JP2000321556A - Method for transition of alignment state of liquid crystal and method of driving liquid crystal display device - Google Patents

Method for transition of alignment state of liquid crystal and method of driving liquid crystal display device

Info

Publication number
JP2000321556A
JP2000321556A JP11134548A JP13454899A JP2000321556A JP 2000321556 A JP2000321556 A JP 2000321556A JP 11134548 A JP11134548 A JP 11134548A JP 13454899 A JP13454899 A JP 13454899A JP 2000321556 A JP2000321556 A JP 2000321556A
Authority
JP
Japan
Prior art keywords
liquid crystal
voltage
transition
bend
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11134548A
Other languages
Japanese (ja)
Inventor
Tokuo Koma
徳夫 小間
Tatsuo Uchida
龍男 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP11134548A priority Critical patent/JP2000321556A/en
Priority to US09/568,897 priority patent/US6927825B1/en
Priority to TW089109080A priority patent/TWI224710B/en
Priority to KR10-2000-0025574A priority patent/KR100370722B1/en
Publication of JP2000321556A publication Critical patent/JP2000321556A/en
Priority to US11/103,848 priority patent/US20050174518A1/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • G02F1/1395Optically compensated birefringence [OCB]- cells or PI- cells

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

PROBLEM TO BE SOLVED: To control a liquid crystal to be in a OCB mode during an image display period and to improve the response speed by applying a transition voltage higher than the display voltage between first and second electrodes before the display voltage is applied so as to preliminarily cause bend transition in the liquid crystal. SOLUTION: The liquid crystal filled between first and second alignment films has both of splay alignment state and bend alignment state, and when a specified threshold voltage Vc is applied between the first and second electrodes, the energy levels of the splay alignment state and the bend alignment state are exchanged. Then a transition voltage Vt which is higher than the threshold voltage Vc is applied between the first and second electrodes to cause bend transition in the liquid crystal. Once the liquid crystal is changed into the bend state, it does not change again into the spray alignment as far as the voltage applied is decreased enough lower than the threshold voltage Vc. Thereby, in an LCD using an OCB mode, the transition voltage Vt is applied for a transition period T when the power supply is turned on, and then the display voltage in a waveform according to video signals is applied in the image display period.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液晶表示装置(Li
quid Crystal Display;LCD)に関し、特に液晶駆動
速度の速いOCB(Optical Controlled Birefringenc
e)モードを用いたLCDに関する。
The present invention relates to a liquid crystal display (Li)
Regarding quid Crystal Display (LCD), especially OCB (Optical Controlled Birefringenc) with high liquid crystal driving speed
e) LCD using mode.

【0002】[0002]

【従来の技術】LCDの動画再生能力の向上や、フィー
ルドシーケンシャルLCD(Field Sequential LCD;F
S−LCD)の実用化のために、より応答速度の早いL
CDが求められている。
2. Description of the Related Art An improvement in the moving picture reproduction capability of an LCD and a field sequential LCD (Field Sequential LCD; F)
For practical use of S-LCD), L has a faster response speed.
CD is required.

【0003】LCDの応答速度とは、液晶に駆動電圧を
印加してから液晶が駆動状態に変化するのに要する時間
である。液晶は電圧が印加されると所定の方向に配向さ
れて駆動状態となるが、配向方向に液晶分子がそろうま
でには一定の時間が必要であり、この時間が応答速度で
ある。応答速度が遅いと、例えば動画を表示すると、前
の画面が残るので、特に動画表示特性の低いLCDとな
る。応答速度がより速い液晶を用いたLCDであれば、
動画をよりスムーズに表示することができる。
The response speed of an LCD is the time required for the liquid crystal to change to a driving state after a driving voltage is applied to the liquid crystal. When a voltage is applied to the liquid crystal, the liquid crystal is oriented in a predetermined direction and is driven. However, a certain time is required until the liquid crystal molecules are aligned in the orientation direction, and this time is the response speed. If the response speed is low, for example, when a moving image is displayed, the previous screen remains, so that the LCD has particularly low moving image display characteristics. If the LCD uses a liquid crystal with a faster response speed,
Videos can be displayed more smoothly.

【0004】また、FS−LCDとは、3原色の光を素
速く切り替えてそれぞれの色の画像をひとつの画素に交
互に表示することによってカラーの表示を行う方式であ
る。FS−LCDに用いる液晶は、その動作原理からカ
ラーフィルタ方式のLCDに用いられる液晶に比較して
著しく速い応答速度が求められており、実用化が待たれ
ている。
Further, the FS-LCD is a system for displaying a color by rapidly switching light of three primary colors and alternately displaying an image of each color on one pixel. The liquid crystal used for the FS-LCD is required to have a remarkably fast response speed as compared with the liquid crystal used for the color filter type LCD from the principle of operation, and is expected to be put to practical use.

【0005】ところで、応答速度の早い液晶としては、
OCBモードの液晶が以前から知られている。OCBモ
ードはベンド配向となる液晶を2軸の光学補償層と共に
用いるLCDの方式である。図7は対向するガラス等よ
りなる透明基板51、52上に、それぞれ第1、第2の
電極53、54、配向膜55、56を形成し、この間に
液晶層57を封入したLCDを示している。液晶層57
はネマティック液晶で、配向膜55、56は、互いにほ
ぼ平行方向にラビングされ、互いに向かい合うようにプ
レティルト角がつけられている。これに図示しない光学
補償層が設置され、可視化される。図7(a)は電極5
3、54に電圧を印加していない状態である。液晶分子
57aは、ラビング方向(紙面平行方向)に配向され、
配向膜55、56近傍の液晶分子57aはプレティルト
角の方向を向いている。図7(b)は電極53に例えば
5Vの駆動電圧を印加した状態を示している。印加され
た駆動電圧によって液晶が立っているが、液晶層57の
中央では液晶分子が倒れている。図7(b)の状態の配
向をスプレイ配向と呼ぶ。図7(c)は液晶57aの配
向状態が変化した状態を示している。図7(c)の状態
の配向をベンド配向と呼ぶ。ベンド配向では、スプレイ
配向と異なり、液晶層57中央の液晶分子も立ってい
る。スプレイ配向とベンド配向は互いに可逆の相転移
で、スプレイ配向がベンド配向に転移することをベンド
転移と呼ぶ。
By the way, as a liquid crystal having a fast response speed,
OCB mode liquid crystals have been known for some time. The OCB mode is an LCD system that uses a liquid crystal that bends in alignment with a biaxial optical compensation layer. FIG. 7 shows an LCD in which first and second electrodes 53 and 54 and alignment films 55 and 56 are formed on transparent substrates 51 and 52 made of glass or the like facing each other, and a liquid crystal layer 57 is sealed therebetween. I have. Liquid crystal layer 57
Is a nematic liquid crystal, and the alignment films 55 and 56 are rubbed in a direction substantially parallel to each other, and have a pretilt angle so as to face each other. An optical compensation layer (not shown) is provided thereon and visualized. FIG. 7A shows the electrode 5
3 and 54 are in a state where no voltage is applied. The liquid crystal molecules 57a are oriented in the rubbing direction (parallel to the paper),
The liquid crystal molecules 57a near the alignment films 55 and 56 are oriented in the direction of the pretilt angle. FIG. 7B shows a state where a driving voltage of, for example, 5 V is applied to the electrode 53. The liquid crystal rises due to the applied drive voltage, but the liquid crystal molecules fall at the center of the liquid crystal layer 57. The orientation in the state shown in FIG. 7B is called a splay orientation. FIG. 7C shows a state in which the alignment state of the liquid crystal 57a has changed. The orientation in the state shown in FIG. 7C is called bend orientation. In the bend alignment, unlike the splay alignment, the liquid crystal molecules at the center of the liquid crystal layer 57 also stand. The splay orientation and the bend orientation are mutually reversible phase transitions, and the transition from the splay orientation to the bend orientation is called a bend transition.

【0006】ベンド配向を用いるLCDのひとつにOC
Bモードがある。これはベンド配向の液晶と2軸の光学
補償層を用いたものである。ベンド配向は従来のTNや
STN方式のLCDに用いられる液晶モードに比較して
応答速度が早いので、OCBモードを用いたLCDは動
画表示や、FS−LCDに適している。
One of LCDs using bend alignment is OC.
There is B mode. This uses a bend-aligned liquid crystal and a biaxial optical compensation layer. Since the bend alignment has a higher response speed than the liquid crystal mode used for the conventional TN or STN type LCD, the LCD using the OCB mode is suitable for moving image display and FS-LCD.

【0007】[0007]

【発明が解決しようとする課題】OCBモードを用いて
LCDを制作しようとする場合、ベンド転移以前のスプ
レイ配向と、ベンド配向とでは、応答速度が格段に変化
するため、LCDのセル内の液晶を確実にベンド転移さ
せる必要がある。
When an LCD is to be manufactured using the OCB mode, the response speed of the splay alignment before the bend transition and that of the bend alignment change drastically. Must be surely transferred.

【0008】しかしながらベンド転移の物理的メカニズ
ムに関しては未だ不明な点も多く、解明すべき課題はま
だ多いのが現状である。
However, there are still many unclear points regarding the physical mechanism of the bend transition, and there are still many problems to be solved.

【0009】そこで本発明は、OCBモードを用いたL
CDにおいて、液晶を確実にベンド転移させ、応答速度
の高いLCDを得ることを目的とする。
Therefore, the present invention provides an L
An object of the present invention is to obtain a LCD having a high response speed by surely causing a liquid crystal to bend-transfer in a CD.

【0010】[0010]

【課題を解決するための手段】本発明は、上記目的を達
成するためになされたものであり、対向して形成された
第1及び第2の電極と、第1及び第2の電極を覆って形
成された互いに実質同じ方向にラビングされてなる第1
及び第2の配向膜と、第1及び第2の配向膜間に封入さ
れ、スプレイ配向の状態とベンド配向の状態を有し、第
1及び第2の電極間に所定の閾値電圧を印加したときス
プレイ配向とベンド配向の状態エネルギーの大小が入れ
替わる液晶に、第1及び第2の電極間に、閾値電圧より
も高い転移電圧を印加することによって、液晶をベンド
転移させる液晶の配向状態転移方法である。
SUMMARY OF THE INVENTION The present invention has been made to achieve the above object, and has first and second electrodes formed opposite to each other, and covers the first and second electrodes. Rubbed in substantially the same direction as each other
And a second alignment film, which is sealed between the first and second alignment films, has a splay alignment state and a bend alignment state, and applies a predetermined threshold voltage between the first and second electrodes. When a transition voltage higher than a threshold voltage is applied between the first and second electrodes to a liquid crystal in which the magnitudes of the state energies of the splay alignment and the bend alignment are switched, a liquid crystal alignment state transition method in which the liquid crystal bends. It is.

【0011】また、対向する第1及び第2の基板と、第
1及び第2の基板上にそれぞれ対向して形成された第1
及び第2の電極と、第1及び第2の電極を覆って形成さ
れた互いに実質同じ方向にラビングされてなる第1及び
第2の配向膜と、第1及び第2の基板間に封入されし、
第1及び第2の電極間に所定の閾値電圧を印加したとき
スプレイ配向とベンド配向の状態エネルギーの大小が入
れ替わる液晶とを有し、第1及び第2の電極間に表示電
圧を印加して、液晶をベンド配向させて表示を行う液晶
表示装置の駆動方法において、第1及び第2の電極間
に、閾値電圧よりも高い転移電圧を印加することによっ
て、液晶をベンド転移させる液晶表示装置の駆動方法で
ある。
The first and second substrates facing each other and the first and second substrates formed opposite each other on the first and second substrates, respectively.
And a second electrode, first and second alignment films formed over the first and second electrodes and rubbed in substantially the same direction as each other, and sealed between the first and second substrates. And
A liquid crystal whose state energy of the splay alignment and the bend alignment changes when a predetermined threshold voltage is applied between the first and second electrodes; and a display voltage is applied between the first and second electrodes. In a method of driving a liquid crystal display device that performs display by bend-aligning liquid crystal, a liquid crystal display device that bends liquid crystal by applying a transition voltage higher than a threshold voltage between the first and second electrodes. It is a driving method.

【0012】また、対向する第1及び第2の基板と、第
1及び第2の基板上にそれぞれ対向して形成された第1
及び第2の電極と、第1及び第2の電極を覆って形成さ
れた互いに実質同じ方向にラビングされてなる第1及び
第2の配向膜と、第1及び第2の基板間に封入され、ス
プレイ配向の状態とベンド配向の状態を有する液晶とを
有し、第1及び第2の電極間に表示電圧を印加して、液
晶をベンド配向させて表示を行う液晶表示装置の駆動方
法において、表示電圧を印加する前に、第1及び第2の
電極間に表示電圧よりも高い転移電圧を印加する液晶表
示装置の駆動方法である。
Further, the first and second substrates facing each other and the first and second substrates formed on the first and second substrates respectively facing each other.
And a second electrode, first and second alignment films formed over the first and second electrodes and rubbed in substantially the same direction as each other, and sealed between the first and second substrates. A liquid crystal display having a splay alignment state and a bend alignment state, and applying a display voltage between the first and second electrodes to cause the liquid crystal to bend and display. And a method for driving a liquid crystal display device in which a transition voltage higher than the display voltage is applied between the first and second electrodes before the display voltage is applied.

【0013】そして、転移電圧は、転移期間継続して印
加され続け、この転移期間は、転移電圧値に応じて決定
される。
The transition voltage is continuously applied during the transition period, and the transition period is determined according to the transition voltage value.

【0014】また、アクティブマトリクス型LCDにお
いては、転移電圧は、共通電極に印加される。
In an active matrix type LCD, a transition voltage is applied to a common electrode.

【0015】[0015]

【発明の実施の形態】図1は、本発明の転移方法の基本
的な原理を説明するための液晶への印加電圧に対するギ
ブスのエネルギーの変化を示す図である。実線がスプレ
イ配向、一点鎖線がベンド配向のギブスのエネルギーを
それぞれ示している。また、図2は、印加電圧が閾値電
圧Vcよりも高い電圧V1である時のスプレイ配向、ベン
ド配向のギブスのエネルギーを示している。
FIG. 1 is a diagram showing a change in Gibbs energy with respect to a voltage applied to a liquid crystal for explaining a basic principle of a transition method according to the present invention. The solid line indicates the Gibbs energy in the splay orientation and the dashed line indicates the Gibbs energy in the bend orientation. FIG. 2 shows the Gibbs energy of the splay alignment and the bend alignment when the applied voltage is a voltage V1 higher than the threshold voltage Vc.

【0016】ギブスのエネルギーは、液晶の配向状態に
よって変化する状態エネルギーであって、状態エネルギ
ーの低い配向状態がより安定な状態であると言える。ス
プレイ配向、ベンド配向共に印加電圧の増加と共にエネ
ルギーが低下していく。これによって、電圧無印加時に
はプレチルト方向で安定していた液晶分子が駆動され、
スプレイ、ベンドいずれかの配向をする。ギブスのエネ
ルギーは、印加電圧が閾値電圧Vcよりも低いときは、ス
プレイ配向の方が低く、Vcを越えるとベンド配向の方が
低くなる。物質は状態エネルギーの低い方で安定する性
質があるので、印加電圧が閾値電圧Vcより低いうちは、
スプレイ配向の方が安定であり、液晶分子はスプレイ配
向となる。即ち、スプレイ配向が液晶の初期配向状態で
ある。印加電圧が閾値電圧Vcよりも高いときはベンド配
向の方がより安定である。
The Gibbs energy is a state energy that changes depending on the alignment state of the liquid crystal, and it can be said that an alignment state having a low state energy is a more stable state. In both the splay alignment and the bend alignment, the energy decreases as the applied voltage increases. This drives the liquid crystal molecules that were stable in the pretilt direction when no voltage was applied,
Either spray or bend orientation. The Gibbs energy is lower in the splay alignment when the applied voltage is lower than the threshold voltage Vc, and lower in the bend alignment when the applied voltage exceeds Vc. Since the substance has the property of being stable at the lower state energy, while the applied voltage is lower than the threshold voltage Vc,
The splay alignment is more stable, and the liquid crystal molecules are in the splay alignment. That is, the splay alignment is the initial alignment state of the liquid crystal. When the applied voltage is higher than the threshold voltage Vc, the bend orientation is more stable.

【0017】OCBモードはベンド配向の液晶を用いる
が、印加電圧を単に閾値電圧Vcよりも高い電圧、例えば
V1に増加させてもベンド配向への転移(ベンド転移)
が起こる確率は低い。これは、図2に示すように、スプ
レイ配向とベンド配向の間にはポテンシャル障壁PBが
存在するためであると考えられる。つまり、印加電圧V
1では、デルタEのポテンシャル障壁PBを越えるには
充分な電圧でないため、ベンド転移できないのである。
そして、ポテンシャル障壁PBを越えて、ひとたびベン
ド転移した後の液晶は、印加電圧が閾値電圧Vcよりも高
い間、ギブスのエネルギーがより低いベンド配向を維持
する。
In the OCB mode, a liquid crystal having a bend alignment is used. Even when the applied voltage is simply increased to a voltage higher than the threshold voltage Vc, for example, V1, the transition to the bend alignment (bend transition) is performed.
Is less likely to occur. This is considered to be because a potential barrier PB exists between the splay alignment and the bend alignment as shown in FIG. That is, the applied voltage V
In the case of 1, the bend transition cannot be performed because the voltage is not sufficient to exceed the potential barrier PB of the delta E.
Then, once the liquid crystal undergoes the bend transition beyond the potential barrier PB, the liquid crystal maintains the bend alignment in which the Gibbs energy is lower while the applied voltage is higher than the threshold voltage Vc.

【0018】さて、図1を見ると、V1よりも印加電圧
を更に上げると、ベンド配向とスプレイ配向のギブスの
エネルギーの差はますます拡大する。そこで、本発明
は、LCDの表示を行う前に、閾値電圧Vcよりも充分に
高い転移電圧をあらかじめ印加して、セル内の液晶をま
ずベンド転移させる。
Referring to FIG. 1, when the applied voltage is further increased from V1, the difference between the Gibbs energies in the bend alignment and the splay alignment is further increased. Therefore, the present invention applies a transition voltage sufficiently higher than the threshold voltage Vc in advance before performing display on the LCD, and first causes the liquid crystal in the cell to bend.

【0019】まず、本実施形態を適用するLCDの構造
は、図7に示した従来のLCDと同様である。即ち、対
向する透明基板51、52上に、それぞれ第1、第2の
電極53、54、配向膜55、56を形成し、この間に
液晶層57が封入されている。図3は、第1の電極53
と第2の電極54の間に一定の電圧を印加し続け、電極
間の液晶がベンド転移するまでの時間を測定した実測値
を示すグラフである。例えば電極53、54間に10V
の電圧を印加し続けると、約20秒で電極間の液晶がベ
ンド転移した。そして、印加電圧を上昇させるとベンド
転移に必要な時間は急激に短縮され、18Vを印加すれ
ば約2秒でベンド転移した。このように、閾値電圧Vcよ
りも充分高い電圧(本明細書においては、これを転移電
圧と呼ぶ)を印加することによって、液晶をベンド転移
させ、OCBモードで動作させることができる。
First, the structure of the LCD to which this embodiment is applied is the same as that of the conventional LCD shown in FIG. That is, the first and second electrodes 53 and 54 and the alignment films 55 and 56 are formed on the opposing transparent substrates 51 and 52, respectively, and the liquid crystal layer 57 is sealed therebetween. FIG. 3 shows the first electrode 53.
FIG. 10 is a graph showing actual measurement values obtained by continuously applying a constant voltage between the first electrode and the second electrode 54 and measuring the time until liquid crystal between the electrodes undergoes a bend transition. For example, 10 V between the electrodes 53 and 54
, The bend transition of the liquid crystal between the electrodes took about 20 seconds. When the applied voltage was increased, the time required for the bend transition was sharply shortened. When 18 V was applied, the bend transition occurred in about 2 seconds. As described above, by applying a voltage sufficiently higher than the threshold voltage Vc (this is referred to as a transition voltage in this specification), the liquid crystal can bend-transfer and operate in the OCB mode.

【0020】これは、印加電圧を上昇させることによっ
て、ベンド配向、スプレイ配向のエネルギー差が拡大す
るとともに、ポテンシャル障壁PBを越えるだけのエネ
ルギーを有する液晶分子が増加するためであると考えら
れる。
It is considered that this is because, by increasing the applied voltage, the energy difference between the bend alignment and the splay alignment is increased, and the number of liquid crystal molecules having energy exceeding the potential barrier PB is increased.

【0021】そして、一度ベンド転移した液晶は、印加
電圧が閾値電圧Vcよりも充分低くならなければ、再び転
移してスプレイ配向になることはない。これは、図2か
ら明らかなように、スプレイ配向に向かう時にもポテン
シャル障壁PBが存在するためである。従って、ひとた
びベンド転移した液晶は、閾値電圧Vcを大きく下回らな
い範囲の表示電圧を印加して画面表示を行っている限
り、ベンド配向を維持し、OCBモードで動作させるこ
とができるのである。なお、我々の実験によれば、一度
ベンド配向させたLCDは印加電圧を0Vとした後も数
時間程度はOCBモードが持続することを確認できた。
The liquid crystal that has once bend-transited does not transition again to the splay alignment unless the applied voltage becomes sufficiently lower than the threshold voltage Vc. This is because, as is clear from FIG. 2, the potential barrier PB exists even in the splay orientation. Therefore, the liquid crystal that has undergone the bend transition can be operated in the OCB mode while maintaining the bend alignment as long as the screen display is performed by applying a display voltage in a range not significantly lower than the threshold voltage Vc. In addition, according to our experiment, it was confirmed that the OCB mode is maintained for about several hours even after the applied voltage is set to 0 V in the LCD in which the bend alignment is performed once.

【0022】つまり、ベンド転移させるための転移電圧
は、例えばLCDの電源投入時などに一度印加して液晶
をベンド転移させておけば、表示電圧が印加されている
(即ち画面表示を行っている)間は、ベンド配向が維持
され続ける。そこで、OCBモードを用いたLCDにお
いては、図4に示すように、電源投入時(time=0)に、
まず転移電圧Vtを転移期間Tの間印加し、その後、画面
表示期間には、従来のLCDと同様にして、映像信号に
従う波形の表示電圧を印加して画面表示を行うようにす
る。転移電圧Vtと転移期間Tの値は例えば図3を参照し
て決定すればよい。
That is, a transition voltage for bend transition is applied once, for example, when the power of the LCD is turned on, and if the liquid crystal is bend-transferred, the display voltage is applied (that is, screen display is performed). During the period, the bend orientation is maintained. Therefore, in the LCD using the OCB mode, as shown in FIG. 4, when the power is turned on (time = 0),
First, a transition voltage Vt is applied during a transition period T, and thereafter, during a screen display period, a screen display is performed by applying a display voltage having a waveform according to a video signal in the same manner as in a conventional LCD. The values of the transition voltage Vt and the transition period T may be determined, for example, with reference to FIG.

【0023】液晶を確実にベンド転移させるためには、
転移電圧Vtと転移期間Tを図3にプロットし、その点
が、図3に示した実線よりも上の領域に来るように両者
の値を決定する。ただ、転移期間Tが長すぎると、画面
の表示が開始されるまでの待ち時間が長くなるし、この
間は印加電圧が高いので消費電力も増大してしまう。ま
た、転移電圧Vcが高いと、消費電力が増大し、容量の大
きな電源が必要になる。従って、実線近傍で転移電圧Vt
と転移期間Tを設定するのがよい。例えば転移電圧Vtを
15Vに設定すれば、転移期間は5秒で済む。また、例
えばパソコンのモニタとして用いる場合、OS(オペレ
ーティングシステム)の起動中は画面を見る必要性は低
いので、転移期間を例えば15秒と長く確保し、転移電
圧を11Vと低めに設定することもできる。なお、図3
で、実線よりも下の領域に来るような転移電圧Vcと転位
期間Tであっても、実線近傍の領域であって、実線より
も大幅に下の領域でなければ、高い確率でベンド転移す
るので、実施可能である。
To ensure that the liquid crystal undergoes a bend transition,
The transition voltage Vt and the transition period T are plotted in FIG. 3, and the values of both are determined so that the point is located above the solid line shown in FIG. 3. However, if the transition period T is too long, the waiting time until the display of the screen is started becomes long, and during this period, the applied voltage is high, so that the power consumption also increases. In addition, when the transition voltage Vc is high, power consumption increases, and a power supply having a large capacity is required. Therefore, the transition voltage Vt near the solid line
And it is good to set the transition period T. For example, if the transition voltage Vt is set to 15 V, the transition period is only 5 seconds. Further, for example, when used as a monitor of a personal computer, it is not necessary to look at the screen while the OS (Operating System) is running. Therefore, it is possible to secure a long transition period, for example, 15 seconds, and set the transition voltage as low as 11 V. it can. Note that FIG.
Even if the transition voltage Vc and the transposition period T are located in a region below the solid line, the bend transition occurs with a high probability if the region is near the solid line and is not significantly below the solid line. It is feasible.

【0024】印加電圧を更に大きくすれば、更に速くベ
ンド転移すると予想されるが、一般的にLCDは微細構
造であり、第1の電極53と第2の電極54との耐圧を
越えるような電圧は印加できない。更に、高い電圧を印
加するためには、相応の電源を備える必要があり、例え
ば携帯用端末のモニタとしてLCDを用いる場合は、機
器の大型化につながってしまう。従って、20V以上の
電圧をかけることは、現実的ではなく、転移時間は少な
くとも1秒は確保する必要がある。
If the applied voltage is further increased, it is expected that the bend transition will occur more quickly. However, in general, the LCD has a fine structure and a voltage exceeding the withstand voltage between the first electrode 53 and the second electrode 54. Cannot be applied. Furthermore, in order to apply a high voltage, it is necessary to provide an appropriate power supply. For example, when an LCD is used as a monitor of a portable terminal, the size of the device is increased. Therefore, it is not practical to apply a voltage of 20 V or more, and it is necessary to secure a transition time of at least 1 second.

【0025】図5はアクティブマトリクス型のLCDを
示す平面図である。アクティブマトリクス型LCDは、
各画素毎に画素電極11が形成され、各画素電極11
は、薄膜トランジスタ12を介してデータ線13に接続
されている。それぞれの薄膜トランジスタ12のゲート
電極はデータ線13とは絶縁されて形成されたゲート線
14に接続されている。また、図示しない補助容量電極
等も形成されている。以上の構造はいずれも第1の基板
に形成されている。そして、以上の構造を覆って、共通
電極15が第2の基板に形成されている。
FIG. 5 is a plan view showing an active matrix type LCD. Active matrix LCD
A pixel electrode 11 is formed for each pixel.
Are connected to the data line 13 via the thin film transistor 12. The gate electrode of each thin film transistor 12 is connected to a gate line 14 formed insulated from the data line 13. Further, auxiliary capacitance electrodes and the like (not shown) are also formed. All of the above structures are formed on the first substrate. The common electrode 15 is formed on the second substrate so as to cover the above structure.

【0026】転移電圧は、第1の電極即ち画素電極11
と、第2の電極即ち共通電極15との間に印加される
が、通常は一方を接地し、もう一方の電位を上昇もしく
は低下させることによって転移電圧を印加する。さて、
図1に示したようにギブスのエネルギーは印加電圧が反
転電圧Vcよりも低いと、スプレイ配向状態の方が低いた
め、電圧を印加しない領域は、ベンド転移しにくい。そ
のため、共通電極15を接地し、第1の基板側の画素電
極11のみに転移電圧を印加すると、画素電極11上の
領域はベンド転移させることができるが、画素電極11
同士の間の領域がベンド転移しない場合がある。よっ
て、第1の基板側に転移電圧を印加する場合は、画素電
極11のみでなく、薄膜トランジスタ12、データ線1
3、ゲート線14、補助容量電極等、第1の基板に形成
される全ての電極に転移電圧を印加する必要がある。も
ちろんこれは不可能なことではないが、転移電圧を印加
するための配線が複雑になり、ゲート電極に20Vとい
うゲート電圧としては高い電圧が印加されることになる
ので、薄膜トランジスタ12が絶縁破壊されるおそれが
生じる。そこで、アクティブマトリクス型LCDに転移
電圧を印加する場合、第1の基板に形成されている各電
極を接地し、転移電圧は共通電極15に印加するのがよ
い。共通電極15は、第1の基板側の電極を覆って形成
されているので、共通電極15の電位を変化させれば、
液晶の全ての領域に転移電圧を印加することができる。
この時、第1の基板は通常接地されているので、第1の
基板と画素電極11の電位差よりも第1の基板と共通電
極15の電位差の方が大きくなる。
The transition voltage is applied to the first electrode, ie, the pixel electrode 11.
And the second electrode, that is, the common electrode 15, and usually, one of them is grounded, and the other is raised or lowered to apply the transition voltage. Now,
As shown in FIG. 1, when the applied voltage is lower than the reversal voltage Vc, the energy of Gibbs is lower in the splay alignment state, so that the bend transition hardly occurs in the region where no voltage is applied. Therefore, when the common electrode 15 is grounded and a transition voltage is applied only to the pixel electrode 11 on the first substrate side, the region on the pixel electrode 11 can bend transition.
In some cases, bend transition does not occur in a region between the two. Therefore, when a transition voltage is applied to the first substrate side, not only the pixel electrode 11 but also the thin film transistor 12 and the data line 1
3, it is necessary to apply a transition voltage to all electrodes formed on the first substrate, such as the gate line 14, the auxiliary capacitance electrode, and the like. Of course, this is not impossible, but the wiring for applying the transition voltage becomes complicated, and a high voltage is applied to the gate electrode as a gate voltage of 20 V. May occur. Therefore, when applying a transition voltage to the active matrix type LCD, it is preferable that each electrode formed on the first substrate is grounded and the transition voltage is applied to the common electrode 15. Since the common electrode 15 is formed to cover the electrode on the first substrate side, if the potential of the common electrode 15 is changed,
A transition voltage can be applied to all regions of the liquid crystal.
At this time, since the first substrate is normally grounded, the potential difference between the first substrate and the common electrode 15 is larger than the potential difference between the first substrate and the pixel electrode 11.

【0027】図6に示した単純マトリクス型のLCDで
あれば、第1の電極21と第2の電極22は等価である
ので、いずれの電極に転移電圧を印加してもよい。ま
た、第1及び第2の電極21、22に逆極性の電圧を印
加し、合わせて転移電圧としてもよい。
In the simple matrix type LCD shown in FIG. 6, since the first electrode 21 and the second electrode 22 are equivalent, a transition voltage may be applied to any of the electrodes. Alternatively, voltages of opposite polarities may be applied to the first and second electrodes 21 and 22 so that the combined voltage may be used as a transition voltage.

【0028】本明細書において液晶表示装置もしくはL
CDとは、単純マトリクス、アクティブマトリクス、透
過型、反射型、その他いかなる方式の液晶表示装置であ
っても同様に実施することができる。
In this specification, a liquid crystal display device or L
The CD can be implemented in a simple matrix, an active matrix, a transmissive type, a reflective type, or any other type of liquid crystal display device.

【0029】[0029]

【発明の効果】上述したように、本発明によれば、OC
Bモードを有する液晶を用いたLCDで、表示電圧を印
加する前に、第1及び第2の電極間に表示電圧よりも高
い転移電圧を印加するので、液晶をあらかじめベンド転
移させておくことができ、画面表示期間においては、液
晶をOCBモードとすることができ、応答速度が速い。
As described above, according to the present invention, the OC
In an LCD using a liquid crystal having the B mode, a transition voltage higher than the display voltage is applied between the first and second electrodes before the display voltage is applied. In the screen display period, the liquid crystal can be in the OCB mode, and the response speed is high.

【0030】そして、転移電圧は、転移期間継続して印
加され続け、この転移期間は、転移電圧値に応じて決定
されるので、確実にベンド転移させることができる。
The transition voltage is continuously applied during the transition period, and the transition period is determined according to the transition voltage value, so that the bend transition can be reliably performed.

【0031】また、アクティブマトリクス型LCDにお
いては、転移電圧は、共通電極に印加されるので、転移
電圧を印加するための配線が簡単である。
In the active matrix type LCD, since the transition voltage is applied to the common electrode, the wiring for applying the transition voltage is simple.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ベンド配向とスプレイ配向のギブスのエネルギ
ーを示す図である。
FIG. 1 is a diagram showing Gibbs energies of bend alignment and splay alignment.

【図2】ベンド配向とスプレイ配向の間のポテンシャル
障壁を示す図である。
FIG. 2 is a diagram showing a potential barrier between bend alignment and splay alignment.

【図3】転移電圧と転位時間の関係を示すグラフであ
る。
FIG. 3 is a graph showing a relationship between a transition voltage and a dislocation time.

【図4】本発明の実施形態の電極間電圧を示す図であ
る。
FIG. 4 is a diagram showing a voltage between electrodes according to the embodiment of the present invention.

【図5】アクティブマトリックス型LCDを示す平面図
である。
FIG. 5 is a plan view showing an active matrix type LCD.

【図6】単純マトリックス型LCDを示す平面図であ
る。
FIG. 6 is a plan view showing a simple matrix type LCD.

【図7】ベンド配向とスプレイ配向を説明するための断
面図である。
FIG. 7 is a cross-sectional view for explaining bend alignment and splay alignment.

【符号の説明】[Explanation of symbols]

51,52:透明基板、 53,54:電極、 55,
56:配向膜 57:液晶
51, 52: transparent substrate, 53, 54: electrode, 55,
56: alignment film 57: liquid crystal

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H088 JA14 KA30 MA10 2H093 NA07 NA16 NA65 NB22 NC21 ND32 ND60 NF14 5C006 AA01 AF67 BB16 BC03 BC12 FA11 5C080 AA10 BB05 DD08 FF11 GG08 JJ04 JJ05 JJ06  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2H088 JA14 KA30 MA10 2H093 NA07 NA16 NA65 NB22 NC21 ND32 ND60 NF14 5C006 AA01 AF67 BB16 BC03 BC12 FA11 5C080 AA10 BB05 DD08 FF11 GG08 JJ04 JJ05 JJ06

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】互いに対向して配置された第1及び第2の
電極をそれぞれ覆って形成された、互いに実質同じ方向
にラビングされてなる第1及び第2の配向膜間に封入さ
れ、スプレイ配向の状態とベンド配向の状態とを有し、
前記第1及び第2の電極間に印加する電圧を変化させる
と、所定の閾値電圧を境にしてスプレイ配向とベンド配
向の状態エネルギーの大小が入れ替わる液晶に、前記第
1及び第2の電極間に、前記閾値電圧よりも高い転移電
圧を印加することによって、液晶をベンド転移させるこ
とを特徴とする液晶の配向状態転移方法。
1. A spraying method comprising the steps of: enclosing a first alignment film and a second alignment film, which are formed so as to cover first and second electrodes disposed opposite to each other and are rubbed in substantially the same direction as each other; Having an orientation state and a bend orientation state,
When the voltage applied between the first and second electrodes is changed, the liquid crystal in which the state energy of the splay alignment and the bend alignment changes at a predetermined threshold voltage is changed. And applying a transition voltage higher than the threshold voltage to bend transition the liquid crystal.
【請求項2】 互いに対向する第1及び第2の基板と、
前記第1もしくは第2の基板上に互いに対向して形成さ
れた第1及び第2の電極と、前記第1及び第2の電極を
覆って形成され、互いに実質同じ方向にラビングされて
なる第1及び第2の配向膜と、前記第1及び第2の基板
間に封入され、スプレイ配向の状態とベンド配向の状態
とを有し、前記第1及び第2の電極間に印加する電圧を
変化させると、所定の閾値電圧を境にスプレイ配向とベ
ンド配向の状態エネルギーの大小が入れ替わる液晶とを
有し、前記第1及び第2の電極間に表示電圧を印加し
て、前記液晶をベンド配向させて表示を行う液晶表示装
置の駆動方法において、前記第1及び第2の電極間に、
前記閾値電圧よりも高い転移電圧を印加することによっ
て、液晶をベンド転移させることを特徴とする液晶表示
装置の駆動方法。
2. A first and second substrate facing each other,
A first and second electrode formed on the first or second substrate to face each other, and a second electrode formed to cover the first and second electrodes and rubbed in substantially the same direction as each other. A first alignment film, a first alignment film, and a splay alignment state and a bend alignment state, which are sealed between the first and second substrates, and apply a voltage applied between the first and second electrodes. When changed, the liquid crystal has a liquid crystal whose magnitude of the state energy of the splay alignment and the bend alignment changes at a predetermined threshold voltage, and applies a display voltage between the first and second electrodes to bend the liquid crystal. In a method for driving a liquid crystal display device which performs display by aligning, a liquid crystal display device includes:
A method for driving a liquid crystal display device, wherein bend transition of liquid crystal is performed by applying a transition voltage higher than the threshold voltage.
【請求項3】 対向する第1及び第2の基板と、前記第
1もしくは第2の基板上に互いに対向して形成された第
1及び第2の電極と、前記第1及び第2の電極を覆って
形成され、互いに実質同じ方向にラビングされてなる第
1及び第2の配向膜と、前記第1及び第2の基板間に封
入され、ベンド配向の状態とスプレイ配向の状態とを有
する液晶とを有し、前記第1及び第2の電極間に表示電
圧を印加して、前記液晶をベンド配向させて表示を行う
液晶表示装置の駆動方法において、前記表示電圧を印加
する前に、前記第1及び第2の電極間に該表示電圧より
も高い転移電圧を印加することを特徴とする液晶表示装
置の駆動方法。
3. The first and second substrates facing each other, the first and second electrodes formed on the first or second substrate to face each other, and the first and second electrodes. A first alignment film formed over the first substrate and rubbed in the same direction as the first and second substrates, and a bend alignment state and a splay alignment state enclosed between the first and second substrates. A driving method of a liquid crystal display device having a liquid crystal and applying a display voltage between the first and second electrodes to bend the liquid crystal to perform display, and before applying the display voltage, A method for driving a liquid crystal display device, wherein a transition voltage higher than the display voltage is applied between the first and second electrodes.
【請求項4】 前記液晶は、前記第1及び第2の電極間
に印加する電圧を変化させると、所定の閾値電圧を境に
スプレイ配向とベンド配向の状態エネルギーの大小が入
れ替わり、前記表示電圧は該閾値電圧よりも高いことを
特徴とする請求項3に記載の液晶表示装置の駆動方法。
4. When the voltage applied between the first and second electrodes of the liquid crystal is changed, the state energy of the splay alignment and the bend alignment change at a predetermined threshold voltage, and the display voltage is changed. 4. The method according to claim 3, wherein the threshold voltage is higher than the threshold voltage.
【請求項5】 前記転移電圧は、転移期間継続して印加
され続け、該転移期間は、前記転移電圧値に応じて決定
されることを特徴とする請求項2乃至請求項4に記載の
液晶表示装置の駆動方法。
5. The liquid crystal according to claim 2, wherein the transition voltage is continuously applied during a transition period, and the transition period is determined according to the transition voltage value. A method for driving a display device.
【請求項6】 前記第1の電極は、各画素毎に形成され
た複数の画素電極であり、前記第2の電極は、前記複数
の画素電極を覆って形成された共通電極であるアクティ
ブマトリクス型液晶表示装置であって、前記転移電圧が
印加されているとき、前記第1の基板と前記画素電極と
の電位差よりも、前記第1の基板と前記共通電極との電
位差の方が大きいことを特徴とする請求項2乃至請求項
5のいずれかに記載の液晶表示装置の駆動方法。
6. The active matrix according to claim 1, wherein the first electrode is a plurality of pixel electrodes formed for each pixel, and the second electrode is a common electrode formed to cover the plurality of pixel electrodes. In the liquid crystal display device, when the transition voltage is applied, a potential difference between the first substrate and the common electrode is larger than a potential difference between the first substrate and the pixel electrode. The method for driving a liquid crystal display device according to any one of claims 2 to 5, wherein:
JP11134548A 1999-05-14 1999-05-14 Method for transition of alignment state of liquid crystal and method of driving liquid crystal display device Pending JP2000321556A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP11134548A JP2000321556A (en) 1999-05-14 1999-05-14 Method for transition of alignment state of liquid crystal and method of driving liquid crystal display device
US09/568,897 US6927825B1 (en) 1999-05-14 2000-05-11 Liquid crystal display using liquid crystal with bend alignment and driving method thereof
TW089109080A TWI224710B (en) 1999-05-14 2000-05-12 Liquid crystal display device and its driving method
KR10-2000-0025574A KR100370722B1 (en) 1999-05-14 2000-05-13 Method of transiting orientation state of liquid crystal, liquid crystal display device and driving method of the liquid crystal display device
US11/103,848 US20050174518A1 (en) 1999-05-14 2005-04-12 Liquid crystal display using liquid crystal with bend alignment and driving method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11134548A JP2000321556A (en) 1999-05-14 1999-05-14 Method for transition of alignment state of liquid crystal and method of driving liquid crystal display device

Publications (1)

Publication Number Publication Date
JP2000321556A true JP2000321556A (en) 2000-11-24

Family

ID=15130900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11134548A Pending JP2000321556A (en) 1999-05-14 1999-05-14 Method for transition of alignment state of liquid crystal and method of driving liquid crystal display device

Country Status (1)

Country Link
JP (1) JP2000321556A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003014817A1 (en) * 2001-08-08 2003-02-20 Matsushita Electric Industrial Co., Ltd. Liquid crystal display device
WO2003032056A1 (en) * 2001-10-08 2003-04-17 Samsung Electronics Co., Ltd. Liquid crystal display and driving method thereof
WO2004003641A1 (en) * 2002-05-16 2004-01-08 Samsung Electronics Co., Ltd. An apparatus driving a liquid crystal display
KR100445777B1 (en) * 2001-09-11 2004-08-25 엔이씨 엘씨디 테크놀로지스, 엘티디. Liquid crystal display device
US7095396B2 (en) 2000-07-14 2006-08-22 Matsushita Electric Industrial Co., Ltd. Liquid crystal display device using OCB cell and driving method thereof
JP2006330693A (en) * 2005-04-27 2006-12-07 Seiko Epson Corp Liquid crystal device, driving method thereof, and electronic apparatus
US7202864B2 (en) 2001-12-27 2007-04-10 Lg.Philips Lcd Co., Ltd. Apparatus and method for driving a liquid crystal display
KR100783704B1 (en) * 2001-04-26 2007-12-07 삼성전자주식회사 Liquid Crystal Display and driving apparatus and method thereof
JP2008083706A (en) * 2006-09-27 2008-04-10 Samsung Electronics Co Ltd Liquid crystal display and driving method therefor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7095396B2 (en) 2000-07-14 2006-08-22 Matsushita Electric Industrial Co., Ltd. Liquid crystal display device using OCB cell and driving method thereof
KR100783704B1 (en) * 2001-04-26 2007-12-07 삼성전자주식회사 Liquid Crystal Display and driving apparatus and method thereof
WO2003014817A1 (en) * 2001-08-08 2003-02-20 Matsushita Electric Industrial Co., Ltd. Liquid crystal display device
US7061572B2 (en) 2001-08-08 2006-06-13 Matsushita Electric Industrial Co., Ltd. Liquid crystal display device with pixel electrode connecting portion and storage capacitor electrode performing initialization process
KR100445777B1 (en) * 2001-09-11 2004-08-25 엔이씨 엘씨디 테크놀로지스, 엘티디. Liquid crystal display device
EP1435017A1 (en) * 2001-10-08 2004-07-07 Samsung Electro-Mechanics Co., Ltd. Liquid crystal display and driving method thereof
EP1435017A4 (en) * 2001-10-08 2006-12-20 Samsung Electro Mech Liquid crystal display and driving method thereof
CN1295546C (en) * 2001-10-08 2007-01-17 三星电子株式会社 Liquid crystal display device and method for driving the same
US7196686B2 (en) 2001-10-08 2007-03-27 Samsung Electronics Co., Ltd. Liquid crystal display and driving method thereof
WO2003032056A1 (en) * 2001-10-08 2003-04-17 Samsung Electronics Co., Ltd. Liquid crystal display and driving method thereof
US7202864B2 (en) 2001-12-27 2007-04-10 Lg.Philips Lcd Co., Ltd. Apparatus and method for driving a liquid crystal display
WO2004003641A1 (en) * 2002-05-16 2004-01-08 Samsung Electronics Co., Ltd. An apparatus driving a liquid crystal display
CN100356235C (en) * 2002-05-16 2007-12-19 三星电子株式会社 An apparatus driving a liquid crystal display
US7532185B2 (en) 2002-05-16 2009-05-12 Samsung Electronics Co., Ltd. Apparatus driving a liquid crystal display
JP2006330693A (en) * 2005-04-27 2006-12-07 Seiko Epson Corp Liquid crystal device, driving method thereof, and electronic apparatus
JP2008083706A (en) * 2006-09-27 2008-04-10 Samsung Electronics Co Ltd Liquid crystal display and driving method therefor

Similar Documents

Publication Publication Date Title
KR100610174B1 (en) Liquid crystal display device and drive method therefor
KR100486799B1 (en) Reflection-type liquid crystal display apparatus
US20050174518A1 (en) Liquid crystal display using liquid crystal with bend alignment and driving method thereof
JP2002365657A (en) Liquid crystal device, projection type display device, and electronic equipment
JP4794884B2 (en) Horizontal electric field drive mode liquid crystal display device
TW574518B (en) Liquid crystal display element and a display device using the same
JPH02176625A (en) Liquid crystal display device
US6760088B2 (en) Ferroelectric liquid crystal display
JP2000321556A (en) Method for transition of alignment state of liquid crystal and method of driving liquid crystal display device
US20050062705A1 (en) Liquid crystal display device and method for driving the same
JP3723380B2 (en) Liquid crystal display device
US20040070703A1 (en) Ferroelectric liquid crystal display and fabricating method thereof
JPH052209B2 (en)
US5555110A (en) Method of driving a ferroelectric liquid crystal display
JP3166726B2 (en) Antiferroelectric liquid crystal optical element and driving method thereof
JPH1096894A (en) Device for liquid crystal display, switch or image processing
JP2001117111A (en) Liquid crystal display device
JP2007003904A (en) Method for driving liquid crystal display apparatus
JP2001324722A (en) Liquid crystal device and electronic equipment
JP2761583B2 (en) Driving method of liquid crystal device
JP2001117100A (en) Liquid crystal element
US20040085502A1 (en) Liquid crystal display and fabricating method thereof
JP2000321577A (en) Liquid crystal display device
JP2000162600A (en) Liquid crystal display device
JPH11231340A (en) Liquid crystal display device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060418