JP2000315713A - Production of compound semiconductor epitaxial wafer - Google Patents

Production of compound semiconductor epitaxial wafer

Info

Publication number
JP2000315713A
JP2000315713A JP11124774A JP12477499A JP2000315713A JP 2000315713 A JP2000315713 A JP 2000315713A JP 11124774 A JP11124774 A JP 11124774A JP 12477499 A JP12477499 A JP 12477499A JP 2000315713 A JP2000315713 A JP 2000315713A
Authority
JP
Japan
Prior art keywords
epitaxial wafer
layer
composition
compound semiconductor
semiconductor epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11124774A
Other languages
Japanese (ja)
Inventor
Yukio Sasaki
幸男 佐々木
Yohei Otogi
洋平 乙木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP11124774A priority Critical patent/JP2000315713A/en
Publication of JP2000315713A publication Critical patent/JP2000315713A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To realize a highly accurate noncontact measurement of a specified semiconductor composition in a short time by estimating the composition of a specified semiconductor layer based on the peak wavelength of photoluminescence measurement of a compound semiconductor epitaxial wafer and then selecting only the compositions falling within a specified range. SOLUTION: An InGaAs layer has an energy gap dependent on the composition ratio of In (or Ga). More specifically, the energy gap decreases as the composition ratio of In increases and the peak wavelength of luminescence is varied as the composition ratio of In is varied. Photoluminescence is then measured for a compound semiconductor epitaxial wafer and the peak wavelength thereof is detected. Subsequently, the composition of In in the InGaAs layer is estimated and only such compositions as falling within a specified range are selected thus realizing a highly accurate noncontact measurement of the composition of In in the InGaAs layer of a semiconductor epitaxial wafer in a short time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、化合物半導体エピ
タキシャルウェハの製造方法に関する。
The present invention relates to a method for manufacturing a compound semiconductor epitaxial wafer.

【0002】[0002]

【従来の技術】GaAs系化合物半導体エピタキシャル
ウェハは、当初n−GaAsを用いたFET用か、ある
いはAlGaAs層を電子供給層とし、GaAs層を電
子走行層としたHEMT用に用いられていたが、歪特性
等の改良のため、昨今ではGaAs層の代わりにInG
aAs層を用いたFET用あるいはシングルのHEMT
用、ダブルのHEMT用のエピタキシャルウェハが主流
となっている。
2. Description of the Related Art A GaAs-based compound semiconductor epitaxial wafer was initially used for an FET using n-GaAs or for a HEMT using an AlGaAs layer as an electron supply layer and a GaAs layer as an electron transit layer. In order to improve the strain characteristics, etc., recently, instead of a GaAs layer, InG
FET or single HEMT using aAs layer
And double HEMT epitaxial wafers are the mainstream.

【0003】[0003]

【発明が解決しようとする課題】ところで、エピタキシ
ャルウェハ製品は、その品質検査としては非接触の測定
方法しか使用できない。これは、エピタキシャルウェハ
表面に物が触ると異物やキズが発生してしまうためであ
る。
The quality of an epitaxial wafer product can be checked only by a non-contact measuring method. This is because foreign matter and scratches occur when an object touches the surface of the epitaxial wafer.

【0004】このため、従来の品質検査項目としては、
ウェハ表面の外観目視検査、異物数の測定、シート抵抗
の測定、電子移動度の測定を行うのみであった。これら
の検査や測定はいずれも非接触で行うことができる。
For this reason, conventional quality inspection items include:
Only the visual inspection of the wafer surface, the measurement of the number of foreign substances, the measurement of the sheet resistance, and the measurement of the electron mobility were performed. All of these inspections and measurements can be performed without contact.

【0005】従来、InGaAs層を含まないエピタキ
シャルウェハ、換言するとGaAs層を電子走行層に使
用していたFET用、HEMT用のエピタキシャルウェ
ハは、先に述べた検査項目で十分であった。なぜなら、
GaAs層 III族の組成比というのが存在しないからで
ある。
Conventionally, the inspection items described above were sufficient for an epitaxial wafer containing no InGaAs layer, in other words, an epitaxial wafer for FET and HEMT in which a GaAs layer was used as an electron transit layer. Because
This is because there is no composition ratio of the GaAs layer group III.

【0006】これに対し、新たにInGaAs層を電子
走行層に用いるFET用、HEMT用エピタキシャルウ
ェハは、InGaAs層のIn組成(あるいはGa組
成)がエピタキシャルウェハ製品の品質を決定する最も
重要なパラメータの一つとなる。このIn組成を非接触
で測定する方法としては、XRD(X−Ray Dif
fraction)測定法があるが、この方法は高精度
測定のため測定時間が2時間はかかってしまう。これで
はエピタキシャルウェハ製品1枚当たりの品質保証をす
るための測定方法としては時間がかかり過ぎ、不適切で
あった。また測定精度も±0.005程度と良好ではな
かったという問題があった。
On the other hand, in an epitaxial wafer for FET and HEMT using an InGaAs layer as an electron transit layer, the In composition (or Ga composition) of the InGaAs layer is the most important parameter for determining the quality of an epitaxial wafer product. Become one. As a method for measuring this In composition in a non-contact manner, XRD (X-Ray Dif) is used.
There is a fraction measurement method, but this method requires two hours because of the high precision measurement. This is too long and unsuitable as a measuring method for assuring quality per epitaxial wafer product. There was also a problem that the measurement accuracy was not as good as about ± 0.005.

【0007】そこで、本発明の目的は、上記課題を解決
し、化合物半導体エピタキシャルウェハの特定の半導体
層の組成を非接触で短時間にかつ高精度で測定できる化
合物半導体エピタキシャルウェハの製造方法を提供する
ことにある。
Accordingly, an object of the present invention is to solve the above-mentioned problems and to provide a method of manufacturing a compound semiconductor epitaxial wafer capable of measuring the composition of a specific semiconductor layer of the compound semiconductor epitaxial wafer in a non-contact manner in a short time and with high accuracy. Is to do.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明の化合物半導体エピタキシャルウェハの製造方
法は、化合物半導体エピタキシャルウェハに対しフォト
ルミネセンス測定を行い、そのピーク波長を検出し、特
定の半導体層の組成を見積もり、その組成が所定の範囲
内となるものだけを選別することにより、化合物半導体
エピタキシャルウェハ製品の品質を保証するものであ
る。
In order to achieve the above object, a method of manufacturing a compound semiconductor epitaxial wafer according to the present invention is to perform photoluminescence measurement on the compound semiconductor epitaxial wafer, detect a peak wavelength thereof, and specify a specific wavelength. The quality of a compound semiconductor epitaxial wafer product is guaranteed by estimating the composition of a semiconductor layer and selecting only those having a composition within a predetermined range.

【0009】本発明の化合物半導体エピタキシャルウェ
ハの製造方法は、少なくともInGaAs層を含み、そ
の他GaAs層、AlGaAs層、GaInP層及びI
nGaAs層との組み合わせからなるHEMT用あるい
はFET用の化合物半導体エピタキシャルウェハの製造
方法において、化合物半導体エピタキシャルウェハに対
しフォトルミネセンス測定を行い、そのピーク波長を検
出し、InGaAs層のIn組成を見積もり、そのIn
組成が所定の範囲内のものだけを選別することにより、
化合物半導体エピタキシャルウェハ製品の品質を保証す
るものである。
The method of manufacturing a compound semiconductor epitaxial wafer of the present invention includes at least an InGaAs layer, and further includes a GaAs layer, an AlGaAs layer, a GaInP layer, and an IGaAs layer.
In a method for manufacturing a compound semiconductor epitaxial wafer for HEMT or FET comprising a combination with an nGaAs layer, photoluminescence measurement is performed on the compound semiconductor epitaxial wafer, the peak wavelength is detected, and the In composition of the InGaAs layer is estimated. The In
By selecting only those whose composition is within a predetermined range,
This guarantees the quality of the compound semiconductor epitaxial wafer product.

【0010】本発明は、エピタキシャルウェハ製品のI
nGaAs層のIn組成測定を非接触で簡便に行えるフ
ォトルミネッセンス法を用い、測定したスペクトルから
In組成を見積もることにより品質を保証するものであ
る。XRD法による測定よりは高精度(±0.001)
で測定でき、測定時間も数分とかなり短縮できる。
[0010] The present invention relates to an epitaxial wafer product.
The quality is assured by estimating the In composition from the measured spectrum by using a photoluminescence method that can easily measure the In composition of the nGaAs layer in a non-contact manner. Higher accuracy than measurement by XRD method (± 0.001)
And the measurement time can be considerably reduced to several minutes.

【0011】フォトルミネセンス測定法自体は古くから
良く知られている測定方法ではあるが、本発明者らは、
そのスペクトルからIn組成を見積もることを見出だし
た。このスペクトルを用いてエピタキシャルウェハ製品
のInGaAs層のIn組成を品質保証しようとするの
が本発明の特徴である。
Although the photoluminescence measurement method itself has been a well-known measurement method for a long time, the present inventors have proposed:
It has been found that the In composition is estimated from the spectrum. It is a feature of the present invention to attempt to assure the quality of the In composition of the InGaAs layer of the epitaxial wafer product using this spectrum.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。
Embodiments of the present invention will be described below.

【0013】本発明の化合物半導体エピタキシャルウェ
ハの製造方法は、化合物半導体エピタキシャルウェハに
対しフォトルミネセンス測定を行い、そのピーク波長を
検出し、特定の半導体層の組成を見積もり、その組成が
所定の範囲内となるものだけを選別することにより、化
合物半導体エピタキシャルウェハ製品の品質を保証する
ものである。
According to the method of manufacturing a compound semiconductor epitaxial wafer of the present invention, photoluminescence measurement is performed on the compound semiconductor epitaxial wafer, the peak wavelength is detected, the composition of a specific semiconductor layer is estimated, and the composition is adjusted to a predetermined range. By selecting only the inner ones, the quality of the compound semiconductor epitaxial wafer product is guaranteed.

【0014】フォトルミネセンス測定で得られたスペク
トルから特定の半導体層の組成を見積もることができ、
この組成に基づいて化合物半導体エピタキシャルウェハ
を選別することにより化合物半導体エピタキシャルウェ
ハ製品の品質保証を行うことができる。
The composition of a specific semiconductor layer can be estimated from the spectrum obtained by the photoluminescence measurement,
By selecting the compound semiconductor epitaxial wafer based on this composition, the quality of the compound semiconductor epitaxial wafer product can be assured.

【0015】[0015]

【実施例】図1はInGaAs層を含む化合物半導体エ
ピタキシャルウェハの一例として、ダブルドープのHE
MT構造の断面図である。
FIG. 1 shows a double-doped HE as an example of a compound semiconductor epitaxial wafer including an InGaAs layer.
It is sectional drawing of MT structure.

【0016】このエピタキシャルウェハは、GaAs基
板1の上に、バッファ層2、n+ −AlGaAs層3、
アンドープInGaAs層4、n+ −AlGaAs層
5、アンドープAlGaAs層6及びn+ −GaAs層
7を順次エピタキシャル成長させたものである。
This epitaxial wafer has a buffer layer 2, an n + -AlGaAs layer 3,
The undoped InGaAs layer 4, the n + -AlGaAs layer 5, the undoped AlGaAs layer 6, and the n + -GaAs layer 7 are sequentially epitaxially grown.

【0017】図2は図1に示した構造を有するエピタキ
シャルウェハ製品をフォトルミネッセンス測定したスペ
クトルであり、横軸が波長を示し、縦軸が強度(INT
ENSITY)を示している。
FIG. 2 is a spectrum obtained by photoluminescence measurement of an epitaxial wafer product having the structure shown in FIG. 1. The horizontal axis indicates the wavelength, and the vertical axis indicates the intensity (INT).
ENSITY).

【0018】同図よりピーク波長は960nmであり、
このピーク波長からIn組成を見積もると、0.150
となる。
From the figure, the peak wavelength is 960 nm,
When the In composition is estimated from this peak wavelength, it is 0.150
Becomes

【0019】なぜフォトルミネッセンスのピーク波長か
らIn組成を見積もることができるかについて図3を参
照して説明する。
The reason why the In composition can be estimated from the peak wavelength of photoluminescence will be described with reference to FIG.

【0020】図3は図1に示したエピタキシャルウェハ
のInGaAs層付近のバンドモデル図である。
FIG. 3 is a band model diagram near the InGaAs layer of the epitaxial wafer shown in FIG.

【0021】同図においてBcは伝導帯(エネルギーE
c)を示し、Bvは価電子帯(エネルギーEv)を示
し、Egはエネルギーギャップを示している。
In the figure, Bc is a conduction band (energy E
c), Bv indicates a valence band (energy Ev), and Eg indicates an energy gap.

【0022】ダブルドープHEMT構造は電子供給層で
あるAlGaAs層にn型不純物(例えばSi)を添加
した層を、電子走行層(無添加InGaAs層)の上下
に成長させた構造となっている。n−AlGaAs層か
ら供給された電子eは、エネルギーギャップEgの小さ
いアンドープInGaAs層側に溜まり、電子eはこの
アンドープInGaAs層を走行する。この電子e(キ
ャリア)はInGaAs層に存在するため、エピタキシ
ャルウェハに光を照射し、電子を励起するとInGaA
s層のエネルギーギャップに対応したルミネッセンス光
(hν)が発生する。このルミネッセンス光を測定した
のが図2である。InGaAsのエネルギーギャップは
In(あるいはGa)の組成比によって変化する(In
組成が大きくなる程、エネルギーギャップEgは小さく
なる)。
The double-doped HEMT structure has a structure in which a layer in which an n-type impurity (for example, Si) is added to an AlGaAs layer as an electron supply layer is grown above and below an electron transit layer (an undoped InGaAs layer). Electrons e supplied from the n-AlGaAs layer accumulate on the undoped InGaAs layer side having a small energy gap Eg, and the electrons e travel through the undoped InGaAs layer. Since the electrons e (carriers) are present in the InGaAs layer, when the epitaxial wafer is irradiated with light to excite electrons, InGaAs
Luminescent light (hv) corresponding to the energy gap of the s layer is generated. FIG. 2 shows the measurement of the luminescence light. The energy gap of InGaAs changes depending on the composition ratio of In (or Ga) (In
The energy gap Eg decreases as the composition increases).

【0023】従って、In組成が変化すると、ルミネッ
センス光のピーク波長が変化するため、このピーク波長
からIn組成を見積もることができる。
Therefore, when the In composition changes, the peak wavelength of the luminescence light changes, and the In composition can be estimated from this peak wavelength.

【0024】本発明者らの見積もりを表1に示す。Table 1 shows the estimates made by the present inventors.

【0025】[0025]

【表1】 [Table 1]

【0026】ピーク波長を測定することにより、±0.
001の精度でIn組成を見積もることができる。
By measuring the peak wavelength, ± 0.
The In composition can be estimated with an accuracy of 001.

【0027】以上本発明によれば、従来具現化するのが
難しかった化合物半導体エピタキシャルのInGaAs
層のIn組成をエピタキシャルウェハ製品で測定するこ
とが簡単に実施できる。この結果、InGaAs層を含
む化合物半導体エピタキシャルウェハを顧客に納入する
際の品質保証の内容を高めることができる。
As described above, according to the present invention, compound semiconductor epitaxial InGaAs, which has conventionally been difficult to realize,
It is easy to measure the In composition of a layer in an epitaxial wafer product. As a result, quality assurance when delivering a compound semiconductor epitaxial wafer including an InGaAs layer to a customer can be enhanced.

【0028】[0028]

【発明の効果】以上要するに本発明によれば、次のよう
な優れた効果を発揮する。
In summary, according to the present invention, the following excellent effects are exhibited.

【0029】化合物半導体エピタキシャルウェハの特定
の半導体層の組成を非接触で短時間にかつ高精度で測定
できる化合物半導体エピタキシャルウェハの製造方法の
提供を実現できる。
According to the present invention, it is possible to provide a method for manufacturing a compound semiconductor epitaxial wafer which can measure the composition of a specific semiconductor layer of the compound semiconductor epitaxial wafer in a non-contact manner in a short time and with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】InGaAs層を含む化合物半導体エピタキシ
ャルウェハの一例として、ダブルドープのHEMT構造
の断面図である。
FIG. 1 is a cross-sectional view of a double-doped HEMT structure as an example of a compound semiconductor epitaxial wafer including an InGaAs layer.

【図2】図1に示した構造を有するエピタキシャルウェ
ハ製品をフォトルミネッセンス測定したスペクトルであ
る。
FIG. 2 is a spectrum obtained by photoluminescence measurement of an epitaxial wafer product having the structure shown in FIG.

【図3】図1に示したエピタキシャルウェハのInGa
As層付近のバンドモデル図である。
FIG. 3 shows InGa of the epitaxial wafer shown in FIG. 1;
It is a band model figure near an As layer.

【符号の説明】[Explanation of symbols]

1 GaAs基板 2 バッファ層 3 n+ −AlGaAs層 4 アンドープInGaAs層 5 n+ −AlGaAs層 6 アンドープAlGaAs層 7 n+ −GaAs層Reference Signs List 1 GaAs substrate 2 buffer layer 3 n + -AlGaAs layer 4 undoped InGaAs layer 5 n + -AlGaAs layer 6 undoped AlGaAs layer 7 n + -GaAs layer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G043 AA01 BA01 CA05 EA01 KA05 LA01 4M106 AA01 AA10 AB01 CA18 CB21 5F102 FA09 GB01 GC01 GD01 GJ05 GL00 GL04 GM06 GN05 GQ03 HC01  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G043 AA01 BA01 CA05 EA01 KA05 LA01 4M106 AA01 AA10 AB01 CA18 CB21 5F102 FA09 GB01 GC01 GD01 GJ05 GL00 GL04 GM06 GN05 GQ03 HC01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 化合物半導体エピタキシャルウェハに対
しフォトルミネセンス測定を行い、そのピーク波長を検
出し、特定の半導体層の組成を見積もり、その組成が所
定の範囲内となるものだけを選別することにより、化合
物半導体エピタキシャルウェハ製品の品質を保証するこ
とを特徴とする化合物半導体エピタキシャルウェハの製
造方法。
1. A method of performing photoluminescence measurement on a compound semiconductor epitaxial wafer, detecting a peak wavelength thereof, estimating a composition of a specific semiconductor layer, and selecting only those having a composition within a predetermined range. A method for manufacturing a compound semiconductor epitaxial wafer, which guarantees the quality of a compound semiconductor epitaxial wafer product.
【請求項2】 少なくともInGaAs層を含み、その
他GaAs層、AlGaAs層、GaInP層及びIn
GaAs層との組み合わせからなるHEMT用あるいは
FET用の化合物半導体エピタキシャルウェハの製造方
法において、上記化合物半導体エピタキシャルウェハに
対しフォトルミネセンス測定を行い、そのピーク波長を
検出し、上記InGaAs層のIn組成を見積もり、そ
のIn組成が所定の範囲内のものだけを選別することに
より、化合物半導体エピタキシャルウェハ製品の品質を
保証することを特徴とする化合物半導体エピタキシャル
ウェハの製造方法。
2. A semiconductor device comprising at least an InGaAs layer, a GaAs layer, an AlGaAs layer, a GaInP layer, and an InGaAs layer.
In a method of manufacturing a compound semiconductor epitaxial wafer for HEMT or FET comprising a combination with a GaAs layer, photoluminescence measurement is performed on the compound semiconductor epitaxial wafer, a peak wavelength thereof is detected, and the In composition of the InGaAs layer is determined. A method for manufacturing a compound semiconductor epitaxial wafer, wherein the quality of a compound semiconductor epitaxial wafer product is guaranteed by estimating and selecting only those whose In composition is within a predetermined range.
JP11124774A 1999-04-30 1999-04-30 Production of compound semiconductor epitaxial wafer Pending JP2000315713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11124774A JP2000315713A (en) 1999-04-30 1999-04-30 Production of compound semiconductor epitaxial wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11124774A JP2000315713A (en) 1999-04-30 1999-04-30 Production of compound semiconductor epitaxial wafer

Publications (1)

Publication Number Publication Date
JP2000315713A true JP2000315713A (en) 2000-11-14

Family

ID=14893792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11124774A Pending JP2000315713A (en) 1999-04-30 1999-04-30 Production of compound semiconductor epitaxial wafer

Country Status (1)

Country Link
JP (1) JP2000315713A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0818035A (en) * 1994-06-29 1996-01-19 Hitachi Cable Ltd Method for evaluating epitaxial wafer in hemt structure
JPH09167789A (en) * 1995-12-14 1997-06-24 Toshiba Corp Evaluation method for semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0818035A (en) * 1994-06-29 1996-01-19 Hitachi Cable Ltd Method for evaluating epitaxial wafer in hemt structure
JPH09167789A (en) * 1995-12-14 1997-06-24 Toshiba Corp Evaluation method for semiconductor device

Similar Documents

Publication Publication Date Title
Feenstra Cross-sectional scanning tunnelling microscopy of III-V semiconductor structures
Feenstra Tunneling spectroscopy of the (110) surface of direct-gap III-V semiconductors
Hsu et al. Scanning Kelvin force microscopy imaging of surface potential variations near threading dislocations in GaN
Hakkarainen et al. Te incorporation and activation as n-type dopant in self-catalyzed GaAs nanowires
Bolinsson et al. Diffusion length measurements in axial and radial heterostructured nanowires using cathodoluminescence
Giannazzo et al. Atomic resolution interface structure and vertical current injection in highly uniform MoS2 heterojunctions with bulk GaN
Gonzalez et al. Minority-carrier diffusion length in a GaN-based light-emitting diode
Tsuruoka et al. Local electronic structures of GaMnAs observed by cross-sectional scanning tunneling microscopy
Feenstra et al. Tunneling spectroscopy of midgap states induced by arsenic precipitates in low‐temperature‐grown GaAs
JP2000315713A (en) Production of compound semiconductor epitaxial wafer
Xiang et al. Oxygen-related deep level defects in solid-source MBE grown GaInP
Giannazzo et al. Drift mobility in quantum nanostructures by scanning probe microscopy
Raisanen et al. Optical detection of misfit dislocation‐induced deep levels at InGaAs/GaAs heterojunctions
Balk et al. Microcharacterization of electroluminescent diodes with the scanning electron microscope (SEM)
Furlong et al. Antimonide based infrared materials: Developments in InSb and GaSb substrate technologies
Zhang et al. Evaluation of the performance correlated defects of metamorphic InGaAs photodetector structures through plane-view EBIC
Veal et al. Doping‐dependence of subband energies in quantized electron accumulation at InN surfaces
Yamauchi et al. Observation of quantum size and alloying effects of single InGaAs quantum dots on GaAs (001) by scanning tunneling spectroscopy
Kopf et al. Reduction of Al contamination in the GaAs layer of LPE-grown AlxGa1− xAs-GaAs heterostructures
JP3405682B2 (en) Nondestructive inspection method for semiconductor epitaxial film
Jenkins et al. Metrology of semiconductor device structures by cross-sectional AFM
Wruck et al. Doping inhomogeneities and compensation in n‐type LEC InP wafers
Drozdov et al. Quantitative analysis of the elemental composition and electron concentration in AlGaN/GaN heterostructures with a two-dimensional electron channel by means of SIMS and CV profiling
Krawczyk et al. Inspection of n-type InP crystals by scanning photoluminescence measurements
Wu et al. A dopant-related defect in Te-doped AlInP

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219