの磁界を加え
て消去した。再生パワーPrを1.5mWとすると通常
の再生(非超解像再生)となり、CN比は28dBであ
った。Pr2.6mW以上では超解像の効果が現れた。
Prを3.0mWとするとCN比は最大となり49.5
dBが得られた。First, light modulation recording was performed on the disk thus manufactured. The CN ratio was evaluated using an evaluator having a wavelength of 680 nm and a numerical aperture of 0.55. The recording conditions were a linear velocity of 8 m / s, a frequency of 10.53 MHz (mark length 0.38
μm) to perform recording. 8 before recording
Erasing was performed by applying a magnetic field of 300 Oe in the erasing direction with an erasing power of mW. When the reproduction power Pr was 1.5 mW, normal reproduction (non-super-resolution reproduction) was performed, and the CN ratio was 28 dB. At a Pr of 2.6 mW or more, the effect of super-resolution appeared.
Assuming that Pr is 3.0 mW, the CN ratio becomes maximum and is 49.5.
dB was obtained.
【0043】記録磁界(Hw)強度を変化させながらC
NRの変化を測定していった結果を図3に示す。記録パ
ワーは最大のCN比が得られるように設定した。+は消
去磁界方向であり、−は記録磁界方向である。磁界変調
記録に用いるためには記録磁界方向に磁化が正確に向か
なければならないので、低い記録方向磁界でCN比が飽
和することと、低い消去方向磁界でCN比が下がりきる
(すなわち記録されない)ことが必要である。記録方向
磁界でCN比が最大値より1dB以内になる磁界強度を
Hw1、消去方向磁界で記録が行われなくなる磁界強度
をHw2とすると、Hw1は−50Oeであり、Hw2
は140Oeであった。While changing the recording magnetic field (Hw) strength, C
FIG. 3 shows the result of measuring the change in NR. The recording power was set so as to obtain the maximum CN ratio. + Is the direction of the erasing magnetic field, and-is the direction of the recording magnetic field. In order to be used for magnetic field modulation recording, the magnetization must be accurately directed in the direction of the recording magnetic field. Therefore, the CN ratio is saturated at a low recording direction magnetic field, and the CN ratio is completely reduced at a low erasing direction magnetic field (that is, no recording is performed). )It is necessary. Assuming that the magnetic field intensity at which the CN ratio is within 1 dB from the maximum value in the recording direction magnetic field is Hw1 and the magnetic field intensity at which recording is not performed in the erasing direction magnetic field is Hw2, Hw1 is −50 Oe, and Hw2 is Hw2.
Was 140 Oe.
【0044】次に浮上型磁気ヘッドを用いて磁界変調記
録を行った。再生光学系は光変調の場合と同じものであ
る。光変調の場合と同一線速で、光変調の記録光パルス
と同一周波数の記録磁界を加えながら、7mWの連続記
録光を照射して記録を行った。結果を図4に示す。15
0Oeの記録磁界で49.8dBのCN比が得られた。Next, magnetic field modulation recording was performed using a floating magnetic head. The reproduction optical system is the same as in the case of light modulation. Recording was performed by irradiating 7 mW continuous recording light while applying a recording magnetic field having the same frequency as the recording light pulse of light modulation at the same linear velocity as in the case of light modulation. FIG. 4 shows the results. Fifteen
With a recording magnetic field of 0 Oe, a CN ratio of 49.8 dB was obtained.
【0045】実施例2 第1記録層の組成をGd17(Fe80Co20)83、第2記
録層の組成をTb31(Fe80Co20)69とした以外は実
施例1と同様にディスクを作製した。記録層全体の磁化
は室温で遷移金属磁化優勢であり80emu/ccであ
った。このディスクを実施例1と同様に光変調記録で評
価したところ、Hw1は−120Oe、Hw2は280
Oe、最高CN比は46.4dBであった。Example 2 A disc was prepared in the same manner as in Example 1 except that the composition of the first recording layer was changed to Gd 17 (Fe 80 Co 20 ) 83 and the composition of the second recording layer was changed to Tb 31 (Fe 80 Co 20 ) 69. Was prepared. The magnetization of the entire recording layer was dominated by transition metal magnetization at room temperature, and was 80 emu / cc. When this disk was evaluated by optical modulation recording in the same manner as in Example 1, Hw1 was -120 Oe and Hw2 was 280
Oe and the highest CN ratio were 46.4 dB.
【0046】実施例3 静磁結合CAD媒体を作製するため、スパッタリング装
置に0.85μmのトラックピッチの案内溝を持ったポ
リカーボネート基板を導入し、5×10-5Pa以下の真
空度まで排気を行った。この後、保護層として基板上に
反応性スパッタリングを用い80nmの酸化Taを形成
した。次に酸化Ta上に、Gd32(Fe 80Co20)68よ
りなる30nmの再生層、Si3 N4 よりなる10nm
の切断層、Gd20(Fe80Co20)78よりなる30nm
の第1記録層、Tb28(Fe80Co20)74よりなる60
nmの第2記録層を設けた。最後にSi3 N4 よりなる
50nmの保護層を設けた。Example 3 A sputtering device was used to produce a magnetostatically coupled CAD medium.
With a guide groove with a track pitch of 0.85 μm
Introduction of a carbonate substrate, 5 × 10-FiveTrue below Pa
Evacuation was performed to the air. Then, as a protective layer on the substrate
Forming 80nm Ta oxide using reactive sputtering
did. Next, on the oxidized Ta, Gd32(Fe 80Co20)68Yo
30 nm reproduction layer, SiThreeNFour10nm consisting of
Cutting layer, Gd20(Fe80Co20)7830nm
First recording layer, Tb28(Fe80Co20)74Consisting of 60
nm second recording layer was provided. Finally SiThreeNFourConsists of
A 50 nm protective layer was provided.
【0047】再生層、第1記録層、第2記録層のキュリ
ー温度を測定したところ、各々300℃以上、300℃
以上、270℃であった。再生層は室温においては希土
類金属の磁化が優勢であった。第1記録層は室温で遷移
金属磁化優勢であり、保磁力はほぼ零であった。第2記
録層は室温で希土類金属磁化が優勢であり、保磁力は5
kOeであった。記録層全体の磁化は室温で遷移金属磁
化優勢で40emu/ccであった。The Curie temperatures of the reproducing layer, the first recording layer, and the second recording layer were measured.
As described above, the temperature was 270 ° C. At room temperature, the magnetization of the rare earth metal was dominant in the reproducing layer. In the first recording layer, the transition metal magnetization was dominant at room temperature, and the coercive force was almost zero. In the second recording layer, rare-earth metal magnetization is dominant at room temperature, and the coercive force is 5
kOe. The magnetization of the entire recording layer was 40 emu / cc due to the transition metal magnetization dominance at room temperature.
【0048】このようにして作製したディスクにまず光
変調記録を行った。波長680nm、開口数0.55の
評価機を用いてCN比の評価を行った。記録条件は線速
8m/s、周波数10.53MHz(マーク長0.38
μm)で記録光を変調させて記録を行った。記録前に8
mWの消去パワーで消去方向に300Oeの磁界を加え
て消去した。First, optical modulation recording was performed on the disk manufactured as described above. The CN ratio was evaluated using an evaluator having a wavelength of 680 nm and a numerical aperture of 0.55. The recording conditions were a linear velocity of 8 m / s, a frequency of 10.53 MHz (mark length 0.38
μm) to perform recording. 8 before recording
Erasing was performed by applying a magnetic field of 300 Oe in the erasing direction with an erasing power of mW.
【0049】再生パワーPrを1.5mWとすると通常
の再生となり、CN比は26dBであった。Pr2.4
mW以上で超解像の効果が現れた。Prを2.8mWと
するとCN比は最大となり、42.3dBが得られた。
記録磁界(Hw)強度を変化させながらCNRの変化を
測定していった。記録パワーは最大のCN比が得られる
ように設定した。Hw1は−80Oeであり、Hw2は
170Oeであった。When the reproduction power Pr was set to 1.5 mW, normal reproduction was performed, and the CN ratio was 26 dB. Pr2.4
At mW or more, the effect of super-resolution appeared. When Pr was 2.8 mW, the CN ratio became the maximum, and 42.3 dB was obtained.
The change in CNR was measured while changing the recording magnetic field (Hw) strength. The recording power was set so as to obtain the maximum CN ratio. Hw1 was -80 Oe and Hw2 was 170 Oe.
【0050】次に浮上型磁気ヘッドを用いて磁界変調記
録を行った。再生光学系は光変調の場合と同じものであ
る。光変調の場合と同一線速で、光変調の記録光パルス
と同一周波数の記録磁界を加えながら、7mWの連続記
録光を照射して記録を行った。結果を図5に示す。18
0Oeの記録磁界で43.2dBのCN比が得られた。Next, magnetic field modulation recording was performed using a floating magnetic head. The reproduction optical system is the same as in the case of light modulation. Recording was performed by irradiating 7 mW continuous recording light while applying a recording magnetic field having the same frequency as the recording light pulse of light modulation at the same linear velocity as in the case of light modulation. FIG. 5 shows the results. 18
A CN ratio of 43.2 dB was obtained with a recording magnetic field of 0 Oe.
【0051】実施例4 第1記録層と第2記録層を、Tb20(Fe80Co20)80
よりなる80nmの第1記録層、Gd30(Fe80C
o20)70よりなる30nmの第2記録層とした以外は実
施例1と同様にディスクを作製した。第1記録層、第2
記録層のキュリー温度を測定したところ、各々270
℃、300℃以上であった。第1記録層は室温で遷移金
属磁化優勢であり、保磁力は7.5kOeであった。第
2記録層は室温で希土類金属磁化が優勢であり、保磁力
はほぼ零であった。記録層全体の磁化は室温で遷移金属
磁化優勢で50emu/ccであった。このディスクを
実施例1と同様に評価を行ったところ、Hw1は−80
Oe、Hw2は250Oeであり、最高CNRは48.
8dBであった。Example 4 The first recording layer and the second recording layer were formed of Tb 20 (Fe 80 Co 20 ) 80
The first recording layer of 80 nm made of Gd 30 (Fe 80 C
o 20 ) A disc was produced in the same manner as in Example 1, except that the second recording layer was made of 70 and having a thickness of 30 nm. 1st recording layer, 2nd
When the Curie temperatures of the recording layers were measured,
℃, 300 ℃ or more. The first recording layer had a transition metal magnetization dominance at room temperature and a coercive force of 7.5 kOe. In the second recording layer, rare-earth metal magnetization was dominant at room temperature, and the coercive force was almost zero. The magnetization of the entire recording layer was 50 emu / cc due to the transition metal magnetization dominance at room temperature. When this disk was evaluated in the same manner as in Example 1, Hw1 was -80.
Oe and Hw2 are 250 Oe, and the highest CNR is 48.
It was 8 dB.
【0052】比較例1 反転型MSR媒体を作製するため、スパッタリング装置
に0.85μmのトラックピッチの案内溝を持ったポリ
カーボネート基板を導入し、5×10-5Pa以下の真空
度まで排気を行った。この後、保護層として基板上に反
応性スパッタリングを用い80nmの酸化Taを形成し
た。次に酸化Ta上に、Gd35(Fe80Co20)65より
なる30nmの再生層、Tb20(Fe95Co5 )80より
なる10nmの切断層、TbX (Fe80Co20)100-X
よりなる80nmの記録層を設けた。最後にSiNより
なる50nmの保護層を設けた。Xは20から27
(%)まで変化させた。COMPARATIVE EXAMPLE 1 In order to produce an inverted type MSR medium, a polycarbonate substrate having a guide groove having a track pitch of 0.85 μm was introduced into a sputtering apparatus, and evacuation was performed to a degree of vacuum of 5 × 10 −5 Pa or less. Was. Thereafter, 80 nm of Ta oxide was formed on the substrate as a protective layer by using reactive sputtering. Next, a 30 nm reproducing layer made of Gd 35 (Fe 80 Co 20 ) 65 , a 10 nm cut layer made of Tb 20 (Fe 95 Co 5 ) 80 , and Tb x (Fe 80 Co 20 ) 100-X are formed on the oxidized Ta.
An 80 nm recording layer was formed. Finally, a 50 nm protective layer made of SiN was provided. X is 20 to 27
(%).
【0053】再生層、切断層、記録層のキュリー温度を
測定したところ、各々300℃以上、150℃、270
℃であった。再生層は室温においては希土類金属の磁化
が優勢であった。切断層は室温において遷移金属の磁化
が優勢であった。記録層は室温でX=24(%)付近が
補償組成であった。このようにして作製したディスクを
実施例1と同様に光変調記録での評価を行った。結果を
表−1に示す。The Curie temperatures of the reproducing layer, the cut layer and the recording layer were measured.
° C. At room temperature, the magnetization of the rare earth metal was dominant in the reproducing layer. The cut layer was dominated by the transition metal magnetization at room temperature. In the recording layer, at room temperature, the compensation composition was around X = 24 (%). The disk manufactured in this manner was evaluated by light modulation recording in the same manner as in Example 1. The results are shown in Table 1.
【0054】[0054]
【表1】 [Table 1]
【0055】次に浮上型磁気ヘッドを用いて磁界変調記
録を行った。再生光学系は光変調の場合と同じものであ
る。光変調の場合と同一線速で、光変調の記録光パルス
と同一周波数の記録磁界を加えながら、7mWの連続記
録光を照射して記録を行った。しかし、低磁界で記録可
能でかつ高いCN比を得ることのできるものは無かっ
た。Next, magnetic field modulation recording was performed using a floating magnetic head. The reproduction optical system is the same as in the case of light modulation. Recording was performed by irradiating 7 mW continuous recording light while applying a recording magnetic field having the same frequency as the recording light pulse of light modulation at the same linear velocity as in the case of light modulation. However, none of them could record at a low magnetic field and obtain a high CN ratio.
【0056】[0056]
【発明の効果】本発明によれば、再生層と記録層の間に
強い静磁結合を保持したまま反磁界を低減させ、低記録
磁界での記録を可能にする媒体を提供することができ
る。特に、磁界変調記録に用いれば低記録磁界で高速記
録を行うことができる。According to the present invention, it is possible to provide a medium capable of recording at a low recording magnetic field by reducing the demagnetizing field while maintaining strong magnetostatic coupling between the reproducing layer and the recording layer. . In particular, when used for magnetic field modulation recording, high-speed recording can be performed with a low recording magnetic field.
【図1】 本発明の静磁結合超解像媒体の機構説明図FIG. 1 is an explanatory view of the mechanism of a magnetostatically coupled super-resolution medium of the present invention.
【図2】 従来の静磁結合超解像媒体の機構説明図FIG. 2 is an explanatory view of a mechanism of a conventional magnetostatically coupled super-resolution medium.
【図3】 実施例1における光変調記録での記録磁界依
存性FIG. 3 shows recording magnetic field dependence in optical modulation recording in Example 1.
【図4】 実施例1における磁界変調記録での記録磁界
依存性FIG. 4 shows recording magnetic field dependency in magnetic field modulation recording in Example 1.
【図5】 実施例3における磁界変調記録での記録磁界
依存性FIG. 5 shows recording magnetic field dependency in magnetic field modulation recording in Example 3.
【図6】 比較例1における磁界変調記録での記録磁界
依存性FIG. 6 shows recording magnetic field dependence in magnetic field modulation recording in Comparative Example 1.
1 再生層 2 切断層 3 第1記録層 4 第2記録層 5 静磁結合力 6 第1記録層の反磁界 7 第2記録層の反磁界 13 記録層 16 記録層の反磁界 REFERENCE SIGNS LIST 1 reproducing layer 2 cutting layer 3 first recording layer 4 second recording layer 5 magnetostatic coupling force 6 demagnetizing field of first recording layer 7 demagnetizing field of second recording layer 13 recording layer 16 demagnetizing field of recording layer
Claims (5)
再生層を有し、記録層には情報に応じた磁化方向が記録
され、室温以上の温度において記録層からの静磁結合力
により再生層に記録層の磁化方向が転写される光磁気記
録媒体であって、 該記録層は希土類金属と遷移金属の合金よりなり互いに
交換結合してなる複数層で構成され、かつ、少なくとも
室温で希土類金属優勢磁化を有する層と室温で遷移金属
優勢磁化を有する層とを含むことを特徴とする光磁気記
録媒体。1. A recording medium comprising at least a recording layer, a cutting layer, and a reproducing layer on a substrate, wherein a magnetization direction corresponding to information is recorded on the recording layer, and reproduction is performed by a magnetostatic coupling force from the recording layer at a temperature equal to or higher than room temperature. A magneto-optical recording medium in which the magnetization direction of a recording layer is transferred to a layer, wherein the recording layer is composed of a plurality of layers made of an alloy of a rare earth metal and a transition metal and exchange-coupled to each other, and at least at room temperature is a rare earth element. A magneto-optical recording medium comprising a layer having a metal dominant magnetization and a layer having a transition metal dominant magnetization at room temperature.
を室温で遷移金属優勢磁化を有する層とする請求項1に
記載の光磁気記録媒体。2. The magneto-optical recording medium according to claim 1, wherein a layer of the recording layer closest to the reproducing layer has a transition metal dominant magnetization at room temperature.
前記遷移金属優勢磁化を有する層より保磁力が大きい請
求項1又は2に記載の光磁気記録媒体。3. The layer having a rare earth metal dominant magnetization,
3. The magneto-optical recording medium according to claim 1, wherein the coercive force is larger than that of the layer having the transition metal dominant magnetization.
気記録媒体を用い、これに磁界変調記録方式により情報
の記録を行うことを特徴とする光磁気記録媒体の記録方
法。4. A method for recording information on a magneto-optical recording medium using the magneto-optical recording medium according to claim 1, wherein information is recorded by a magnetic field modulation recording method.
気記録媒体と浮上型または接触型磁気ヘッドとを備えて
なることを特徴とする記録再生装置。5. A recording / reproducing apparatus comprising the magneto-optical recording medium according to claim 1 and a floating or contact magnetic head.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11129856A JP2000322783A (en) | 1999-05-11 | 1999-05-11 | Magnetooptical recording medium, its recording and recording/reproducing device |
US09/565,555 US6430116B1 (en) | 1999-05-11 | 2000-05-05 | Magneto-optical storage medium having first and second recording layers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11129856A JP2000322783A (en) | 1999-05-11 | 1999-05-11 | Magnetooptical recording medium, its recording and recording/reproducing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000322783A true JP2000322783A (en) | 2000-11-24 |
Family
ID=15019966
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11129856A Pending JP2000322783A (en) | 1999-05-11 | 1999-05-11 | Magnetooptical recording medium, its recording and recording/reproducing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000322783A (en) |
-
1999
- 1999-05-11 JP JP11129856A patent/JP2000322783A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5175714A (en) | Method of magneto-optically recording/erasing information and magneto-optical information storage medium including recording and bias layers satisfying certain conditions | |
JP3492525B2 (en) | Magneto-optical recording medium | |
JP3568787B2 (en) | Magneto-optical recording medium and reproducing apparatus | |
JP3519293B2 (en) | Magneto-optical recording medium, reproducing method of magneto-optical recording medium, magneto-optical recording and reproducing apparatus | |
JP3245704B2 (en) | Magneto-optical recording medium and method of manufacturing the same | |
US6898158B2 (en) | Information recording medium and information recording and reproducing slider | |
JP3585671B2 (en) | Magneto-optical recording medium and reproducing method thereof | |
JP3626050B2 (en) | Magneto-optical recording medium and recording method thereof | |
US6430116B1 (en) | Magneto-optical storage medium having first and second recording layers | |
JPH07230637A (en) | Magneto-optical recording medium and information recording and reproducing method using this medium | |
JP3093340B2 (en) | Magneto-optical recording medium | |
JP4027797B2 (en) | Magneto-optical recording medium, reproducing method thereof and reproducing apparatus thereof | |
JP4267323B2 (en) | Magneto-optical recording medium | |
JP2001043579A (en) | Magneto-optical recording medium and reproducing method for same | |
JP2000322783A (en) | Magnetooptical recording medium, its recording and recording/reproducing device | |
JP2000339788A (en) | Magneto-optical recording medium and its reproducing method | |
JPH11238264A (en) | Magneto-optical record medium and its reproducing method | |
JP3516865B2 (en) | Magneto-optical recording medium and reproducing apparatus | |
JP2000222787A (en) | Magneto-optical recording medium | |
JP2001176140A (en) | Magneto-optical recording medium and recording and reproducing method for the same | |
JP3756052B2 (en) | Reproduction method of magneto-optical recording medium | |
JPH08227540A (en) | Magneto-optical recording medium | |
JP3559206B2 (en) | Magneto-optical recording medium | |
JP3075048B2 (en) | Magneto-optical recording medium and reproducing method thereof | |
JPH08241544A (en) | Magneto-optical medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040830 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040907 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050104 |