JP2000321267A - Confirmation method for material of lump of gold sealed in container - Google Patents

Confirmation method for material of lump of gold sealed in container

Info

Publication number
JP2000321267A
JP2000321267A JP11131201A JP13120199A JP2000321267A JP 2000321267 A JP2000321267 A JP 2000321267A JP 11131201 A JP11131201 A JP 11131201A JP 13120199 A JP13120199 A JP 13120199A JP 2000321267 A JP2000321267 A JP 2000321267A
Authority
JP
Japan
Prior art keywords
container
gold
lump
nugget
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11131201A
Other languages
Japanese (ja)
Inventor
Takanori Endo
貴則 遠藤
Masa Yonezawa
政 米沢
Seiro Hachiman
誠朗 八幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP11131201A priority Critical patent/JP2000321267A/en
Publication of JP2000321267A publication Critical patent/JP2000321267A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a confirmation method in which whether a lump sealed in a container is a lump of gold or not is judged comparatively easily and surely without taking out the lump of gold from the container. SOLUTION: A lump of gold 12 is sealed in a container 11 which is composed of a nonconductive material. Ultrasonic waves at a prescribed frequency are radiated to the surface of the container 11, a sound velocity which is propagated in the lump of gold 12 is found, radio waves at a prescribed frequency are transmitted to the surface of the container 11, and the resistivity of the lump of gold 12 is found. The material of the lump of gold 12 is confirmed on the basis of the sound velocity and the resistivity. In addition, it is preferable that the ultrasonic waves at the prescribed frequency are radiated to the surface of the container 11 in a state that the container 11 is brought into close contact with the surface of the lump of gold 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、容器に封入された
金塊を容器から取出さずにその材質を確認する方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for confirming the material of a gold nugget enclosed in a container without removing the gold nugget from the container.

【0002】[0002]

【従来の技術】従来、金塊はその入手経路が信頼できな
い場合の真贋は簡便には外観と刻印の確認によるが、そ
れには相当の熟練が必要であり、また必ずしも確実では
ない。このため、金塊を融解して均一な組成とし、定量
分析を行えば確実にその真贋を判定することができる。
しかし、比較的少量の金塊を所定の容器に封入して用い
られる場合があり、この場合、上記定量分析等の手数の
掛かる方法は使用できない。この点を解消するために、
容器に特殊な液晶によりホログラフ模様を付し、偽造の
困難な容器に金塊を入れることにより、容器に偽金塊を
入れることを防止したり、或いは容器に封止用シールを
貼付することにより、容器を開けて真の金塊を偽の金塊
に差し替えることを防止している。
2. Description of the Related Art Conventionally, the authenticity of gold ingots when the route for obtaining them is unreliable is simply determined by checking the appearance and markings, but this requires considerable skill and is not always reliable. Therefore, if the gold ingot is melted to have a uniform composition and the quantitative analysis is performed, the authenticity thereof can be reliably determined.
However, there is a case where a relatively small amount of gold is enclosed in a predetermined container and used, and in this case, a complicated method such as the quantitative analysis cannot be used. To solve this,
By attaching a holographic pattern to the container with a special liquid crystal and placing the gold bullion in a container that is difficult to forge, preventing the false gold bullion from being placed in the container, or attaching a sealing seal to the container, To prevent replacing a true bullion with a fake bullion.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記容器にホ
ログラフ模様を付すための偽の液晶の入手や、封止用シ
ールの偽造は不可能ではなく、容器に封入された金塊を
偽金塊に差し替えられるおそれがある。本発明の目的
は、容器から金塊を取出さなくても、比較的容易にかつ
確実に、容器に封入された塊が金塊であるか否かを判定
することができる、容器に封入された金塊の材質の確認
方法を提供することにある。本発明の別の目的は、容器
内部を伝搬する超音波を金塊内部にスムーズに伝搬する
ことができる、容器に封入された金塊の材質の確認方法
を提供することにある。
However, it is not impossible to obtain a fake liquid crystal for forming a holographic pattern on the above-mentioned container or to forge a sealing seal, and replace the gold nugget enclosed in the container with a fake gold nugget. May be obtained. An object of the present invention is to relatively easily and reliably determine whether or not a lump enclosed in a container is a gold nugget without removing the gold nugget from the container. It is an object of the present invention to provide a method for confirming the material of the above. Another object of the present invention is to provide a method of confirming the material of a gold bullion enclosed in a container, which can smoothly transmit ultrasonic waves propagating inside the container into the gold bullion.

【0004】[0004]

【課題を解決するための手段】金(Au)内部を伝搬す
る音速はプラスチック内部を伝搬する音速と略等しい。
また錫内部を伝搬する音速は上記金内部を伝搬する音速
より小さく、鉛内部を伝搬する音速は金内部を伝搬する
音速より大きいため、錫及び鉛を適当な比率で配合した
鉛−錫合金の内部を伝搬する音速は金内部を伝搬する音
速と略等しくなる。しかし、上記プラスチック及び鉛−
錫合金の抵抗率は金より大きい。一方、銅に錫を少量添
加した銅−錫合金は金と略同一の抵抗率を有するけれど
も、銅−錫合金の内部を伝搬する音速は金内部を伝搬す
る音速よりも大きい。本発明者らは、上記音速及び抵抗
率の両者が金の有する音速及び抵抗率と略同一である材
料は現存しないのみならず、将来出現する可能性も極め
て少ないことから、本発明をなすに至った。表1に各材
料により形成された塊内部を伝搬する音速と、これらの
塊の抵抗率を示す。
The speed of sound propagating inside gold (Au) is substantially equal to the speed of sound propagating inside plastic.
Also, the speed of sound propagating inside tin is lower than the speed of sound propagating inside gold, and the speed of sound propagating inside lead is higher than the speed of sound propagating inside gold.Therefore, a lead-tin alloy containing tin and lead in an appropriate ratio is used. The speed of sound propagating inside is substantially equal to the speed of sound propagating inside gold. However, the above plastic and lead-
Tin alloys have higher resistivity than gold. On the other hand, a copper-tin alloy obtained by adding a small amount of tin to copper has substantially the same resistivity as gold, but the speed of sound propagating inside the copper-tin alloy is higher than the speed of sound propagating inside gold. The present inventors have made the present invention because not only do not exist materials that have substantially the same sound speed and resistivity as the sound speed and resistivity of gold but also very unlikely to appear in the future. Reached. Table 1 shows the speed of sound propagating inside the blocks formed by each material and the resistivity of these blocks.

【0005】[0005]

【表1】 [Table 1]

【0006】請求項1に係る発明は、図1及び図2に示
すように、非導電性材料よりなる容器11に金塊12が
封入され、容器11表面に所定の周波数の超音波を放射
して金塊12を伝搬する音速を求め、更に容器11表面
に所定の周波数の電波を発信して金塊12の抵抗率を求
めることにより、金塊12の材質を確認する方法であ
る。この請求項1に記載された金塊の材質の確認方法で
は、容器11に封入されたものが偽金塊であれば、偽金
塊内部を伝搬する音速及び偽金塊の抵抗率の双方がそれ
ぞれ金塊12内部を伝搬する音速及び金塊12の抵抗率
と同一の値を示すことはないため、容器11に封入され
たものを偽金塊と確認できる。また上記音速及び抵抗率
は金塊12を容器11から取出さなくても測定が可能で
ある。この結果、容器11に封入されたものが金塊12
であるか否かを比較的容易にかつ確実に判定することが
できる。
According to the first aspect of the present invention, as shown in FIGS. 1 and 2, a gold nugget 12 is sealed in a container 11 made of a non-conductive material, and the surface of the container 11 emits ultrasonic waves of a predetermined frequency. This is a method of confirming the material of the gold ingot 12 by obtaining the speed of sound propagating through the gold ingot 12, and further transmitting a radio wave of a predetermined frequency on the surface of the container 11 to obtain the resistivity of the gold ingot 12. According to the method for checking the material of a gold nugget according to the first aspect, if the object enclosed in the container 11 is a false gold nugget, both the speed of sound propagating inside the false gold nugget and the resistivity of the false gold nugget are inside the gold nugget 12, respectively. And the resistivity of the gold nugget 12 do not show the same value, so that the one enclosed in the container 11 can be confirmed as a false gold nugget. The sound velocity and the resistivity can be measured without removing the gold nugget 12 from the container 11. As a result, what is enclosed in the container 11 is the gold nugget 12
Can be determined relatively easily and reliably.

【0007】請求項2に係る発明は、請求項1に係る発
明であって、更に図1に示すように、金塊12の表面に
容器11を密着させた状態で容器11表面に所定の周波
数の超音波を放射することを特徴とする。この請求項2
に記載された金塊の材質の確認方法では、容器11内部
を伝搬した超音波が金塊12内部にスムーズに伝搬され
る。請求項3に係る発明は、請求項1に係る発明であっ
て、更に容器と金塊の隙間に液体を封入した状態で容器
表面に所定の周波数の超音波を放射することを特徴とす
る。この請求項3に記載された金塊の材質の確認方法で
は、容器内部を伝搬した超音波が液体を通って金塊内部
にスムーズに伝搬される。
The invention according to claim 2 is the invention according to claim 1, and furthermore, as shown in FIG. 1, in a state where the container 11 is in close contact with the surface of the gold nugget 12, It is characterized by emitting ultrasonic waves. This claim 2
In the method of checking the material of the gold nugget described in (1), the ultrasonic wave propagated inside the container 11 is smoothly transmitted into the gold nugget 12. The invention according to claim 3 is the invention according to claim 1, characterized in that ultrasonic waves of a predetermined frequency are radiated to the surface of the container in a state where the liquid is sealed in the gap between the container and the gold nugget. According to the method for checking the material of the gold nugget according to the third aspect, the ultrasonic wave propagated inside the container is smoothly transmitted into the gold nugget through the liquid.

【0008】上記金塊を伝搬する音速は、図1に示すよ
うに、金塊12を含む容器11全体の厚さS0を測定
し、超音波が容器11のみを伝搬する第1の時間T1
3を測定することにより容器11のみの厚さS1,S3
を算出し、容器11全体の厚さS0から容器11のみの
厚さS1,S3を引いて金塊12の厚さS2を算出すると
ともに超音波が金塊12を伝搬する第2の時間T2を測
定し、更に金塊12の厚さS2を第2の時間T2で除算す
ることにより求まる。
As shown in FIG. 1, the speed of sound propagating through the gold nugget is determined by measuring the thickness S 0 of the entire container 11 including the gold nugget 12, and the first time T 1 , at which the ultrasonic wave propagates only through the container 11.
By measuring T 3 , the thicknesses S 1 and S 3 of only the container 11 are obtained.
Is calculated, and the thickness S 2 of the gold nugget 12 is calculated by subtracting the thicknesses S 1 and S 3 of the container 11 only from the thickness S 0 of the entire container 11 and the second time during which the ultrasonic wave propagates through the gold nugget 12 the T 2 is measured, obtained by further dividing the thickness S 2 of the gold ingot 12 at a second time T 2.

【0009】[0009]

【発明の実施の形態】次に本発明の実施の形態を図面に
基づいて説明する。図1及び図2に示すように、非電導
性材料よりなる容器11に金塊12が封入され、この容
器11はアクリル,ポリスチレン,ABS(アクリロニ
トリル・ブタジエン・スチレン),AS(アクリロニト
リル・スチレン)等のプラスチックにより形成される。
上記金塊12は容器11の射出成形時に成形装置のキャ
ビティにインサートとして装着され、このキャビティに
加熱・溶融したプラスチックを流込んだ後に、この溶融
したプラスチックを冷却・固化することにより、容器1
1内部に封入される。このため、金塊12の表面には容
器11が密着した状態になる。なお、容器を予め成形し
た後に、この容器に金塊を封入する場合には、容器と金
塊との間に隙間が発生するため、この隙間に水,油等の
液体を封入することが好ましい。
Embodiments of the present invention will now be described with reference to the drawings. As shown in FIG. 1 and FIG. 2, a gold nugget 12 is sealed in a container 11 made of a non-conductive material. Made of plastic.
The gold nugget 12 is mounted as an insert in a cavity of a molding apparatus at the time of injection molding of the container 11, and after pouring the heated and melted plastic into the cavity, the molten plastic is cooled and solidified, whereby the container 1 is cooled.
1 inside. Therefore, the container 11 comes into close contact with the surface of the gold nugget 12. In the case where a gold nugget is sealed in the container after the container has been formed in advance, a gap is formed between the container and the gold nugget. Therefore, it is preferable to fill a liquid such as water or oil into the gap.

【0010】容器11内部及び金塊12内部を伝搬する
音速を測定するには、高周波発生装置13と、この高周
波発生装置13が発生した電気的振動を超音波振動に変
換しかつ容器11内部及び金塊12内部を伝搬した超音
波振動を電気的振動に変換する超音波振動子14と、こ
の超音波振動子14により変換された電気的振動を時間
に対する音圧レベルの変化として表示する表示器16と
が用いられる。高周波発生装置13は1〜30MHz、
好ましくは10〜15MHzの高周波電圧及び高周波電
流を発生するように構成される。
In order to measure the speed of sound propagating inside the container 11 and the inside of the gold nugget 12, a high-frequency generator 13 is used to convert electric vibrations generated by the high-frequency generator 13 into ultrasonic vibrations, and An ultrasonic vibrator 14 for converting ultrasonic vibrations propagated inside 12 into electric vibrations; a display 16 for displaying the electric vibrations converted by the ultrasonic vibrators 14 as a change in sound pressure level with respect to time; Is used. The high frequency generator 13 has a frequency of 1 to 30 MHz,
Preferably, it is configured to generate a high-frequency voltage and a high-frequency current of 10 to 15 MHz.

【0011】一方、金塊12の抵抗率が小さいほど、金
塊12に接近して設けられたコイル17のインダクタン
スLが小さくなることが知られている。上記コイル17
は非導電性材料により形成された棒材17aと、この棒
材17aに複数回巻かれた被覆導線17bとを有する。
また被覆導線17bには高周波発生装置13が接続さ
れ、被覆導線17b及び高周波発生装置13を接続する
回路18には電圧計19及び電流計20が設けられる。
また高周波発生装置13は上記音速測定に用いられる高
周波発生装置と同一のものを用いてもよく、1〜30M
Hz、好ましくは10〜15MHzの高周波電圧及び高
周波電流を発生するように構成される。なお、電圧計及
び電流計に替えて、コイルのインダクタンスを直接測定
する交流ブリッジ回路を上記被覆導線及び高周波発生装
置を接続する回路に設けてもよい。
On the other hand, it is known that the lower the resistivity of the gold nugget 12, the smaller the inductance L of the coil 17 provided closer to the gold nugget 12. The coil 17
Has a rod 17a formed of a non-conductive material and a covered conductor 17b wound a plurality of times around the rod 17a.
A high-frequency generator 13 is connected to the covered conductor 17b, and a voltmeter 19 and an ammeter 20 are provided in a circuit 18 connecting the covered conductor 17b and the high-frequency generator 13.
The high-frequency generator 13 may be the same as the high-frequency generator used for the above-mentioned sound velocity measurement.
Hz, preferably 10-15 MHz. Note that, in place of the voltmeter and the ammeter, an AC bridge circuit for directly measuring the inductance of the coil may be provided in a circuit connecting the above-described covered conductor and the high-frequency generator.

【0012】このように容器に封入された塊が金塊であ
るか否かを確認する方法を説明する。 [1]塊内部を伝搬する音速の測定 図1に示すように、先ず容器11の材質を調査し、この
調査を基に理科年表等により容器11内部を伝搬する音
速V1を知得するか、或いは容器11の厚さS0を測定し
た後に、容器11の表面のうちその直下に塊12が存在
しない部分(図1の二点鎖線で示す部分)に超音波振動
子14を接触させ、この振動子14から所定の周波数の
超音波を容器11に放射することにより容器11内部を
伝搬する音速V1を算出する。後者の場合、超音波は容
器11内部を伝搬し容器11下面で反射して容器11表
面に戻り、この戻ってきた超音波を超音波振動子14が
受けて電気的振動に変換する。上記超音波が容器11の
厚さ分の距離S0を伝搬する時間が表示器16に表示さ
れるので、容器11の厚さS0を上記伝搬時間で除算す
ることにより、容器11内部を伝搬する超音波の速度、
即ち音速V1が算出される。
A method for confirming whether or not the lump enclosed in the container is a gold lump will be described. [1] As shown in the measurement diagram 1 the speed of sound propagating through the mass inside, first or investigate the material of the container 11, to know the acoustic velocity V 1 propagating inside the container 11 by Chronological Scientific Tables, etc. The study based on Alternatively, after measuring the thickness S 0 of the container 11, the ultrasonic vibrator 14 is brought into contact with a portion of the surface of the container 11 where the lump 12 does not exist directly below (a portion indicated by a two-dot chain line in FIG. 1), By radiating an ultrasonic wave of a predetermined frequency from the vibrator 14 to the container 11, a sound speed V 1 propagating inside the container 11 is calculated. In the latter case, the ultrasonic wave propagates inside the container 11, is reflected on the lower surface of the container 11, and returns to the surface of the container 11, and the returned ultrasonic wave is received by the ultrasonic vibrator 14 and converted into electric vibration. Since the time during which the ultrasonic wave propagates through the distance S 0 corresponding to the thickness of the container 11 is displayed on the display unit 16, the ultrasonic wave propagates inside the container 11 by dividing the thickness S 0 of the container 11 by the propagation time. The speed of the ultrasound,
That acoustic velocity V 1 is calculated.

【0013】次いで容器11の表面のうちその直下に塊
12が存在する部分(図1の実線で示す部部分)に超音
波振動子14を接触させ、この振動子14から所定の周
波数の超音波を容器11に放射すると、この超音波は容
器11内部及び塊12内部を伝搬し、容器11下面で反
射して容器11表面に戻ってくる。この戻ってきた超音
波を超音波振動子14が受けて電気的振動に変換し、こ
の電気的振動は表示器16に表示される。容器11内部
及び塊12内部を伝搬する超音波は容器11の下面,塊
12の下面,塊12の上面及び容器11の上面で急激に
音圧レベルが上昇する。この結果、表示器16には上記
a点,b点,c点及びd点にそれぞれ対応する時刻a,
b,c及びdにおいて音圧レベルのピーク値が現れる。
Next, the ultrasonic vibrator 14 is brought into contact with a portion of the surface of the container 11 where the lump 12 exists immediately below (the portion indicated by the solid line in FIG. 1), and the ultrasonic vibrator 14 Is emitted to the container 11, the ultrasonic wave propagates inside the container 11 and the lump 12, is reflected on the lower surface of the container 11, and returns to the surface of the container 11. The returned ultrasonic wave is received by the ultrasonic vibrator 14 and converted into electric vibration, and the electric vibration is displayed on the display 16. Ultrasonic waves propagating inside the container 11 and inside the lump 12 rapidly increase in sound pressure level on the lower surface of the container 11, the lower surface of the lump 12, the upper surface of the lump 12, and the upper surface of the container 11. As a result, the display 16 displays the times a, a corresponding to the points a, b, c, and d, respectively.
Peak values of the sound pressure level appear at b, c, and d.

【0014】次に表示器16から第1の時間、即ちa−
b間の時間T1及びc−d間の時間T3(T1及びT3
第)を求め、V1×T1から塊12の下側の容器11の厚
さS1を算出し、V1×T3から塊12の上側の容器11
の厚さS3を算出した後に、S0から上記(S1+S3)を
引くことにより塊12の厚さS2を求める。更に表示器
16から第2の時間、即ちb−c間の時間T2を求め、
2/T2を計算することにより塊12内部を伝搬する音
速を算出することができる。
Next, a first time, that is, a-
The time T 1 between b and the time T 3 between cd (T 1 and T 3 are second) are obtained, and the thickness S 1 of the container 11 below the mass 12 is calculated from V 1 × T 1 , From V 1 × T 3 , container 11 above lump 12
After calculating the thickness S 3 of determining the thickness S 2 of the mass 12 by subtracting the (S 1 + S 3) from S 0. Furthermore, the second time from the display unit 16, i.e. seek time T 2 of the inter-b-c,
By calculating S 2 / T 2 , the speed of sound propagating inside the block 12 can be calculated.

【0015】[2]塊により変化するインダクタンスL
の測定 図2に示すように、先ずコイル17の被覆導線17bに
所定の高周波電流を流し、かつ容器11に近付けない状
態で電圧計19及び電流計20の指示値よりコイル17
のインダクタンスLを測定する。次にコイル17の棒材
17aを容器11の表面に接触させて上記と同様にして
コイル17のインダクタンスLを測定する。上記[1]
の音速及び[2]のインダクタンスLより塊12の材質
が金であるか否かを検出することができる。なお、この
実施の形態では、金塊の表面に容器を密着させた状態で
容器表面に所定の周波数の超音波を放射したが、容器と
金塊との間に隙間が発生する場合には、上記隙間に液体
を封入した状態で容器表面に所定の周波数の超音波を放
射することが好ましい。
[2] Inductance L that changes with lump
As shown in FIG. 2, first, a predetermined high-frequency current is applied to the insulated wire 17 b of the coil 17, and the coil 17 is read from the readings of the voltmeter 19 and the
Is measured. Next, the rod 17a of the coil 17 is brought into contact with the surface of the container 11, and the inductance L of the coil 17 is measured in the same manner as described above. The above [1]
It is possible to detect whether or not the material of the lump 12 is gold based on the sound speed of and the inductance L of [2]. In this embodiment, ultrasonic waves of a predetermined frequency are radiated to the surface of the container in a state in which the container is in close contact with the surface of the gold nugget. It is preferable to radiate an ultrasonic wave of a predetermined frequency to the surface of the container while the liquid is sealed therein.

【0016】[0016]

【実施例】次に本発明の実施例を比較例とともに詳しく
説明する。 <実施例1>長さ,幅及び厚さがそれぞれ14.8m
m,7.94mm及び0.431mmの金塊を作製し
た。一方、エポキシ樹脂(顕微鏡の試料固定用)を硬化
させてその表面を削り、厚さ1mmの樹脂製板を得た。
この樹脂製板に上記金塊を載せ、その上に液状のエポキ
シ樹脂を塗布して硬化させ、全体の厚さが2.431m
mになるようにエポキシ樹脂の表面を削った。このよう
にしてエポキシ樹脂製の容器に封入された金塊を得た。
これを実施例1とした。なお、上記金塊を容器に封入す
る前にこの金塊の抵抗率(2.20μΩ−cm)を測定
した。
Next, examples of the present invention will be described in detail together with comparative examples. <Example 1> Length, width and thickness are 14.8 m each.
Gold nuggets of m, 7.94 mm and 0.431 mm were made. On the other hand, an epoxy resin (for fixing a sample of a microscope) was cured and its surface was shaved to obtain a resin plate having a thickness of 1 mm.
The gold ingot is placed on this resin plate, and a liquid epoxy resin is applied thereon and cured, and the total thickness is 2.431 m.
m, the surface of the epoxy resin was shaved. Thus, a gold nugget enclosed in a container made of epoxy resin was obtained.
This was designated as Example 1. In addition, before enclosing the gold nugget in a container, the resistivity (2.20 μΩ-cm) of the gold nugget was measured.

【0017】<比較例1>金塊に替えて黄銅の塊を用い
たことを除いて、実施例1と同様にして容器に封入され
た黄銅の塊を得た。これを比較例1とした。なお、上記
黄銅の塊を容器に封入する前にこの黄銅の塊の抵抗率
(6.30μΩ−cm)を測定した。 <比較例2>金塊に替えて鉄の塊を用いたことを除い
て、実施例1と同様にして容器に封入された鉄の塊を得
た。これを比較例2とした。なお、上記鉄の塊を容器に
封入する前にこの鉄の塊の抵抗率(8.90μΩ−c
m)を測定した。
Comparative Example 1 A lump of brass sealed in a container was obtained in the same manner as in Example 1, except that a lump of brass was used instead of the lump of gold. This was designated as Comparative Example 1. In addition, the resistivity (6.30 μΩ-cm) of the brass mass was measured before the brass mass was sealed in a container. <Comparative Example 2> An iron lump enclosed in a container was obtained in the same manner as in Example 1 except that an iron lump was used instead of the gold lump. This was designated as Comparative Example 2. Before enclosing the lump of iron in a container, the resistivity of the lump of iron (8.90 μΩ-c
m) was measured.

【0018】<比較例3>金塊に替えてナイロンの塊を
用いたことを除いて、実施例1と同様にして容器に封入
されたナイロンの塊を得た。これを比較例3とした。な
お、上記ナイロンの塊を容器に封入する前にこのナイロ
ンの塊の抵抗率を測定しようとしたが、抵抗率が極めて
大きく測定できなかった。 <比較例4>金塊に替えてガラスの塊を用いたことを除
いて、実施例1と同様にして容器に封入されたガラスの
塊を得た。これを比較例4とした。なお、上記ガラスの
塊を容器に封入する前にこのガラスの塊の抵抗率を測定
しようとしたが、抵抗率が極めて大きく測定できなかっ
た。
Comparative Example 3 A nylon lump sealed in a container was obtained in the same manner as in Example 1 except that a lump of nylon was used instead of the gold lump. This was designated as Comparative Example 3. In addition, before attempting to measure the resistivity of the nylon mass before enclosing the nylon mass in a container, the resistivity was extremely large and could not be measured. <Comparative Example 4> A lump of glass sealed in a container was obtained in the same manner as in Example 1 except that a lump of glass was used instead of the lump of gold. This was designated as Comparative Example 4. In addition, before trying to measure the resistivity of this glass lump before enclosing the glass lump in a container, the resistivity was extremely large and could not be measured.

【0019】<比較試験及び評価>実施例1及び比較例
1〜4の容器の表面に超音波振動子を接触させ、この状
態で振動子から10MHzの超音波を上記容器の表面に
放射し、金,黄銅,鉄,ナイロン及びガラスの塊を伝搬
する音速をそれぞれ測定した。また直径6mmのアクリ
ル樹脂の丸棒に直径0.2mmの被覆導線を20回巻
き、この丸棒の先端面を各容器の表面に接触させた状態
で被覆導線に3.5MHzの高周波電流を流し、金,黄
銅,鉄,ナイロン及びガラスの塊によるインダクタンス
の変化を測定した。なお、丸棒を容器に近付けない状態
でコイルに3.5MHzの高周波電流を流したときのイ
ンダクタンスは1.62μHであった。これらの測定結
果を抵抗率とともに表2に示す。
<Comparative Test and Evaluation> An ultrasonic vibrator was brought into contact with the surfaces of the containers of Example 1 and Comparative Examples 1 to 4, and in this state, a 10 MHz ultrasonic wave was emitted from the vibrator to the surface of the container. The speed of sound propagating through chunks of gold, brass, iron, nylon and glass was measured. In addition, a coated conductor of 0.2 mm in diameter is wound around a round rod of acrylic resin having a diameter of 6 mm 20 times, and a high-frequency current of 3.5 MHz is passed through the coated conductor in a state where the tip surface of the rod is in contact with the surface of each container. The change in inductance due to lump of gold, brass, iron, nylon and glass was measured. The inductance when a high-frequency current of 3.5 MHz was passed through the coil in a state where the round bar was not close to the container was 1.62 μH. Table 2 shows the measurement results together with the resistivity.

【0020】[0020]

【表2】 [Table 2]

【0021】表2から明らかなように、抵抗率が小さい
ほどコイルのインダクタンスは小さくなることが判っ
た。この結果、各塊を伝搬する超音波の音速と、各塊に
よるインダクタンスの変化を求めることにより、金塊と
他の材質の塊を明確に区別することができることが判明
した。
As apparent from Table 2, it was found that the smaller the resistivity, the smaller the inductance of the coil. As a result, it was found that by determining the sound speed of the ultrasonic wave propagating through each lump and the change in inductance due to each lump, it is possible to clearly distinguish the gold lump from the lump of another material.

【0022】[0022]

【発明の効果】以上述べたように、本発明によれば、非
導電性材料よりなる容器に金塊を封入し、容器表面に所
定の周波数の超音波を放射して金塊を伝搬する音速を求
め、更に容器表面に所定の周波数の電波を発信して金塊
の抵抗率を求めることにより、金塊の材質を確認したの
で、金塊を容器から取出さなくても、上記音速及び抵抗
率を比較的簡単に測定することができる。この結果、容
器に封入された塊が金塊であるか否かを比較的容易にか
つ確実に判定することができる。また金塊の表面に容器
を密着させた状態で、或いは容器と金塊の隙間に液体を
封入した状態で、容器表面に所定の周波数の超音波を放
射すれば、容器内部を伝搬した超音波が金塊内部に直接
或いは液体を介してスムーズに伝搬される。この結果、
上記と同様の効果が得られる。
As described above, according to the present invention, a gold ingot is sealed in a container made of a non-conductive material, and an ultrasonic wave of a predetermined frequency is radiated on the surface of the container to determine the sound speed at which the gold ingot is propagated. Further, since the material of the gold ingot was confirmed by transmitting a radio wave of a predetermined frequency to the surface of the container and determining the resistivity of the gold ingot, the above-mentioned sound speed and resistivity were relatively simple without removing the gold ingot from the container. Can be measured. As a result, it can be relatively easily and reliably determined whether or not the lump enclosed in the container is a gold lump. If ultrasonic waves of a predetermined frequency are radiated to the surface of the container in a state where the container is in close contact with the surface of the gold nugget, or in a state where liquid is sealed in the gap between the container and the gold nugget, the ultrasonic waves propagated inside the container will Smoothly propagates directly into the interior or through a liquid. As a result,
The same effects as above can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施形態の容器に封入された金塊に超音
波を放射している状態を示す断面構成図。
FIG. 1 is a cross-sectional configuration diagram showing a state where ultrasonic waves are radiated to a gold nugget enclosed in a container according to an embodiment of the present invention.

【図2】その容器に封入された金塊に高周波を発信して
いる状態を示す断面構成図。
FIG. 2 is a cross-sectional configuration diagram showing a state in which a high frequency is transmitted to a gold nugget enclosed in the container.

【符号の説明】[Explanation of symbols]

11 容器 12 金塊 S0 金塊を含む容器全体の厚さ S1,S3 容器のみの厚さ S2 金塊の厚さ T1,T3 第1の時間 T2 第2の時間11 Container 12 Gold Nugget S 0 Thickness of whole container including gold nugget S 1 , Thickness of only S 3 container S 2 Thickness of gold nugget T 1 , T 3 First time T 2 Second time

───────────────────────────────────────────────────── フロントページの続き (72)発明者 八幡 誠朗 東京都千代田区大手町1丁目6番1号 知 財サービス株式会社内 Fターム(参考) 2G028 AA03 BC01 CG02 CG06 DH30 HN14 KQ08 2G047 AA08 BA03 BB06 BC02 EA11 GA18 GF11 GG27 2G053 AA02 AB19 BA02 BA11 CA03 CA17 2G055 AA05 BA01 CA01 DA31 EA08 EA10 FA06 FA08  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Seiro Yawata 1-6-1 Otemachi, Chiyoda-ku, Tokyo F-Term (in reference) 2G028 AA03 BC01 CG02 CG06 DH30 HN14 KQ08 2G047 AA08 BA03 BB06 BC02 EA11 GA18 GF11 GG27 2G053 AA02 AB19 BA02 BA11 CA03 CA17 2G055 AA05 BA01 CA01 DA31 EA08 EA10 FA06 FA08

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 非導電性材料よりなる容器(11)に金塊(1
2)が封入され、前記容器(11)表面に所定の周波数の超音
波を放射して前記金塊(12)を伝搬する音速を求め、更に
前記容器(11)表面に所定の周波数の電波を発信して前記
金塊(12)の抵抗率を求めることにより、前記金塊の材質
を確認する方法。
1. A gold nugget (1) is placed in a container (11) made of a non-conductive material.
2) is enclosed, an ultrasonic wave of a predetermined frequency is radiated to the surface of the container (11) to determine the speed of sound propagating through the gold ingot (12), and a radio wave of a predetermined frequency is further transmitted to the surface of the container (11). A method of confirming the material of the gold ingot by obtaining the resistivity of the gold ingot (12).
【請求項2】 金塊(12)の表面に容器(11)を密着させた
状態で前記容器(11)表面に所定の周波数の超音波を放射
する請求項1記載の金塊の材質の確認方法。
2. The method according to claim 1, wherein ultrasonic waves having a predetermined frequency are radiated to the surface of the container (11) in a state where the container (11) is in close contact with the surface of the gold (12).
【請求項3】 容器と金塊の隙間に液体を封入した状態
で前記容器表面に所定の周波数の超音波を放射する請求
項1記載の金塊の材質の確認方法。
3. The method according to claim 1, wherein ultrasonic waves having a predetermined frequency are radiated to the surface of the container while the liquid is sealed in a gap between the container and the gold nugget.
【請求項4】 金塊(12)を含む容器(11)全体の厚さ(S0)
を測定し、超音波が前記容器(11)のみを伝搬する第1の
時間(T1,T3)を測定することにより前記容器(11)のみの
厚さ(S1,S3)を算出し、前記容器(11)全体の厚さ(S0)か
ら前記容器(11)のみの厚さ(S1,S3)を引いて前記金塊(1
2)の厚さ(S2)を算出するとともに前記超音波が前記金塊
(12)を伝搬する第2の時間(T2)を測定し、更に前記金塊
(12)の厚さ(S2)を前記第2の時間(T2)で除算して前記金
塊(12)を伝搬する音速を算出する請求項1記載の金塊の
材質の確認方法。
4. The total thickness (S 0 ) of the container (11) including the gold nugget (12)
, And the thickness (S 1 , S 3 ) of only the container (11) is calculated by measuring the first time (T 1 , T 3 ) in which the ultrasonic wave propagates only in the container (11) Then, the thickness (S 1 , S 3 ) of only the container (11) is subtracted from the total thickness (S 0 ) of the container (11), and the gold ingot (1
2) calculating the thickness (S 2 ) and applying the ultrasonic wave to the gold ingot
( 2 ) measuring a second time (T 2 ),
(12) the thickness (S 2) Checking of the material of the bullion according to claim 1, wherein calculating the speed of sound propagating through the by dividing bullion (12) at the second time (T 2) the.
JP11131201A 1999-05-12 1999-05-12 Confirmation method for material of lump of gold sealed in container Pending JP2000321267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11131201A JP2000321267A (en) 1999-05-12 1999-05-12 Confirmation method for material of lump of gold sealed in container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11131201A JP2000321267A (en) 1999-05-12 1999-05-12 Confirmation method for material of lump of gold sealed in container

Publications (1)

Publication Number Publication Date
JP2000321267A true JP2000321267A (en) 2000-11-24

Family

ID=15052412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11131201A Pending JP2000321267A (en) 1999-05-12 1999-05-12 Confirmation method for material of lump of gold sealed in container

Country Status (1)

Country Link
JP (1) JP2000321267A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2266675A2 (en) 2009-06-25 2010-12-29 Chisso Corporation Chromatography medium, preparation method of the same, and method for producing virus vaccine using the chromatography medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2266675A2 (en) 2009-06-25 2010-12-29 Chisso Corporation Chromatography medium, preparation method of the same, and method for producing virus vaccine using the chromatography medium

Similar Documents

Publication Publication Date Title
EP0384373B1 (en) Method and apparatus for testing liquid fillings in tanks
JP5310841B2 (en) Bonding quality inspection apparatus and bonding quality inspection method
JP2005221496A (en) Method of measuring adhesive strength of coating to substrate
US6250163B1 (en) EMATS for spot weld examination
US3995179A (en) Damping structure for ultrasonic piezoelectric transducer
US4622202A (en) Reactor in-vessel sensor and core monitoring apparatus
CN1886215A (en) Method for detecting solidification completion position of continuous casting cast piece, detector, and method for producing continuous casting cast piece
CN106556363B (en) Thickness of continuous casting shell online test method and device
JP2000321267A (en) Confirmation method for material of lump of gold sealed in container
JP2008116406A (en) Plating thickness measuring instrument, plating thickness measuring method, program, and computer-readable storage medium
JP2009092601A (en) Nondestructive inspection method
WO2006090727A1 (en) Method and device for inspecting filled state of grout
US3603136A (en) Ultrasonic measurement of material nodularity
JP2001296282A (en) Visualizing method and device of in-solid elastic wave propagation
JP2001272319A (en) Fatigue damage prognosis device and method therefor
JP3718280B2 (en) Nondestructive testing method and apparatus for characteristics of metal workpieces
US20160153776A1 (en) Cable measurement device
US20110254544A1 (en) Method and device for measuring the layer thickness of partially solidified melts
Hefner et al. Resonance by rod-shaped reflectors in ultrasound test objects.
JP6473386B2 (en) Thinning inspection method
CN117451513B (en) Anti-cracking reliability test method and system for vehicle-gauge packaging welding spots
JP2000155017A (en) Measurement of electrode position inside electric furnace
US3624711A (en) Material tester
Willcox Ultrasonic Velocity Measurement Used to Assess the Quality of Iron Castings
JPS61114160A (en) Ultrasonic measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071120