JP2000314689A - Method for preparing sample for analyzing impurities in depth direction of alumina sintered body and impurity analyzing method using the method - Google Patents

Method for preparing sample for analyzing impurities in depth direction of alumina sintered body and impurity analyzing method using the method

Info

Publication number
JP2000314689A
JP2000314689A JP11122889A JP12288999A JP2000314689A JP 2000314689 A JP2000314689 A JP 2000314689A JP 11122889 A JP11122889 A JP 11122889A JP 12288999 A JP12288999 A JP 12288999A JP 2000314689 A JP2000314689 A JP 2000314689A
Authority
JP
Japan
Prior art keywords
sample
sintered body
analysis
sulfuric acid
analyzing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11122889A
Other languages
Japanese (ja)
Inventor
Masato Takahashi
真人 高橋
Fumio Tokutake
文夫 徳岳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP11122889A priority Critical patent/JP2000314689A/en
Publication of JP2000314689A publication Critical patent/JP2000314689A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for preparing a sample capable of analyzing impurities in the depth direction of an alumina sintered body to easily and highly accurately determine the same without generating pollution and an impurity analyzing method using the same. SOLUTION: In a method for forming a sample for analyzing impurities in the depth direction of an alumina sintered body, an alumina sintered body analyzing sample and sulfuric acid are housed in a pressure decomposing container to etch a predetermined amt. of the analyzing sample by pressure decomposition and sulfuric acid after etching is recovered. The etching of a predetermined amt. of the analyzing sample and the recovery of sulfuric acid after etching are performed repeatedly and this recovered sulfuric acid is used as an impurity analyzing sample. This analyzing sample is used to analyze impurities of the alumina sintered body by a high sensitivity analyzing method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はアルミナ質焼結体の
深さ方向の不純物分析用試料の作製方法およびこれを用
いた不純物分析方法に係わり、特に、容易かつ高精度で
アルミナ質焼結体の深さ方向の不純物の分析を行えるア
ルミナ焼結体の深さ方向の不純物分析用試料の作製方法
およびこれを用いた不純物分析方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preparing a sample for impurity analysis in the depth direction of an alumina sintered body and an impurity analysis method using the same, and more particularly, to an alumina sintered body easily and accurately. The present invention relates to a method for preparing a sample for analyzing impurities in a depth direction of an alumina sintered body capable of analyzing impurities in a depth direction, and an impurity analysis method using the same.

【0002】[0002]

【従来の技術】従来、アルミナ質焼結体は耐熱性、高純
度および強度に優れているため、半導体処理用部材とし
て用いられており、また、アルミナ質多孔体はフィルタ
等に用いられている。
2. Description of the Related Art Conventionally, alumina-based sintered bodies have been used as semiconductor processing members because of their excellent heat resistance, high purity and strength, and alumina-based porous bodies have been used for filters and the like. .

【0003】しかし、近年半導体デバイスの高集積化が
進み半導体ウェーハ処理用部材に高純度化の要求が厳し
くなってきており、そのアルミナ質焼結体にも高純度化
が要求されてきた。
However, in recent years, the degree of integration of semiconductor devices has been advanced, and the demand for high purity of semiconductor wafer processing members has become strict, and the alumina sintered body has also been required to have high purity.

【0004】この高純度化の要求に応えるためには、半
導体処理用部材に用いられるアルミナ質焼結体の深さ方
向の不純物測定を行い、不純物含有量を管理する必要が
ある。
[0004] In order to meet the demand for higher purity, it is necessary to control the impurity content by measuring impurities in the depth direction of the alumina sintered body used for the semiconductor processing member.

【0005】アルミナ質の化学分析方法に関しては、日
本セラミックス協会規格JCRS104−1993「フ
ァインセラミックス用アルミナ微粉末の化学分析方法」
があり、アルミナ微粉末分析試料を加圧分解容器の樹脂
製容器に入れて硫酸等の試薬により試料全量を分解し、
この分解した試料溶液をICP−発光分光法により分析
するものである。この分析方法ではアルミナ微粉末分析
試料中に含まれる金属不純物量は定量できるが、試料の
深さ方向(層毎)の金属不純物量を定量することはでき
ず、また、分析試料として粉末を用いるため、粉砕工程
において、コンタミネーションの問題が発生する。
Regarding the method of chemical analysis of alumina, see JCRS 104-1993, "Chemical analysis method of alumina fine powder for fine ceramics", Japan Ceramic Association.
The alumina fine powder analysis sample is put into a resin container of a pressure decomposition container, and the whole sample is decomposed with a reagent such as sulfuric acid.
The decomposed sample solution is analyzed by ICP-emission spectroscopy. In this analysis method, the amount of metal impurities contained in the alumina fine powder analysis sample can be quantified, but the amount of metal impurities in the depth direction (for each layer) of the sample cannot be quantified, and powder is used as the analysis sample. Therefore, a problem of contamination occurs in the pulverizing step.

【0006】また、JIS R6123−1995「ア
ルミナ質研削材の化学分析方法」には、アルミナ質研削
材を白金ルツボに入れて試薬により試料全量を分解し、
この分解した試料溶液をモリブデン黄吸光光度法により
分析するものである。この分析方法ではアルミナ質研削
材分析試料中に含まれる金属不純物量は定量できるが試
料の深さ方向の金属不純物量を定量することはできず、
また、高感度分析用の分析試料の作製は、微量不純物の
定量に適さない。
JIS R6123-1995 “Chemical analysis method of alumina-based abrasive” describes that an alumina-based abrasive is put into a platinum crucible, and the whole sample is decomposed with a reagent.
This decomposed sample solution is analyzed by molybdenum yellow absorption spectrophotometry. With this analysis method, the amount of metal impurities contained in the alumina-based abrasive analysis sample can be quantified, but the amount of metal impurities in the depth direction of the sample cannot be quantified,
Further, preparation of an analysis sample for high-sensitivity analysis is not suitable for quantification of trace impurities.

【0007】また、特開平5―256744号公報に
は、分析試料の深さ方向の分析方法として、分析試料表
面にレーザ光を照射し、表面から内部へ向けて順次試料
を採取することによって、深さ方向分析を行う分析方法
が記載されている。この分析方法はレーザ光を用いるの
で大掛かりな装置を必要とし、試料の作製が容易に行い
にくく、また、溶融された試料の採取時に、試料を汚染
する虞があった。
Japanese Patent Application Laid-Open No. 5-256744 discloses a method of analyzing a sample in the depth direction by irradiating a laser beam to the surface of the sample and sequentially collecting the sample from the surface toward the inside. An analysis method for performing a depth direction analysis is described. Since this analysis method uses a laser beam, it requires a large-scale apparatus, it is difficult to prepare a sample easily, and there is a possibility that the sample may be contaminated when a molten sample is collected.

【0008】[0008]

【発明が解決しようとする課題】そこで、容易かつ汚染
がなく、高精度で不純物を定量できるアルミナ質焼結体
の深さ方向の不純物の分析を行えるアルミナ焼結体の深
さ方向の不純物分析用試料の作製方法およびこれを用い
た不純物分析方法が要望されていた。
SUMMARY OF THE INVENTION Therefore, a depth-wise impurity analysis of an alumina sintered body capable of analyzing impurities in a depth direction of the alumina sintered body easily and without contamination and capable of quantitatively determining impurities with high precision. There has been a demand for a method for preparing a sample for use and an impurity analysis method using the same.

【0009】本発明は上述した事情を考慮してなされた
もので、容易かつ汚染がなく、高精度で不純物を定量で
きるアルミナ質焼結体の深さ方向の不純物の分析を行え
るアルミナ焼結体の深さ方向の不純物分析用試料の作製
方法およびこれを用いた不純物分析方法を提供すること
を目的とする。
The present invention has been made in view of the above circumstances, and is an alumina sintered body capable of analyzing impurities in the depth direction of an alumina sintered body that is easy, free of contamination, and capable of quantifying impurities with high precision. It is an object of the present invention to provide a method for preparing a sample for impurity analysis in the depth direction and a method for analyzing impurities using the same.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
になされた本願請求項1の発明は、 アルミナ質焼結体
分析試料および硫酸を加圧分解容器に収納し、加圧分解
により所定量分析試料をエッチングし、エッチング後の
硫酸を回収し、さらに、繰返し所定量分析試料のエッチ
ングとエッチング後の硫酸の回収を行い、この回収した
各々の硫酸を分析試料とすることを特徴とするアルミナ
質焼結体の深さ方向の不純物分析用試料の作製方法であ
ることを要旨としている。
Means for Solving the Problems According to the first aspect of the present invention, which has been made to achieve the above object, an alumina-based sintered body analysis sample and sulfuric acid are housed in a pressure decomposition vessel, and a predetermined amount is decomposed by pressure decomposition. An alumina sample characterized by etching an analysis sample, collecting sulfuric acid after etching, and repeatedly etching a predetermined amount of the analysis sample and collecting sulfuric acid after etching, and using each of the collected sulfuric acid as an analysis sample. The gist is to provide a method for producing a sample for impurity analysis in the depth direction of a porous sintered body.

【0011】本願請求項2の発明では、 上記分析試料
の所定量エッチングは、加圧分解時間と加圧温度により
決定されることを特徴とする請求項1に記載のアルミナ
質焼結体の深さ方向の不純物分析用試料の作製方法であ
ることを要旨としている。
According to the second aspect of the present invention, the etching of the predetermined amount of the analysis sample is determined by a pressure decomposition time and a pressure temperature. The gist is to provide a method for preparing a sample for impurity analysis in the vertical direction.

【0012】本願請求項3の発明では、 上記加圧分解
容器のアルミナ質焼結体分析試料および硫酸が収納され
る内容器は、PFA製であることを特徴とする請求項1
または2に記載のアルミナ質焼結体の深さ方向の不純物
分析用試料の作製方法であることを要旨としている。
The invention according to claim 3 of the present invention is characterized in that the inner container in which the sample for alumina-based sintered body and the sulfuric acid of the pressure decomposition vessel are stored is made of PFA.
Or the method of preparing a sample for analyzing impurities in the depth direction of the alumina-based sintered body described in 2 above.

【0013】本願請求項4の発明では、アルミナ質焼結
体分析試料および硫酸を加圧分解容器に収納し、加圧分
解により所定量分析試料をエッチングし、エッチング後
の硫酸を回収し、さらに、繰返し所定量分析試料のエッ
チングとエッチング後の硫酸の回収を行い、この回収し
た各々の硫酸を用いて高感度分析法により定量すること
を特徴とするアルミナ質焼結体の深さ方向の不純物分析
方法であることを要旨としている。
According to the invention of claim 4 of the present application, the alumina-based sintered body analysis sample and sulfuric acid are stored in a pressure decomposition vessel, a predetermined amount of the analysis sample is etched by pressure decomposition, and the sulfuric acid after the etching is recovered. A predetermined amount of an analytical sample is repeatedly etched and sulfuric acid after the etching is collected, and the sulfuric acid after the etching is quantitatively determined by a high-sensitivity analysis method using each of the collected sulfuric acids. The gist is that it is an analysis method.

【0014】本願請求項5の発明では、上記高感度分析
法は、プラズマ発光分析法またはフレームレス原子吸光
分光法であることを特徴とする請求項4に記載のアルミ
ナ質焼結体の深さ方向の不純物分析方法であることを要
旨としている。
In the invention of claim 5 of the present application, the high-sensitivity analysis method is plasma emission analysis or flameless atomic absorption spectroscopy, and the depth of the alumina-based sintered body according to claim 4 is characterized in that: The gist is that it is a method for analyzing impurities in one direction.

【0015】[0015]

【発明の実施の形態】以下、本発明に係わるアルミナ質
焼結体の深さ方向の不純物分析用試料の作製方法および
これを用いた不純物分析方法の実施形態について添付図
面に基づき説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of a method for preparing a sample for impurity analysis in the depth direction of an alumina sintered body according to the present invention and an impurity analysis method using the same will be described with reference to the accompanying drawings.

【0016】アルミナ質焼結体の深さ方向の不純物量
は、例えば図1に示すような工程を有する方法により不
純物分析用試料を作製し測定する。
The amount of impurities in the depth direction of the alumina sintered body is measured, for example, by preparing a sample for impurity analysis by a method having a process as shown in FIG.

【0017】例えば、試料のアルミナ質焼結体と溶媒の
硫酸(1+3)を用意し、図2に示すようなPFA製の
内容器1を有する加圧分解容器2に収納し、所定温度で
所定時間加圧分解することにより所定量(所定深さ)だ
けアルミナ質焼結体をエッチングし、冷却後、エッチン
グに用いた硫酸を回収し、定容して、高感度分析用試料
を作製する。加熱時間とアルミナ質焼結体の深さ方向の
エッチング量は図3に示すような傾向を示し、溶解量は
加熱温度および加熱時間によって概ね調整することがで
きる。
For example, an alumina sintered body as a sample and sulfuric acid (1 + 3) as a solvent are prepared and stored in a pressure decomposition vessel 2 having a PFA inner vessel 1 as shown in FIG. The alumina sintered body is etched by a predetermined amount (predetermined depth) by pressure decomposition for a time, and after cooling, the sulfuric acid used for the etching is recovered and fixed in volume to prepare a sample for high sensitivity analysis. The heating time and the amount of etching in the depth direction of the alumina sintered body show a tendency as shown in FIG. 3, and the amount of dissolution can be generally adjusted by the heating temperature and the heating time.

【0018】さらに、試料のアルミナ質焼結体が残され
た内容器1中に溶媒の硫酸を入れ所定温度で所定時間加
圧分解することにより所定量だけアルミナ質焼結体をエ
ッチングし、冷却後、エッチングに用いた硫酸を回収
し、定容して、高感度分析用試料を作製する。
Further, sulfuric acid as a solvent is put into the inner vessel 1 in which the alumina sintered body of the sample is left, and the alumina sintered body is etched by a predetermined amount by pressure decomposition at a predetermined temperature for a predetermined time, followed by cooling. Thereafter, the sulfuric acid used for the etching is recovered, and the volume is fixed to prepare a sample for high sensitivity analysis.

【0019】この加圧分解、定容のサイクルを複数回繰
返すことにより、アルミナ質焼結体の深さ方向毎(層
毎)に、不純物高感度分析用の分析試料を得る。
By repeating the cycle of pressure decomposition and constant volume a plurality of times, an analytical sample for high sensitivity analysis of impurities is obtained in each depth direction (layer) of the alumina sintered body.

【0020】次に、本発明に係わるアルミナ質焼結体の
深さ方向の不純物分析方法について説明する。
Next, a method of analyzing impurities in the depth direction of the alumina sintered body according to the present invention will be described.

【0021】図4に示すように、高感度分析法、例えば
誘導結合プラズマ発光分析法(ICP−AES)によれ
ば、ICP−AESは、分析試料中に含まれる微量の金
属元素の定量に用いられるもので、誘導結合プラズマで
励起された原子やイオンから発光されるシグナルの波長
から特定の元素の定性を調べ、またこのシグナルの強度
からその元素の定量を行うものである。
As shown in FIG. 4, according to a high-sensitivity analysis method, for example, inductively coupled plasma emission spectrometry (ICP-AES), ICP-AES is used for quantification of a trace amount of a metal element contained in an analysis sample. The purpose is to examine the qualitative properties of a specific element from the wavelength of a signal emitted from atoms or ions excited by inductively coupled plasma, and to quantify the element from the intensity of the signal.

【0022】例えば、分析試料sは、ネプライザ11を
通して誘導結合プラズマ12内に導入される。試料s中
の元素は誘導結合プラズマ12により励起され、発光シ
グナルが放出される。この発光シグナルは入口スリット
13から分光部14のミラー15、グレーティング1
6、ミラー17により出口スリット18へと導かれ、出
力される。光電子倍増管19はこの出力シグナルを検出
し、その検出シグナルを増幅器20で増幅し、記録計2
1へ記録し、データ処理部22にシグナルが送られてデ
ータ処理が行われる。
For example, the analysis sample s is introduced into the inductively coupled plasma 12 through the nebulizer 11. The elements in the sample s are excited by the inductively coupled plasma 12 and emit a luminescent signal. This emission signal is transmitted from the entrance slit 13 to the mirror 15
6. The light is guided to the exit slit 18 by the mirror 17 and output. The photomultiplier tube 19 detects this output signal, amplifies the detected signal with an amplifier 20, and
1 and a signal is sent to the data processing unit 22 to perform data processing.

【0023】このようなICP−AESを用いること
で、Mg、Si、Ca、Ti、Cr、Fe、Ni、Cu
の含有不純物量を高感度で測定することができる。
By using such ICP-AES, Mg, Si, Ca, Ti, Cr, Fe, Ni, Cu
Can be measured with high sensitivity.

【0024】また、図5に示すように、高感度分析法、
例えばフレームレス原子吸光法(FLAA)によれば、
FLAAは電気加熱方式によって原子状の蒸気に解離さ
せ、これに光源(中空陰極放電管など)から光を導き、
特定の単色共鳴線の光の強度を測定する。吸光度は試料
中の目的金属元素の原子密度に比例するため、これから
分析試料中の濃度を求める方法である。
Further, as shown in FIG.
For example, according to the flameless atomic absorption method (FLAA),
FLAA dissociates into atomic vapors by an electric heating method and guides light from a light source (such as a hollow cathode discharge tube) to this,
The light intensity of a specific monochromatic resonance line is measured. Since the absorbance is proportional to the atomic density of the target metal element in the sample, the concentration in the analysis sample is determined from this.

【0025】例えば、マイクロピペット31により分析
試料(液)sの5〜50μlを管状の黒鉛炉32の小孔
に極少量の分析試料sを注入し、電極33から黒鉛炉3
2に電流を流して発生するジュール熱により、分析試料
(液)sを完全に気化させる。中空陰極管34の光源か
ら発せられた照射光35は、黒鉛炉32内の原子化され
た状態に照射され、分光器36を経て検出器37に至
り、検出器37で光の吸収が測定される。次いで、信号
処理部38を経て表示部39に吸光度が出力される。
吸光シグナルは原子化後直ちに出現しそのピーク値ある
いは積分値が記録される。この吸光シグナル強度は、分
析試料s中の金属元素濃度に比例するので、この関係を
標準液について検量線にして、金属元素の定量分析が行
われる。
For example, 5 to 50 μl of an analysis sample (liquid) s is injected into a small hole of a tubular graphite furnace 32 with a micropipette 31 and a very small amount of the analysis sample s is injected from the electrode 33 to the graphite furnace 3.
The sample (liquid) s is completely vaporized by Joule heat generated by passing an electric current through the sample 2. Irradiation light 35 emitted from the light source of the hollow cathode tube 34 is irradiated to the atomized state in the graphite furnace 32, reaches the detector 37 via the spectroscope 36, and the light absorption is measured by the detector 37. You. Next, the absorbance is output to the display unit 39 via the signal processing unit 38.
The absorption signal appears immediately after atomization and its peak value or integrated value is recorded. Since the absorbance signal intensity is proportional to the concentration of the metal element in the analysis sample s, the quantitative analysis of the metal element is performed using this relationship as a calibration curve for the standard solution.

【0026】このようにFLAAを用いることで、N
a、Kの含有不純物量を高感度で測定することができ
る。
By using FLAA in this way, N
The content of impurities a and K can be measured with high sensitivity.

【0027】[0027]

【実施例】(1)試験1 回収率調査 図2に示すような加圧分解容器に各金属元素1ngを含
む溶液を入れ、230℃で16時間加熱した後、溶液を
回収し、ICP−AES、FLAAにより分析して、各
金属元素の回収率を調査した。同様の試験を5回行った
結果の平均値を表1に示す。
Example (1) Investigation of Test 1 Recovery Yield A solution containing 1 ng of each metal element was placed in a pressure decomposition vessel as shown in FIG. 2 and heated at 230 ° C. for 16 hours. , FLAA and the recovery of each metal element was investigated. Table 1 shows the average value of the results of performing the same test five times.

【0028】[0028]

【表1】 [Table 1]

【0029】・各元素共100%前後の回収率が得ら
れ、ほぼ完全に各不純物金属元素とも回収できることが
確認できた。
A recovery rate of about 100% was obtained for each element, and it was confirmed that each impurity metal element could be almost completely recovered.

【0030】(2)試験2 繰返し精度 上記(1)と同様の試験を10回(Na、Kは5回)行
い、ふれの割合を調査した。
(2) Test 2 Repeatability The same test as the above (1) was performed 10 times (5 times for Na and K), and the ratio of run-out was investigated.

【0031】試験結果を表2に示す。Table 2 shows the test results.

【0032】[0032]

【表2】 [Table 2]

【0033】(3)試験3 試料の作製方法の定量限界 ・5回の空試験を行い、測定値の3σを濃度換算して定
量限界を求めた。結果を表3に示す。
(3) Test 3 Quantitative limit of sample preparation method Five blank tests were performed, and 3σ of the measured value was converted to concentration to determine the quantification limit. Table 3 shows the results.

【0034】[0034]

【表3】 [Table 3]

【0035】(4)試験4 実試料試験 アルミナ質焼結体(直径20mm×長さ30mm)と硫
酸を、図2に示すような加圧分解容器のPFA製容器
(容積23ml)に収納し、230℃で1エッチング当
り16時間のエッチングを9回繰返し行い、エッチング
後の硫酸を回収し、定容し、プラズマ発光分析法、原子
吸光分光法により分析して、アルミナ質焼結体の深さ方
向(層毎)に含有される各金属元素量を定量した。定量
結果を表4に示す。
(4) Test 4 Actual sample test The alumina sintered body (diameter 20 mm x length 30 mm) and sulfuric acid were put in a PFA container (capacity 23 ml) of a pressure decomposition container as shown in FIG. The etching was repeated 9 times at 230 ° C. for 16 hours per etching, and the sulfuric acid after the etching was recovered, fixed in volume, and analyzed by plasma emission analysis and atomic absorption spectroscopy to find the depth of the alumina-based sintered body. The amount of each metal element contained in the direction (for each layer) was determined. Table 4 shows the quantitative results.

【0036】[0036]

【表4】 [Table 4]

【0037】[0037]

【発明の効果】本発明に係わるアルミナ質焼結体の深さ
方向の不純物分析用試料の作製方法によれば、高精度で
不純物を定量できるアルミナ質焼結体の深さ方向の不純
物の分析を行えるアルミナ焼結体の深さ方向の不純物分
析用試料の作製方法を提供することができる。
According to the method for preparing a sample for analyzing impurities in the depth direction of an alumina sintered body according to the present invention, the analysis of impurities in the depth direction of the alumina sintered body can be performed with high accuracy. A method for producing a sample for analyzing impurities in the depth direction of an alumina sintered body, which can perform the above, can be provided.

【0038】即ち、繰返し所定量分析試料のエッチング
とエッチング後の硫酸の回収を行い、この回収した硫酸
を分析試料とすることによりアルミナ質焼結体の深さ方
向の不純物分析用試料を容易かつコンタミネーションな
く作製することができる。
That is, a predetermined amount of the analytical sample is repeatedly etched and sulfuric acid after the etching is recovered, and the recovered sulfuric acid is used as an analytical sample, whereby an impurity analysis sample in the depth direction of the alumina sintered body can be easily and easily obtained. It can be manufactured without contamination.

【0039】また、分析試料の所定量エッチングは、加
圧分解時間と加圧温度により決定されるので、アルミナ
質焼結体の深さ方向の溶解量を容易に調整でき、各深さ
(層)毎の分析試料を容易に作製することができる。
Further, since the etching of a predetermined amount of the analysis sample is determined by the pressure decomposition time and the pressure temperature, the amount of dissolution of the alumina-based sintered body in the depth direction can be easily adjusted, and each depth (layer) can be adjusted. 2) An analysis sample can be easily prepared.

【0040】また、加圧分解容器のアルミナ質焼結体分
析試料および硫酸が収納される内容器がPFA製である
ので、コンタミネーションのない分析試料を作製するこ
とができる。
Since the alumina-based sintered body analysis sample of the pressure decomposition vessel and the inner container containing sulfuric acid are made of PFA, an analysis sample without contamination can be prepared.

【0041】また、本発明に係わるアルミナ焼結体の深
さ方向の不純物分析用試料の作製方法により作製された
分析試料を用いて高感度分析法により定量するので、高
感度でアルミナ焼結体の深さ方向の不純物分析を行え
る。
Further, since the quantitative determination is performed by the high sensitivity analysis method using the analytical sample prepared by the method for preparing a sample for impurity analysis in the depth direction of the alumina sintered body according to the present invention, the alumina sintered body is highly sensitive. Of impurities in the depth direction of the substrate.

【0042】また、高感度分析法は、プラズマ発光分析
法またはフレームレス原子吸光分光法により行うので、
より高感度でアルミナ質焼結体の深さ方向の不純物分析
を行える。
Since the high sensitivity analysis is performed by plasma emission analysis or flameless atomic absorption spectroscopy,
Impurity analysis in the depth direction of the alumina sintered body can be performed with higher sensitivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わるアルミナ質焼結体の深さ方向の
不純物分析用試料の作製方法およびこれを用いた不純物
分析方法の工程を示す説明図。
FIG. 1 is an explanatory view showing a method for producing a sample for impurity analysis in the depth direction of an alumina sintered body according to the present invention and the steps of an impurity analysis method using the same.

【図2】本発明に係わるアルミナ質焼結体の深さ方向の
不純物分析用試料の作製方法に用いられる加圧分解容器
の断面図。
FIG. 2 is a cross-sectional view of a pressurized decomposition vessel used in a method for producing a sample for impurity analysis in a depth direction of an alumina sintered body according to the present invention.

【図3】本発明に係わるアルミナ質焼結体の深さ方向の
不純物分析用試料の作製方法によるエッチング時間とエ
ッチング量の関係を示す説明図。
FIG. 3 is an explanatory view showing a relationship between an etching time and an etching amount in a method for manufacturing a sample for impurity analysis in a depth direction of an alumina sintered body according to the present invention.

【図4】本発明に係わるアルミナ質焼結体の深さ方向の
不純物分析に用いられるプラズマ発光分析法の概念図。
FIG. 4 is a conceptual diagram of a plasma emission analysis method used for analyzing impurities in a depth direction of an alumina sintered body according to the present invention.

【図5】本発明に係わるアルミナ質焼結体の深さ方向の
不純物分析に用いられるフレームレス原子吸光分光法の
概念図。
FIG. 5 is a conceptual diagram of flameless atomic absorption spectroscopy used for analyzing impurities in a depth direction of the alumina sintered body according to the present invention.

【符号の説明】[Explanation of symbols]

1 PFA製内容器 2 加圧分解容器 11 ネブライザ 12 誘導結合プラズマ 13 入口スリット 14 分光部 15 ミラー 16 グレーティング 17 ミラー 18 出口スリット 19 光電子倍増管 20 増幅器 21 記録計 22 データ処理部 31 マイクロピペット 32 黒鉛炉 33 電極 34 中空陰極管 35 照射光 36 分光器 37 検出器 38 信号処理部 39 表示部 DESCRIPTION OF SYMBOLS 1 PFA inner container 2 Pressurized decomposition vessel 11 Nebulizer 12 Inductively coupled plasma 13 Inlet slit 14 Spectroscopic part 15 Mirror 16 Grating 17 Mirror 18 Outlet slit 19 Photomultiplier tube 20 Amplifier 21 Recorder 22 Data processing part 31 Micropipette 32 Graphite furnace 33 Electrode 34 Hollow cathode tube 35 Irradiation light 36 Spectrometer 37 Detector 38 Signal processing unit 39 Display unit

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G042 AA01 BA20 BC01 BC02 BC04 BC06 BC08 BC10 CA04 CB06 DA10 EA03 FA01 FB02 GA01 GA02 HA02 HA05  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G042 AA01 BA20 BC01 BC02 BC04 BC06 BC08 BC10 CA04 CB06 DA10 EA03 FA01 FB02 GA01 GA02 HA02 HA05

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 アルミナ質焼結体分析試料および硫酸を
加圧分解容器に収納し、加圧分解により所定量分析試料
をエッチングし、エッチング後の硫酸を回収し、さら
に、繰返し所定量分析試料のエッチングとエッチング後
の硫酸の回収を行い、この回収した各々の硫酸を分析試
料とすることを特徴とするアルミナ質焼結体の深さ方向
の不純物分析用試料の作製方法。
1. An alumina-based sintered body analysis sample and sulfuric acid are housed in a pressure decomposition vessel, a predetermined amount of the analysis sample is etched by pressure decomposition, the sulfuric acid after the etching is recovered, and a predetermined amount of the analysis sample is repeatedly repeated. A method for producing a sample for impurity analysis in the depth direction of an alumina-based sintered body, characterized in that etching of sulfuric acid and recovery of sulfuric acid after etching are performed, and each of the recovered sulfuric acid is used as an analysis sample.
【請求項2】 上記分析試料の所定量エッチングは、加
圧分解時間と加圧温度により決定されることを特徴とす
る請求項1に記載のアルミナ質焼結体の深さ方向の不純
物分析用試料の作製方法。
2. The method for analyzing impurities in a depth direction of an alumina sintered body according to claim 1, wherein the predetermined amount of etching of the analysis sample is determined by a pressure decomposition time and a pressure temperature. Sample preparation method.
【請求項3】 上記加圧分解容器のアルミナ質焼結体分
析試料および硫酸が収納される内容器は、PFA製であ
ることを特徴とする請求項1または2に記載のアルミナ
質焼結体の深さ方向の不純物分析用試料の作製方法。
3. The alumina-based sintered body according to claim 1, wherein the container for storing the sample for analysis of the alumina-based sintered body and sulfuric acid in the pressure decomposition vessel is made of PFA. Of preparing a sample for impurity analysis in the depth direction of the sample.
【請求項4】 アルミナ質焼結体分析試料および硫酸を
加圧分解容器に収納し、加圧分解により所定量分析試料
をエッチングし、エッチング後の硫酸を回収し、さら
に、繰返し所定量分析試料のエッチングとエッチング後
の硫酸の回収を行い、この回収した各々の硫酸を用いて
高感度分析法により定量することを特徴とするアルミナ
質焼結体の深さ方向の不純物分析方法。
4. An alumina-based sintered body analysis sample and sulfuric acid are housed in a pressure decomposition vessel, a predetermined amount of the analysis sample is etched by pressure decomposition, sulfuric acid after the etching is collected, and a predetermined amount of the analysis sample is repeated. And analyzing the sulfuric acid after the etching, and quantifying the sulfuric acid using the collected sulfuric acid by a high-sensitivity analysis method.
【請求項5】 上記高感度分析法は、プラズマ発光分析
法またはフレームレス原子吸光分光法であることを特徴
とする請求項4に記載のアルミナ質焼結体の深さ方向の
不純物分析方法。
5. The method for analyzing impurities in a depth direction of an alumina-based sintered body according to claim 4, wherein the high-sensitivity analysis is plasma emission analysis or flameless atomic absorption spectroscopy.
JP11122889A 1999-04-28 1999-04-28 Method for preparing sample for analyzing impurities in depth direction of alumina sintered body and impurity analyzing method using the method Pending JP2000314689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11122889A JP2000314689A (en) 1999-04-28 1999-04-28 Method for preparing sample for analyzing impurities in depth direction of alumina sintered body and impurity analyzing method using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11122889A JP2000314689A (en) 1999-04-28 1999-04-28 Method for preparing sample for analyzing impurities in depth direction of alumina sintered body and impurity analyzing method using the method

Publications (1)

Publication Number Publication Date
JP2000314689A true JP2000314689A (en) 2000-11-14

Family

ID=14847152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11122889A Pending JP2000314689A (en) 1999-04-28 1999-04-28 Method for preparing sample for analyzing impurities in depth direction of alumina sintered body and impurity analyzing method using the method

Country Status (1)

Country Link
JP (1) JP2000314689A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032488A (en) * 2006-07-27 2008-02-14 Sannohashi Corp Non-phosphate coating component inspection method
JP2010139255A (en) * 2008-12-09 2010-06-24 Covalent Materials Corp Method for analysis of impurity in ceramics member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032488A (en) * 2006-07-27 2008-02-14 Sannohashi Corp Non-phosphate coating component inspection method
JP2010139255A (en) * 2008-12-09 2010-06-24 Covalent Materials Corp Method for analysis of impurity in ceramics member

Similar Documents

Publication Publication Date Title
Akash et al. Essentials of pharmaceutical analysis
Limbeck et al. Improvements in the direct analysis of advanced materials using ICP-based measurement techniques
US5991020A (en) Method for determining the concentration of atomic species in gases and solids
Nakata et al. Direct solid sampling system for electrothermal vaporization and its application to the determination of chlorine in nanopowder samples by inductively coupled plasma optical emission spectroscopy
Becker et al. Determination of trace elements in high-purity platinum by laser ablation inductively coupled plasma mass spectrometry using solution calibration
Farah et al. Developments and applications of multielement graphite furnace atomic absorption spectrometry
Oh et al. Preliminary evaluation of laser induced breakdown spectroscopy for slurry samples
US4561777A (en) Apparatus and method for quantitative determination of materials contained in fluids
JP2000314689A (en) Method for preparing sample for analyzing impurities in depth direction of alumina sintered body and impurity analyzing method using the method
Matusiewicz et al. Determination of aluminum and silicon in biological materials by inductively coupled plasma atomic emission spectrometry with electrothermal vaporization
CN110887710A (en) Sample preparation method for analyzing elements in water body based on laser-induced breakdown spectroscopy technology
JP2006329687A (en) Analytical method for trace element in metal sample
Remy et al. Real sample analysis by ETA-LEAFS with background correction: application to gold determination in river water
Aucelio et al. Ultratrace determination of platinum in environmental and biological samples by electrothermal atomization laser-excited atomic fluorescence using a copper vapor laser pumped dye
Baker et al. Analysis of silicon nitride bearings with laser ablation inductively coupled plasma mass spectrometry
Tianyou et al. Direct analysis of titanium dioxide solid powder by fluorination assisted electrothermal vaporization inductively coupled plasma atomic emission spectrometry
Hu et al. Determination of ruthenium in photographic materials using solid sampling electrothermal vaporization inductively coupled plasma mass spectrometry
Gornushkin et al. Use of laser-excited atomic fluorescence spectrometry with a novel diffusive graphite tube electrothermal atomizer for the direct determination of silver in sea water and in solid reference materials
CN114441503A (en) Melamine quantitative detection method based on surface enhanced Raman spectrum internal standard analysis
JP2001242052A (en) Method for analyzing impurity in semiconductor substrate or chemicals
Matusiewicz et al. Development of interface for online coupling of micro-fluidic chip-based photo-micro-reactor/ultrasonic nebulization with microwave induced plasma spectrometry and its application in simultaneous determination of inorganic trace elements in biological materials
Bian et al. Online flow digestion of biological and environmental samples for inductively coupled plasma–optical emission spectroscopy (ICP–OES)
JP2616177B2 (en) Ceramic composition analysis method
Pougnet et al. Determination of beryllium and lithium in coal ash by inductively coupled plasma atomic emission spectroscopy
Huang et al. Electrothermal vaporization

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040316