JP2000310548A - Manufacture of thin-film sensor - Google Patents

Manufacture of thin-film sensor

Info

Publication number
JP2000310548A
JP2000310548A JP11120759A JP12075999A JP2000310548A JP 2000310548 A JP2000310548 A JP 2000310548A JP 11120759 A JP11120759 A JP 11120759A JP 12075999 A JP12075999 A JP 12075999A JP 2000310548 A JP2000310548 A JP 2000310548A
Authority
JP
Japan
Prior art keywords
thin film
insulating thin
sensor
insulating
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11120759A
Other languages
Japanese (ja)
Other versions
JP4470233B2 (en
Inventor
Futoshi Ida
太 位田
Kimihiro Terasaki
公浩 寺崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP12075999A priority Critical patent/JP4470233B2/en
Publication of JP2000310548A publication Critical patent/JP2000310548A/en
Application granted granted Critical
Publication of JP4470233B2 publication Critical patent/JP4470233B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a manufacturing method for a thin-film sensor which has an insulating thin film with a small drop in an insulating characteristic even under a high-temperature environment and by which a physical change amount such as a stress, a temperature or the like acting on an object to be measured can be measured surely. SOLUTION: In this method for manufacturing this thin-film sensor which measures a physical change amount such as a stress, a temperature or the like acting on an object 1 to be measured, a plurality of insulating thin-film layers 2, 3,... are laminated on the object 1, an insulating thin film is formed, and a sensor membrane is attached to the insulating thin film, The method is provided with a polishing process in which, before a next insulating thin-film layer is formed, the surface of the insulating thin-film layers 2, 3,... formed on the object 1 is polished.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被測定物に複数の
絶縁薄膜層を積層して絶縁薄膜を形成し、この絶縁薄膜
にセンサ膜を取り付けることによって、被測定物へ作用
する応力や温度などの物理変化量を測定する薄膜センサ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming a thin insulating film by laminating a plurality of insulating thin film layers on an object to be measured, and attaching a sensor film to the insulating thin film so that stress and temperature acting on the object to be measured are improved. The present invention relates to a method of manufacturing a thin film sensor for measuring a physical change amount such as the above.

【0002】[0002]

【従来の技術】例えば、航空機用のガスタービンエンジ
ンの高圧圧縮機、あるいはタービン動翼等において、機
械部材の表面に作用する振動応力や温度等の物理変化量
を測定するために、機械部材の表面に薄膜センサを形成
する場合がある。こうした薄膜センサを製造するにあた
っては、一般に、機械部材の表面にスパッタリングある
いはプラズマCVD等によって、例えば10μmといっ
た厚みの絶縁薄膜を形成し、その上に金属材質のセンサ
膜を形成している。
2. Description of the Related Art For example, in a high-pressure compressor of an aircraft gas turbine engine, a turbine rotor blade, or the like, in order to measure a physical change amount such as a vibration stress or a temperature acting on the surface of the mechanical member, the mechanical member is measured. In some cases, a thin film sensor is formed on the surface. In manufacturing such a thin film sensor, generally, an insulating thin film having a thickness of, for example, 10 μm is formed on the surface of a mechanical member by sputtering or plasma CVD, and a sensor film made of a metal material is formed thereon.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の薄膜セ
ンサでは、高温環境下で使用すると、絶縁薄膜とセンサ
膜との熱膨張係数が異なるために絶縁薄膜からセンサ膜
が剥がれてしまったり、絶縁薄膜が厚いために絶縁薄膜
が割れてしまうといった問題があった。そこで、本出願
人は、特開平6−213690号公報に開示されている
ように、絶縁薄膜を、窒化ケイ素、窒化ホウ素、アルミ
ナ等の複数の絶縁薄膜層からなる積層構造とし、絶縁薄
膜層のそれぞれの層の厚みを薄くすることで、剥がれに
くい薄膜センサを製造する方法を提案している。ところ
が、こうした薄膜センサであっても、前述した高圧圧縮
機やタービン動翼での使用環境である600℃を超える
高温環境下では、薄膜センサの機能が損なわれることが
少なくないことが分かってきた。これは、600℃を超
える高温領域では、絶縁薄膜の絶縁特性が低下しやすい
ことが原因であると考えられている。そこで、さらに研
究を進めると、この高温領域での絶縁特性の低下を引き
起こす原因として、絶縁薄膜の形成過程で発生するピン
ホールが大きく影響していることが分かってきた。図4
は、こうしたピンホールの形成過程を示す図であって、
以下、この図4を参照してピンホールの形成過程を説明
する。まず、図4(a)において、機械部材20の表面
に汚れ・ゴミ等の微小粒子(パーティクルP)が付着し
ていると、絶縁薄膜層21を成膜した際に、(b)に示
すように、絶縁薄膜層21にパーティクルPを核とした
ピンホールHが形成される場合がある。このピンホール
Hは、縁部の角が取れて絶縁薄膜層21の表面近傍の内
径が大きくなっていることが多い。そして、絶縁薄膜層
21の上に次の絶縁薄膜層22を成膜すると、(c)に
示すように、この内径の大きい部分をきっかけに、さら
に大きいピンホールHが形成される。こうした過程が繰
り返されることによって、絶縁特性に影響を及ぼすよう
な大きいピンホールHが絶縁薄膜23内に形成されてし
まい、その結果、高温環境下での絶縁抵抗が低下してし
まうことが分かってきた。
However, in a conventional thin-film sensor, when used in a high-temperature environment, the sensor film may be peeled off from the insulating thin film due to a difference in the coefficient of thermal expansion between the insulating thin film and the sensor film, or the insulating film may be insulated. There is a problem that the insulating thin film is broken because the thin film is thick. Therefore, as disclosed in Japanese Patent Application Laid-Open No. Hei 6-213690, the present applicant has made the insulating thin film a laminated structure composed of a plurality of insulating thin film layers of silicon nitride, boron nitride, alumina, etc. A method of manufacturing a thin-film sensor that is hardly peeled off by reducing the thickness of each layer has been proposed. However, even with such a thin film sensor, it has been found that the function of the thin film sensor is often impaired in a high temperature environment exceeding 600 ° C., which is an environment used in the above-described high-pressure compressor and turbine rotor blades. . This is considered to be due to the fact that the insulating properties of the insulating thin film tend to deteriorate in a high temperature region exceeding 600 ° C. Therefore, further research has revealed that pinholes generated in the process of forming the insulating thin film have a great influence on the cause of the deterioration of the insulating properties in the high temperature region. FIG.
Is a diagram showing the process of forming such a pinhole,
Hereinafter, a process of forming a pinhole will be described with reference to FIG. First, in FIG. 4A, if fine particles (particles P) such as dirt and dust adhere to the surface of the mechanical member 20, when the insulating thin film layer 21 is formed, as shown in FIG. In some cases, pinholes H having particles P as nuclei are formed in the insulating thin film layer 21. In many cases, the edge of the pinhole H is rounded so that the inner diameter near the surface of the insulating thin film layer 21 is large. Then, when the next insulating thin film layer 22 is formed on the insulating thin film layer 21, as shown in (c), a larger pinhole H is formed triggered by the portion having the larger inner diameter. By repeating such a process, a large pinhole H that affects the insulation characteristics is formed in the insulating thin film 23, and as a result, it has been found that the insulation resistance in a high-temperature environment decreases. Was.

【0004】本発明は、こうした課題に鑑みてなされた
ものであり、高温環境下においても絶縁特性が低下する
ことの少ない絶縁薄膜を有し、被測定物に作用する応力
や温度などの物理変化量を確実に測定可能な薄膜センサ
の製造方法を提供することを目的とする。
The present invention has been made in view of these problems, and has an insulating thin film whose insulation characteristics are hardly deteriorated even in a high-temperature environment, and has a physical change such as stress or temperature acting on an object to be measured. An object of the present invention is to provide a method of manufacturing a thin film sensor capable of reliably measuring an amount.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、薄膜センサの製造方法に係る第1の手
段として、被測定物に複数の絶縁薄膜層を積層して絶縁
薄膜を形成し、絶縁薄膜にセンサ膜を取り付けることに
よって、被測定物へ作用する応力や温度などの物理変化
量を測定する薄膜センサを製造する方法であって、次の
絶縁薄膜層を成膜する前に、被測定物に形成されている
絶縁薄膜層の表面を研磨する研磨工程を備える手段を採
用する。また、第2の手段として、上記第1の手段にお
いて、研磨工程の後に、表面を研磨した絶縁薄膜層を洗
浄する洗浄工程を備える手段を採用する。さらに、第3
の手段として、上記第1または第2の手段において、研
磨工程では、ダイヤモンド研磨剤を用いて研磨する手段
を採用する。これにより、前述した課題を解決した薄膜
センサを製造することができる。
In order to achieve the above object, according to the present invention, as a first means according to a method for manufacturing a thin film sensor, a plurality of insulating thin film layers are laminated on an object to be measured to form an insulating thin film. A method of manufacturing a thin film sensor for measuring a physical change amount such as a stress or a temperature acting on an object to be measured by forming and attaching a sensor film to an insulating thin film, and before forming a next insulating thin film layer. Then, a means having a polishing step of polishing the surface of the insulating thin film layer formed on the object to be measured is adopted. Further, as the second means, the above-mentioned first means is provided with a cleaning step of cleaning the insulating thin film layer whose surface has been polished after the polishing step. In addition, the third
In the above-mentioned first or second means, in the polishing step, a means for polishing using a diamond abrasive is adopted. This makes it possible to manufacture a thin-film sensor that has solved the above-described problems.

【0006】[0006]

【発明の実施の形態】以下、本発明の一実施形態につい
て図1および図2を参照して説明する。図1は、本発明
に係る薄膜センサの製造過程の一部を説明する図であ
り、図2は、本実施形態の製造方法によって形成された
薄膜センサの概略構成を示す縦断面図である。まず、図
2を参照して本実施形態に係る薄膜センサの構成につい
て説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a view for explaining a part of the manufacturing process of the thin film sensor according to the present invention, and FIG. 2 is a longitudinal sectional view showing a schematic configuration of a thin film sensor formed by the manufacturing method of the present embodiment. First, the configuration of the thin film sensor according to the present embodiment will be described with reference to FIG.

【0007】被測定物である機械部材1は、例えば航空
機用のガスタービンエンジンの高圧圧縮機、あるいはタ
ービン動翼等における機械部材1であって、航空機の動
作時には、使用環境温度が600℃を超えることが多
い。機械部材1の表面には、複数(5層)の絶縁薄膜層
2,3,4,5,6からなる絶縁薄膜7が、スパッタリ
ングあるいはプラズマCVD等によって形成されてい
る。絶縁薄膜層2〜6は、例えば、窒化ケイ素(Si3
4)あるいはアルミナ(Al23)といった材質で、
絶縁薄膜7は、同一材質による積層構造、あるいは異な
る材質を組み合わされた積層構造に形成されている。各
層2〜6の厚み(膜厚)は、例えば2μmといった値で
あり、この膜厚は使用環境や薄膜の材質によって適切な
値が定められる。
The mechanical member 1 to be measured is, for example, a mechanical member 1 in a high-pressure compressor of a gas turbine engine for an aircraft or a turbine rotor blade. Often exceeds. On the surface of the mechanical member 1, an insulating thin film 7 composed of a plurality of (five) insulating thin film layers 2, 3, 4, 5, and 6 is formed by sputtering or plasma CVD. The insulating thin film layers 2 to 6 are made of, for example, silicon nitride (Si 3
N 4) or a material such as alumina (Al 2 O 3),
The insulating thin film 7 is formed in a laminated structure of the same material or a laminated structure in which different materials are combined. The thickness (thickness) of each of the layers 2 to 6 is, for example, 2 μm, and an appropriate value is determined depending on the use environment and the material of the thin film.

【0008】絶縁薄膜7の表面には、機械部材1表面に
作用する振動応力や温度等の物理変化量を測定するため
のセンサ膜8が形成されている。センサ膜8は、金属材
質の膜であって、パターンが形成されたフォトマスク等
を用いて絶縁薄膜7の表面上の所定部分に形成される。
また、センサ膜8の一部は、リード線9に接続される金
属材質の電極膜10に覆われ、さらに、センサ膜8およ
び電極膜10の一部は、樹脂材質等の保護膜11に覆わ
れている。
On the surface of the insulating thin film 7, a sensor film 8 for measuring the amount of physical change such as temperature and vibration stress acting on the surface of the mechanical member 1 is formed. The sensor film 8 is a film made of a metal material, and is formed on a predetermined portion on the surface of the insulating thin film 7 using a photomask or the like on which a pattern is formed.
Further, a part of the sensor film 8 is covered with a metal electrode film 10 connected to the lead wire 9, and a part of the sensor film 8 and the electrode film 10 are covered with a protective film 11 made of a resin material or the like. Have been done.

【0009】次に、このように構成される薄膜センサの
製造方法について、図1を参照して説明する。図1は、
薄膜センサの製造過程のうち、絶縁薄膜7の製造過程の
一部を示している。
Next, a method of manufacturing the thin film sensor having the above structure will be described with reference to FIG. FIG.
The drawing shows a part of the manufacturing process of the insulating thin film 7 in the manufacturing process of the thin film sensor.

【0010】まず、絶縁薄膜層の成膜に先立って、機械
部材1の洗浄が行われる。この洗浄は、例えばアセトン
を用いた超音波洗浄等によって機械部材1表面のゴミや
油脂分を取り除くものである。しかしながら、ゴミを完
全に取り去ることは難しく、機械部材1の表面上に汚れ
・ゴミ等の微小粒子(パーティクルP)がわずかに残っ
ていることが多い(図1(a))。
First, prior to the formation of the insulating thin film layer, the mechanical member 1 is cleaned. This cleaning removes dust and grease from the surface of the mechanical member 1 by, for example, ultrasonic cleaning using acetone. However, it is difficult to completely remove the dust, and fine particles (particles P) such as dirt and dust often slightly remain on the surface of the mechanical member 1 (FIG. 1A).

【0011】次に、機械部材1の表面にスパッタリング
等によって絶縁薄膜層2を成膜する(図1(b))。こ
こでは成膜材料に窒化ケイ素を用い、成膜厚みは約2μ
mである。このとき、機械部材1上にパーティクルPが
付着していると、そのパーティクルPを核としたピンホ
ールHが絶縁薄膜層2に柱状に形成される場合がある。
また、成膜材料の結晶粒の成長方向(柱状結晶)隙間な
どによってもピンホールHが形成される場合がある。こ
うしたピンホールHは、縁部の角が取れて絶縁薄膜層2
の表面近傍の内径が大きくなっていることが多い。
Next, an insulating thin film layer 2 is formed on the surface of the mechanical member 1 by sputtering or the like (FIG. 1B). Here, silicon nitride is used as the film forming material, and the film thickness is about 2 μm.
m. At this time, if the particles P adhere to the mechanical member 1, pinholes H having the particles P as nuclei may be formed in the insulating thin film layer 2 in a columnar shape.
Further, a pinhole H may be formed depending on a gap in a growth direction (columnar crystal) of crystal grains of a film forming material. Such a pinhole H has a sharp edge, and the insulating thin film layer 2
Often, the inner diameter near the surface is large.

【0012】続いて、次の層を成膜する前に、絶縁薄膜
層2の表面の研磨を行う(研磨工程:図1(c))。絶
縁薄膜層2は、本実施形態では非常に堅い窒化ケイ素で
あるので、研磨剤としてダイヤモンド研磨剤(ダイヤモ
ンド粒子0.5〜5μm)と、不織布からなる研磨クロ
スとを用いて機械的に研磨を行う。研磨量は、例えば、
絶縁薄膜層2の膜厚の1/10程度であり、ピンホール
Hの形状特性に応じて適切に定められる。すなわち、ピ
ンホールHに内径の大きい部分が深く形成されている場
合は、その深さに伴って研磨量も多くなる。この研磨工
程によって、ピンホールHの表面近くの内径の大きな部
分が削られて、ピンホールHはほぼ均一な内径となる。
研磨を終えると、次に、研磨した表面の洗浄を行う(洗
浄工程)。ここでは、アセトン、トリクロロエチレン、
メタノール、あるいはアルコール等の溶剤を用いて、超
音波洗浄や蒸気を用いた表面洗浄および脱脂を行い、絶
縁薄膜層2の表面のゴミや油脂分を取り除く。
Subsequently, before the next layer is formed, the surface of the insulating thin film layer 2 is polished (polishing step: FIG. 1C). Since the insulating thin film layer 2 is very hard silicon nitride in the present embodiment, it is mechanically polished using a diamond abrasive (diamond particles 0.5 to 5 μm) as an abrasive and a polishing cloth made of a nonwoven fabric. Do. The polishing amount is, for example,
It is about 1/10 of the thickness of the insulating thin film layer 2 and is appropriately determined according to the shape characteristics of the pinhole H. That is, when a portion having a large inner diameter is formed deep in the pinhole H, the polishing amount increases with the depth. By this polishing step, a portion having a large inner diameter near the surface of the pinhole H is shaved, and the pinhole H has a substantially uniform inner diameter.
After the polishing, the polished surface is washed (cleaning step). Here, acetone, trichloroethylene,
Using a solvent such as methanol or alcohol, ultrasonic cleaning or surface cleaning and degreasing using steam is performed to remove dirt and oils and fats on the surface of the insulating thin film layer 2.

【0013】次に、洗浄工程を終えた絶縁薄膜層2の上
に、絶縁薄膜層3を成膜して積層する(図1(d))。
本実施形態では、成膜材料には絶縁薄膜層2と同一の窒
化ケイ素(成膜膜厚:約2μm)を用いる。このとき、
研磨工程によってピンホールHの内径の大きな部分が削
られているので、絶縁薄膜層2のピンホールHをきっか
けとしたピンホールは形成されにくい。ただし、絶縁薄
膜層3の表面にパーティクルPが残留していると、新た
にそのパーティクルPを核としたピンホールHが形成さ
れる場合がある。
Next, the insulating thin film layer 3 is formed and laminated on the insulating thin film layer 2 after the cleaning step (FIG. 1D).
In this embodiment, the same silicon nitride (film thickness: about 2 μm) as the insulating thin film layer 2 is used as a film forming material. At this time,
Since a large-diameter portion of the pinhole H is removed by the polishing process, it is difficult to form a pinhole triggered by the pinhole H of the insulating thin film layer 2. However, if the particles P remain on the surface of the insulating thin film layer 3, a pinhole H having the particles P as nuclei may be newly formed.

【0014】そして、上述したような絶縁薄膜層2〜6
を積層する工程を所定回数繰り返すことによって、積層
構造の絶縁薄膜7が形成される。絶縁薄膜7が形成され
ると、センサ膜8、電極膜10、保護膜11を絶縁薄膜
7上に形成し、さらに、電極膜10をリード線9と接続
することで薄膜センサが形成される。
The above-mentioned insulating thin film layers 2 to 6
Is repeated a predetermined number of times to form the insulating thin film 7 having a laminated structure. When the insulating thin film 7 is formed, the sensor film 8, the electrode film 10, and the protective film 11 are formed on the insulating thin film 7, and the thin film sensor is formed by connecting the electrode film 10 to the lead wire 9.

【0015】すなわち、本実施形態では、絶縁薄膜層2
〜6を積層して絶縁薄膜7を形成する過程において、次
の絶縁薄膜層2〜6を成膜する前に、機械部材1上に形
成されている絶縁薄膜層2〜6の表面を研磨するので、
絶縁薄膜層2〜6に形成されているピンホールHの内径
の大きな部分が削られて、絶縁特性に影響を及ぼすよう
な大きいピンホールHが形成されにくくなる。このた
め、高温環境下においても、絶縁薄膜7の絶縁特性が低
下することが少なくなり、機械部材1に作用する応力や
温度などの物理変化量を確実に測定することができるよ
うになる。
That is, in the present embodiment, the insulating thin film layer 2
In the process of forming the insulating thin film 7 by laminating the insulating thin films 7 to 6, the surfaces of the insulating thin layers 2 to 6 formed on the mechanical member 1 are polished before forming the next insulating thin layers 2 to 6. So
A portion having a large inner diameter of the pinhole H formed in the insulating thin film layers 2 to 6 is shaved, so that it is difficult to form a large pinhole H that affects the insulating characteristics. For this reason, even in a high temperature environment, the insulation characteristics of the insulating thin film 7 are less likely to be reduced, and the physical changes such as the stress applied to the mechanical member 1 and the temperature can be reliably measured.

【0016】また、本実施形態では、絶縁薄膜層2〜6
を研磨した後に、絶縁薄膜層2〜6を洗浄しているの
で、次の絶縁薄膜層2〜6に新たなピンホールHが発生
する確率を低くすることができる。
In this embodiment, the insulating thin film layers 2 to 6
After polishing, the insulating thin film layers 2 to 6 are washed, so that the probability that new pinholes H are generated in the next insulating thin film layers 2 to 6 can be reduced.

【0017】さらに、本実施形態では、ダイヤモンド研
磨剤を用いて、絶縁薄膜層2〜6の研磨を行うので、窒
化ケイ素等の堅い絶縁薄膜層2〜6であっても、確実に
研磨することが可能となる。
Further, in this embodiment, since the insulating thin film layers 2 to 6 are polished using a diamond abrasive, even if the insulating thin film layers 2 to 6 made of silicon nitride or the like are firmly polished, they can be surely polished. Becomes possible.

【0018】続いて、本発明の実施例について説明す
る。図3は、薄膜センサの絶縁特性を示すグラフ図であ
り、(a)は従来の製造方法に基づいて形成した薄膜セ
ンサ、(b)は本発明の製造方法に基づいて形成した薄
膜センサにおける絶縁特性の測定結果をそれぞれ示して
いる。両者とも、3層の窒化ケイ素の積層構造からなる
絶縁薄膜層を有するA〜Fまでのサンプルに対して、雰
囲気温度(℃)を変化させた際の、抵抗率(MΩ・m)
の変化を示している。
Next, an embodiment of the present invention will be described. FIGS. 3A and 3B are graphs showing the insulation characteristics of the thin film sensor. FIG. 3A shows a thin film sensor formed based on the conventional manufacturing method, and FIG. 3B shows an insulation characteristic of the thin film sensor formed based on the manufacturing method of the present invention. The measurement results of the characteristics are shown. In both cases, the resistivity (MΩ · m) when the ambient temperature (° C.) was changed with respect to the samples A to F having the insulating thin film layer having the three-layered structure of silicon nitride.
Shows the change.

【0019】この図3から明らかなように、(a)で
は、500℃を超えると抵抗率が低くなり始め、600
℃でほとんどのサンプルが100MΩ・m以下となって
しまっている。それに対して、(b)では600℃を超
えてもすべてのサンプルが100MΩ・m以上の抵抗率
を保っていることが分かる。すなわち、本発明の製造方
法によって、600℃以上の高温環境下においても、絶
縁薄膜の絶縁特性が低下しにくい薄膜センサを形成する
ことができることが分かる。
As apparent from FIG. 3, in (a), when the temperature exceeds 500.degree.
At ℃, most of the samples are 100 MΩ · m or less. On the other hand, in (b), it can be seen that all the samples maintain a resistivity of 100 MΩ · m or more even when the temperature exceeds 600 ° C. In other words, it can be seen that the thin film sensor in which the insulating characteristics of the insulating thin film hardly deteriorates even in a high temperature environment of 600 ° C. or more can be formed by the manufacturing method of the present invention.

【0020】[0020]

【発明の効果】以上説明したように、この発明によれば
以下の効果を得ることができる。請求項1に係る薄膜セ
ンサの製造方法は、次の絶縁薄膜層を成膜する前に、被
測定物に形成されている絶縁薄膜層の表面を研磨する研
磨工程を備えているので、絶縁薄膜層に形成されている
ピンホールの内径の大きな部分が削られて、絶縁特性に
影響を及ぼすような大きいピンホールが形成されにくく
なる。このため、高温環境下においても、絶縁薄膜の絶
縁特性が低下することが少なくなり、被処理物に作用す
る応力や温度などの物理変化量を確実に測定することが
できる。
As described above, according to the present invention, the following effects can be obtained. The method for manufacturing a thin film sensor according to claim 1 includes a polishing step of polishing a surface of the insulating thin film layer formed on the object to be measured before forming a next insulating thin film layer. A portion having a large inner diameter of the pinhole formed in the layer is cut off, so that it is difficult to form a large pinhole that affects the insulation characteristics. For this reason, even in a high temperature environment, the insulating characteristics of the insulating thin film are less likely to deteriorate, and the amount of physical change such as stress or temperature acting on the object to be processed can be reliably measured.

【0021】請求項2に係る薄膜センサの製造方法で
は、研磨工程の後に、表面を研磨した絶縁薄膜層を洗浄
する洗浄工程を備えているので、次の絶縁薄膜層に新た
なピンホールが発生する確率を低くすることができる。
In the method for manufacturing a thin film sensor according to the second aspect, since a cleaning step of cleaning the insulating thin film layer whose surface has been polished is provided after the polishing step, a new pinhole is generated in the next insulating thin film layer. Can be reduced.

【0022】請求項3に係る薄膜センサの製造方法で
は、研磨工程では、ダイヤモンド研磨剤を用いて研磨す
るので、堅い絶縁薄膜層であっても、確実に研磨するこ
とができる。
In the method of manufacturing a thin film sensor according to the third aspect, in the polishing step, polishing is performed using a diamond abrasive, so that even a hard insulating thin film layer can be surely polished.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施形態に係る製造方法を示す工
程図である。
FIG. 1 is a process chart showing a manufacturing method according to an embodiment of the present invention.

【図2】 本発明の一実施形態により形成された薄膜セ
ンサの断面図である。
FIG. 2 is a cross-sectional view of a thin film sensor formed according to an embodiment of the present invention.

【図3】 薄膜センサの絶縁特性を示すグラフ図であ
る。
FIG. 3 is a graph showing insulation characteristics of a thin film sensor.

【図4】 従来の製造方法を示す工程図である。FIG. 4 is a process chart showing a conventional manufacturing method.

【符号の説明】[Explanation of symbols]

P パーティクル H ピンホール 1,20 機械部材(被測定物) 2〜6,21,22 絶縁薄膜層 7,23 絶縁薄膜 8 センサ膜 P Particle H Pinhole 1,20 Mechanical member (measured object) 2-6,21,22 Insulating thin film layer 7,23 Insulating thin film 8 Sensor film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被測定物に複数の絶縁薄膜層を積層して
絶縁薄膜を形成し、該絶縁薄膜にセンサ膜を取り付ける
ことによって、前記被測定物へ作用する応力や温度など
の物理変化量を測定する薄膜センサを製造する方法であ
って、 次の絶縁薄膜層を成膜する前に、前記被測定物に形成さ
れている絶縁薄膜層の表面を研磨する研磨工程を備える
ことを特徴とする薄膜センサの製造方法。
1. A physical change amount such as a stress or a temperature acting on the object to be measured by laminating a plurality of insulating thin film layers on the object to form an insulating thin film and attaching a sensor film to the insulating thin film. A method of manufacturing a thin film sensor for measuring the thickness of a thin film sensor, comprising: before forming the next insulating thin film layer, comprising a polishing step of polishing the surface of the insulating thin film layer formed on the object to be measured. Of manufacturing a thin film sensor.
【請求項2】 前記研磨工程の後に、表面を研磨した前
記絶縁薄膜層を洗浄する洗浄工程を備えることを特徴と
する請求項1記載の薄膜センサの製造方法。
2. The method according to claim 1, further comprising, after the polishing step, a cleaning step of cleaning the insulating thin film layer whose surface has been polished.
【請求項3】 前記研磨工程では、ダイヤモンド研磨剤
を用いて研磨することを特徴とする請求項1または2記
載の薄膜センサの製造方法。
3. The method according to claim 1, wherein in the polishing step, polishing is performed using a diamond abrasive.
JP12075999A 1999-04-27 1999-04-27 Thin film sensor manufacturing method Expired - Fee Related JP4470233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12075999A JP4470233B2 (en) 1999-04-27 1999-04-27 Thin film sensor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12075999A JP4470233B2 (en) 1999-04-27 1999-04-27 Thin film sensor manufacturing method

Publications (2)

Publication Number Publication Date
JP2000310548A true JP2000310548A (en) 2000-11-07
JP4470233B2 JP4470233B2 (en) 2010-06-02

Family

ID=14794299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12075999A Expired - Fee Related JP4470233B2 (en) 1999-04-27 1999-04-27 Thin film sensor manufacturing method

Country Status (1)

Country Link
JP (1) JP4470233B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315854A (en) * 2006-05-24 2007-12-06 Chugoku Electric Power Co Inc:The Strain gauge
CN103175639A (en) * 2013-02-06 2013-06-26 苏州科技学院 Piezoresistive high-frequency dynamic soil stress sensor and fabricating method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315854A (en) * 2006-05-24 2007-12-06 Chugoku Electric Power Co Inc:The Strain gauge
CN103175639A (en) * 2013-02-06 2013-06-26 苏州科技学院 Piezoresistive high-frequency dynamic soil stress sensor and fabricating method thereof

Also Published As

Publication number Publication date
JP4470233B2 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
KR101972728B1 (en) Bonded body and acoustic wave element
JP5115562B2 (en) Method for manufacturing acoustic wave device
US20080024037A1 (en) Piezo-electric substrate and manufacturing method of the same
TWI637540B (en) Method for manufacturing piezoelectric device, piezoelectric device and piezoelectric independent substrate
JP6648346B1 (en) Bonded body of piezoelectric material substrate and support substrate
FR2977886A1 (en) MINIATURIZED SENSOR WITH HEATING ELEMENT AND METHOD OF MANUFACTURING THE SAME.
JP2019510391A (en) Hybrid structure for surface acoustic wave devices
Roy et al. The mechanical properties of polycrystalline 3C-SiC films grown on polysilicon substrates by atmospheric pressure chemical-vapor deposition
TWI787475B (en) Junction body and elastic wave element
TWI762782B (en) Assembled body and elastic wave device
TW202018981A (en) Composite substrate, piezoelectric element and method for manufacturing composite substrate
JP2000310548A (en) Manufacture of thin-film sensor
KR20200078571A (en) Joining body of piezoelectric material substrate and support substrate, manufacturing method thereof and seismic element
JP4016583B2 (en) Piezoelectric thin film resonator, filter and electronic device
KR20210002734A (en) Assembly of piezoelectric material substrate and support substrate
Pekarcikova et al. Investigation of high power effects on Ti/Al and Ta-Si-N/Cu/Ta-Si-N electrodes for SAW devices
Monk et al. Stress-corrosion cracking and blistering of thin polycrystalline silicon films in hydrofluoric acid
WO2022054372A1 (en) Composite substrate for elastic wave device
WO2004102796A1 (en) Integrated resonators and time base incorporating said resonators
EP1133684B1 (en) Micromachined structure with deformable membrane and method for making same
JP2019153902A (en) Method for manufacturing composite substrate
JP7339283B2 (en) Junction and surface acoustic wave device
TWI791099B (en) Junction body and elastic wave element
Shah et al. Evaluation of Ru–Ti Electrode-Based TSM Langasite Resonators for High-Temperature Applications
FR3073083A1 (en) METHOD FOR MANUFACTURING A FILM ON A FLEXIBLE SHEET

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4470233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees