JP2000308824A - Adsorption material and manufacture of the same - Google Patents

Adsorption material and manufacture of the same

Info

Publication number
JP2000308824A
JP2000308824A JP11200518A JP20051899A JP2000308824A JP 2000308824 A JP2000308824 A JP 2000308824A JP 11200518 A JP11200518 A JP 11200518A JP 20051899 A JP20051899 A JP 20051899A JP 2000308824 A JP2000308824 A JP 2000308824A
Authority
JP
Japan
Prior art keywords
wood
adsorption
carbonized
treatment
adsorbent material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11200518A
Other languages
Japanese (ja)
Other versions
JP3744268B2 (en
Inventor
Hidemitsu Sakamoto
秀光 坂元
Sumio Kamiya
純生 神谷
Masahiko Sugiyama
雅彦 杉山
Takuya Kondo
拓也 近藤
Masahiko Takeuchi
雅彦 竹内
Teizo Hase
貞三 長谷
Kazusane Otake
和実 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP20051899A priority Critical patent/JP3744268B2/en
Publication of JP2000308824A publication Critical patent/JP2000308824A/en
Application granted granted Critical
Publication of JP3744268B2 publication Critical patent/JP3744268B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Abstract

PROBLEM TO BE SOLVED: To obtain a carbonized wood based adsorption material having enhanced adsorption ability particularly for moisture and to provide its manufacturing method. SOLUTION: This adsorption material essentially consists of carbonized wood, and a part of the carbonized wood corresponding to a conduit of the wood before it is carbonized has a narrow pores within which hydrophilic groups are disposed. The hydrophilic groups are typically silanol groups. The method for manufacturing the adsorption material comprises steps of: carbonizing the wood in vacuum or under inert atmosphere at 400-800 deg.C; activating processing of the carbonized wood and imparting the hydrophilic groups to the activated wood. The method preferably further comprises the step of impregnating the wood with resins and the step of hardening the resins prior to the step of carbonizing the wood.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、吸着材料、特に、
水分吸着能力を高めた吸着材料およびその製造方法に関
する。
[0001] The present invention relates to an adsorbent material, in particular,
The present invention relates to an adsorptive material having an improved ability to adsorb moisture and a method for producing the same.

【0002】[0002]

【従来の技術】従来から、炭化された木材を吸着材料と
して用いることが行われている。例えば、特開平9−2
76693号公報には、木材を600〜700℃で焼成
して木炭とし、更に窒素ガス等の不活性ガス雰囲気中で
800〜2000℃で加熱することにより熱変換させて
得た吸着剤が開示されている。
2. Description of the Related Art Conventionally, carbonized wood has been used as an adsorbent material. For example, JP-A-9-2
No. 76693 discloses an adsorbent obtained by calcining wood at 600 to 700 ° C. into charcoal, and further performing heat conversion by heating at 800 to 2000 ° C. in an inert gas atmosphere such as nitrogen gas. ing.

【0003】また、特許第2552577号公報には、
木材又は木質材料にフェノール樹脂を含浸させ、硬化さ
せた後、炭化することによって得たウッドセラミックス
が開示されている。これら従来の炭化木材系材料(木質
系炭素材料)は吸着材料として有用であるが、近年普及
が著しい住宅用吸湿システムあるいは吸着式冷凍機等に
用いるには、特に水分吸着能力を向上させる必要があっ
た。
[0003] Also, Japanese Patent No. 25552577 discloses that
Wood ceramics obtained by impregnating wood or woody material with a phenolic resin, hardening and carbonizing the wood or wood material are disclosed. These conventional carbonized wood-based materials (woody carbon materials) are useful as adsorbent materials. However, in order to use them in residential moisture absorption systems or adsorptive refrigerators, which have become increasingly popular in recent years, it is necessary to particularly improve the water adsorption capacity. there were.

【0004】[0004]

【発明が解決しようとする課題】本発明は、特に水分に
対する吸着能力を高めた炭化木材系の吸着材料およびそ
の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a carbonized wood-based adsorbing material having an improved ability to adsorb moisture, and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の吸着材料は、炭化された木材から実質的
に成り、炭化前の該木材の導管に対応する部分に細孔を
有し、該細孔内に親水基が配置されていることを特徴と
する。親水基は典型的にはシラノール基またはカルボキ
シル基である。
In order to achieve the above object, the adsorbent material of the present invention consists essentially of carbonized wood, and has pores in a portion corresponding to a pipe of the wood before carbonization. And a hydrophilic group is disposed in the pore. The hydrophilic group is typically a silanol group or a carboxyl group.

【0006】また、上記本発明の吸着材料を製造する方
法は、下記の工程:木材を真空中または不活性雰囲気中
において400〜800℃にて炭化する工程、上記炭化
された木材を賦活処理する工程、および上記賦活処理さ
れた木材に親水基を付与する工程を含むことを特徴とす
る。
Further, the method for producing the adsorbent material of the present invention comprises the following steps: a step of carbonizing wood at 400 to 800 ° C. in a vacuum or an inert atmosphere, and activating the carbonized wood. And a step of imparting a hydrophilic group to the activated wood.

【0007】望ましくは、上記炭化する工程の前に、下
記の工程:木材に樹脂を含浸する工程、および上記含浸
された樹脂を硬化する工程を更に含む。
Preferably, before the carbonizing step, the method further includes the following steps: a step of impregnating the wood with a resin, and a step of curing the impregnated resin.

【0008】[0008]

【発明の実施の形態】本発明の吸着材料によれば、木材
の導管に対応する部分にある細孔内に親水基を配置した
ことにより、水分に対する吸着能力が著しく向上する。
本発明の吸着材料の製造方法によれば、400〜800
℃という比較的低温で炭化することにより、賦活処理で
比表面積が著しく増大する。
According to the adsorbent material of the present invention, the ability to adsorb moisture is significantly improved by arranging the hydrophilic group in the pores in the portion corresponding to the wood conduit.
According to the method for producing an adsorbent material of the present invention, 400 to 800
By carbonizing at a relatively low temperature of ° C., the specific surface area is significantly increased by the activation treatment.

【0009】以下に、添付図面を参照し、具体的な実施
例により本発明を更に詳細に説明する。
Hereinafter, the present invention will be described in more detail by way of specific examples with reference to the accompanying drawings.

【0010】[0010]

【実施例】〔実施例1〕本発明の方法により、図1に示
す手順で本発明の吸着材料を製造した。木材として、適
度な硬度を示すラジアタパインを用いた。これに、フェ
ノール樹脂、エポキシ樹脂、フラン樹脂等の熱硬化性樹
脂を含浸させた後、硬化処理を行った。樹脂の含浸・硬
化を行うのは、出発材料である木材の密度を高め、以降
の処理の対象物としておよび製品である吸着材料として
の機械的な強度を高めるために望ましいからである。し
たがって、特に機械的強度を必要としない場合には、樹
脂の含浸・硬化の工程を省いた方が処理コスト上有利で
ある。
EXAMPLES Example 1 An adsorbent material of the present invention was produced by the method of the present invention according to the procedure shown in FIG. Radiatapain showing appropriate hardness was used as wood. This was impregnated with a thermosetting resin such as a phenol resin, an epoxy resin, and a furan resin, and then subjected to a curing treatment. The reason for impregnating and hardening the resin is that it is desirable to increase the density of the wood as a starting material, and to increase the mechanical strength as an object of subsequent processing and as an adsorbing material as a product. Therefore, when no mechanical strength is required, it is advantageous in terms of processing cost to omit the resin impregnation and curing steps.

【0011】次に、上記樹脂含浸・硬化後の木材を、真
空中または窒素等の不活性ガス雰囲気中において380
℃〜1800℃の範囲の種々の温度で炭化処理した。図
2に、この炭化処理の後にCO2 ガス中または水蒸気中
で2時間の賦活処理をして得られた比表面積と炭化処理
温度との関係を示す。この結果から、炭化処理温度が4
00℃〜800℃の範囲のときに特に高い比表面積が得
られることが分かる。この温度域は炭化処理温度として
は比較的低温である。この温度域より低温で炭化処理を
行うと後の賦活処理において細孔の形成が進行し難く、
逆にこの温度域よりも高温で炭化処理をすると材料が硬
くなり後の賦活処理においてやはり細孔の形成が進行し
難く、賦活処理による比表面積の増大が少ないため、吸
着材料として実用上必要な吸着能力が得られない。炭化
処理を450℃〜650℃の範囲で行うと、1000m
2 /g以上の特に高い比表面積が得られる。
Next, the wood impregnated and hardened with the resin is subjected to 380 vacuum or in an inert gas atmosphere such as nitrogen.
The carbonization was performed at various temperatures ranging from 1C to 1800C. FIG. 2 shows the relationship between the specific surface area obtained by performing the activation treatment in CO 2 gas or steam for 2 hours after the carbonization treatment and the carbonization treatment temperature. From this result, the carbonization temperature was 4
It can be seen that a particularly high specific surface area can be obtained when the temperature is in the range of 00 to 800 ° C. This temperature range is relatively low as the carbonization temperature. When the carbonization treatment is performed at a temperature lower than this temperature range, the formation of pores does not easily progress in the activation treatment,
Conversely, if the carbonization treatment is performed at a temperature higher than this temperature range, the material becomes hard and the formation of the pores is hard to progress in the activation treatment afterwards, and the increase in the specific surface area due to the activation treatment is small. Adsorption capacity cannot be obtained. When carbonization is performed in the range of 450 ° C. to 650 ° C., 1000 m
A particularly high specific surface area of 2 / g or more is obtained.

【0012】次に、上記炭化処理後の木材を賦活処理し
た。従来、活性炭などの賦活処理は、通常は粒状あるい
は粉末状で行っていた。これは、CO2 ガスや水蒸気等
の賦活雰囲気を処理対象である炭化木材の体積全体に均
等に分布させる必要があるからで、そのために粒状ある
いは粉末状とする必要があったからである。本発明の方
法においては、炭化処理温度を適正化したことにより、
バルク状態で十分に賦活処理ができる。
Next, the wood after the carbonization treatment was activated. Conventionally, the activation treatment of activated carbon or the like is usually performed in the form of granules or powder. This is because it is necessary to uniformly distribute the activation atmosphere such as CO 2 gas and water vapor over the entire volume of the carbonized wood to be treated, and for that purpose, it is necessary to form the activated carbon in the form of particles or powder. In the method of the present invention, by optimizing the carbonization temperature,
The activation treatment can be sufficiently performed in a bulk state.

【0013】賦活により大きな比表面積を得るために
は、賦活雰囲気の均等分布に加えて、賦活処理温度が重
要である。この観点から、賦活処理を700℃〜100
0℃の範囲の温度で行うことが最も望ましい。図3に示
したように、上記温度範囲において重量減少率を40〜
60%の範囲内に制御することにより、850〜150
0m2 /gという高い比表面積を実現できる。CO2
るいは水蒸気等の賦活雰囲気ガスが、炭化木材のCと反
応して炭化木材を表面からピット状に浸食することによ
り、無数の細孔が形成される。本発明においては、適正
温度範囲で炭化処理したことにより、木材の導管に対応
する部分にも細孔の形成が進行するので、バルク状態で
賦活処理しても上記のように極めて高い比表面積が達成
され、十分に賦活処理ができる。
In order to obtain a large specific surface area by activation, the activation treatment temperature is important in addition to the uniform distribution of the activation atmosphere. From this viewpoint, the activation treatment is performed at 700 ° C. to 100 ° C.
Most preferably, it is performed at a temperature in the range of 0 ° C. As shown in FIG. 3, the weight loss rate was 40 to 40 in the above temperature range.
By controlling within the range of 60%, 850-150
A high specific surface area of 0 m 2 / g can be realized. An activating atmosphere gas such as CO 2 or water vapor reacts with C of the carbonized wood to erode the carbonized wood in a pit shape from the surface, thereby forming innumerable pores. In the present invention, the carbonization treatment in the appropriate temperature range causes the formation of pores in the portion corresponding to the wood conduit, so that the extremely high specific surface area as described above is obtained even when the activation treatment is performed in a bulk state. Achieved and can be fully activated.

【0014】次に、上記賦活処理後の試料に親水処理を
行った。この親水処理としては、HNO3 を含浸する処
理と、HNO3 を含浸後更にSiCl4 を含浸する処理
とをそれぞれ行った。これにより得られた本発明の吸着
材料の水分吸着性能を、従来の親水処理なしの場合と比
較して図4に示す。図から分かるように、親水処理なし
の従来の吸着材料に比べて、親水処理した本発明の吸着
材料は、より低い相対圧でも水分吸着性を発揮する。ま
た、HNO3 の含浸のみによる親水処理を行った本発明
の吸着材料に比べて、HNO3 含浸後更にSiCl4
浸を行った本発明の吸着材料は、更に低い相対圧の領域
において水分吸着性を発揮する。
Next, the sample after the activation treatment was subjected to a hydrophilic treatment. As the hydrophilic treatment, a treatment of impregnating with HNO 3 and a treatment of impregnating with HNO 3 and further impregnating with SiCl 4 were respectively performed. FIG. 4 shows the obtained water-absorbing performance of the adsorbent material of the present invention in comparison with the case of no conventional hydrophilic treatment. As can be seen from the figure, the hydrophilically treated adsorbent material of the present invention exhibits a water adsorption property even at a lower relative pressure as compared to the conventional adsorbent material without the hydrophilic treatment. In addition, as compared with the adsorbent material of the present invention which has been subjected to hydrophilic treatment only by impregnation of HNO 3 , the adsorbent material of the present invention which has been further impregnated with SiCl 4 after impregnation of HNO 3 has a higher moisture adsorbing property in a region of lower relative pressure Demonstrate.

【0015】このように親水処理された本発明の炭化木
材系吸着材料において、水分吸着性すなわち親水性の発
現に対して実質的に寄与するのは、材料表面(細孔内壁
も含めて)に付与された水酸基(OH)であると考えら
れる。親水処理をHNO3 の含浸のみによって行った場
合は、材料表面にはNO3 基とOH基とが混在して付与
された状態になっていると推定される。これに対して、
親水処理をHNO3 含浸後に更にSiCl4 を含浸する
ことにより行った場合には、既に付与されているNO3
基とSiCl4 との反応(加水分解等)により材料表面
にシラノール基(Hn Si(OH)4-n ) が生成して親
水性が高まると推定される。
[0015] In the carbonized wood-based adsorbent material of the present invention which has been subjected to the hydrophilic treatment as described above, the material which substantially contributes to the development of the water adsorbing property, that is, the hydrophilic property, is on the material surface (including the inner wall of the pores). It is considered to be the hydroxyl group (OH) provided. When the hydrophilic treatment is performed only by impregnation with HNO 3 , it is estimated that the material surface is in a state in which NO 3 groups and OH groups are mixed and applied. On the contrary,
When the hydrophilic treatment is performed by further impregnating with SiCl 4 after impregnating HNO 3 , the already applied NO 3
Reactive silanol groups on the surface of the material by (such as hydrolysis) (H n Si (OH) 4-n) is estimated to generated hydrophilicity is enhanced by the base and SiCl 4.

【0016】従来、吸着式冷凍機に用いられていた吸着
材料はシリカゲルであった。これは活性炭や炭化木材の
ような炭素材料は、吸着性を発揮するには相対圧が0.
3程度以上必要であったためである。これに対して、本
発明の炭化木材系吸着材料は、図4に示したように0.
1〜0.3程度の低い相対圧でも十分に水分吸着性を発
揮する。
Conventionally, the adsorption material used in the adsorption refrigerator has been silica gel. This is because a carbon material such as activated carbon or carbonized wood has a relative pressure of 0.
This is because about three or more were necessary. On the other hand, as shown in FIG.
Even at a relative pressure as low as about 1 to 0.3, it exhibits a sufficient water adsorption property.

【0017】吸着式冷凍機の代表的な適用対象である室
内用エアコンシステムの場合、典型的には3分間隔で吸
着・脱着を繰り返す方式であるため、3分間での吸着速
度が重要である。図5(1),(2)に、本発明の吸着
材料とシリカゲルについて、吸着時間に対する水吸着量
の変化を示す。図5(2)は、図5(1)の短時間部分
(吸着時間5分まで)を拡大して示したものである。図
に示されているように、本発明の吸着材料はシリカゲル
と同等の3分間吸着速度を発揮する。
[0017] In the case of an indoor air-conditioning system, which is a typical application of the adsorption type refrigerator, the adsorption / desorption cycle is typically repeated at three-minute intervals, so the three-minute adsorption speed is important. . FIGS. 5A and 5B show changes in the amount of water adsorbed with respect to the adsorption time for the adsorption material of the present invention and silica gel. FIG. 5 (2) is an enlarged view of the short time portion (up to 5 minutes of the adsorption time) of FIG. 5 (1). As shown in the figure, the adsorbent material of the present invention exhibits an adsorption rate equivalent to that of silica gel for 3 minutes.

【0018】従来用いられていたシリカゲルに代えて本
発明の炭化木材系吸着材料を用いると、シリカゲルに比
べて更に高い吸着効果を得ることができる。すなわち、
炭化木材から実質的に成る本発明の吸着材料は、木材の
導管に対応する部分に細孔を有し、この細孔が導管と同
じ方向に配向している。そのため吸着材料の微細構造に
明瞭な配向があるので、配向方向の熱伝導率が高く、吸
着反応で発生する吸着熱を配向方向に沿って効率的に除
去でき、吸着効果をより一層高められる。
When the carbonized wood-based adsorbent material of the present invention is used in place of the conventionally used silica gel, an even higher adsorption effect can be obtained as compared with silica gel. That is,
The adsorbent material according to the invention, which consists essentially of carbonized wood, has pores in the part corresponding to the wood conduit, the pores being oriented in the same direction as the conduit. Therefore, since the fine structure of the adsorbent material has a clear orientation, the thermal conductivity in the orientation direction is high, the heat of adsorption generated by the adsorption reaction can be efficiently removed along the orientation direction, and the adsorption effect can be further enhanced.

【0019】例えば、粒状のシリカゲルを充填した吸着
材料の熱伝導率が0.1W/mKであるのに対し、本発
明の炭化木材系吸着材料は導管方向(配向方向)の熱伝
導率が1.4W/mKと、シリカゲルの10倍以上の高
い熱伝導率を有する。なお、導管に垂直な方向でも熱伝
導率は0.8W/mKであり、シリカゲルに比べて8倍
という高い値である。すなわち、本発明の炭化木材系吸
着材料がシリカゲルに比べて高い熱伝導率を有するの
は、炭素という材質自体の高い熱伝導率が前提となって
おり、それに加えて細孔の配向により配向方向で更に高
い熱伝導率が達成されるためである。このように本発明
の吸着材料は配向構造による異方性を有しており、例え
ば表1に熱伝導率と併せて示したように機械的強度にも
明瞭な異方性が認められる。
For example, while the thermal conductivity of the adsorbent material filled with granular silica gel is 0.1 W / mK, the carbonized wood-based adsorbent material of the present invention has a thermal conductivity of 1 in the conduit direction (orientation direction). 0.4 W / mK, which is 10 times or more higher than that of silica gel. The thermal conductivity is 0.8 W / mK even in the direction perpendicular to the conduit, which is 8 times higher than that of silica gel. That is, the reason why the carbonized wood-based adsorbent material of the present invention has a higher thermal conductivity than silica gel is based on the high thermal conductivity of the carbon material itself. Is to achieve a higher thermal conductivity. Thus, the adsorptive material of the present invention has anisotropy due to the oriented structure. For example, as shown in Table 1 together with the thermal conductivity, a clear anisotropy is also observed in mechanical strength.

【0020】[0020]

【表1】 [Table 1]

【0021】〔実施例2〕本発明により、親水処理以外
は実施例1と同様にして、図1に示す手順で本発明の吸
着材料を製造した。本実施例では、親水処理として、ポ
リアクリル酸ナトリウムを含浸する処理と、HNO3
含浸した後にポリアクリル酸ナトリウムを含浸する処理
とをそれぞれ行った。
Example 2 According to the present invention, an adsorbent material of the present invention was produced by the procedure shown in FIG. 1 in the same manner as in Example 1 except for the hydrophilic treatment. In this embodiment, as the hydrophilic treatment, a treatment of impregnating with sodium polyacrylate and a treatment of impregnating with HNO 3 and then impregnating with sodium polyacrylate were performed.

【0022】これにより得られた吸着材料の水分吸着性
能を図6に示す。なお同図には、比較のため、従来の親
水処理なしの場合と、実施例1において最も高い水吸着
性能を発揮したHNO3 含浸+SiCl4 含浸による親
水処理を行った場合の結果も併せて示す。図から分かる
ように、本実施例においてポリアクリル酸ナトリウムの
含浸のみによる親水処理を行った吸着材料は、実施例1
においてHNO3 含浸+SiCl4 含浸による親水処理
を行った吸着材料と同等の水吸着性能を発揮する。ま
た、本実施例においてHNO3 含浸+ポリアクリル酸ナ
トリウム含浸による親水処理を行った吸着材料は、更に
高い水吸着性能を発揮し、同一の相対圧での水吸着量が
上記両者より約30%向上した。
FIG. 6 shows the moisture adsorbing performance of the adsorbing material thus obtained. For comparison, the figure also shows the results of the case without the conventional hydrophilic treatment and the result of the case of performing the hydrophilic treatment with HNO 3 impregnation + SiCl 4 impregnation that exhibited the highest water adsorption performance in Example 1. . As can be seen from the figure, the adsorbent material subjected to the hydrophilic treatment only by the impregnation of sodium polyacrylate in the present example is the same as in Example 1.
Exhibit water adsorption performance equivalent to that of an adsorbent material subjected to hydrophilic treatment by HNO 3 impregnation + SiCl 4 impregnation. Further, in this embodiment, the adsorbent material subjected to hydrophilic treatment by HNO 3 impregnation + sodium polyacrylate impregnation exhibits higher water adsorption performance, and the amount of water adsorbed at the same relative pressure is about 30% higher than the above both. Improved.

【0023】ここで、エアコン用等の吸着式冷凍機の場
合、相対圧0.15と0.3における水吸着量の差が、
熱出力に大きく影響し、吸着量差が大きいほど、冷凍性
能を高くすることができ、高性能のエアコンを設計する
ことができる。
Here, in the case of an adsorption refrigerator for an air conditioner or the like, the difference between the water adsorption amounts at relative pressures of 0.15 and 0.3 is as follows.
The heat output is greatly affected, and the greater the difference in the amount of adsorption, the higher the refrigeration performance can be, and a high-performance air conditioner can be designed.

【0024】図7に、実施例1および実施例2において
製造した各吸着材料について、相対圧0.15と0.3
との水吸着量差を測定した結果を示す。なお同図には、
比較のために、従来の親水処理なしの炭化木材系吸着材
料と、シリカゲルについての結果も併せて示す。
FIG. 7 shows the relative pressures of 0.15 and 0.35 for each of the adsorbent materials produced in Examples 1 and 2.
3 shows the results of measuring the difference in water adsorption amount between the sample and the sample. In the figure,
For comparison, the results for a conventional carbonized wood-based adsorbent without hydrophilic treatment and silica gel are also shown.

【0025】図から分かるように、親水処理なしの場合
は水吸着量差はゼロであり、これに対して実施例1にお
いてHNO3 含浸+SiCl4 含浸による親水処理を施
すことにより、シリカゲルに近い水吸着量差(シリカゲ
ルの94%程度)が達成された。
As can be seen from the figure, the difference in the amount of adsorbed water is zero when the hydrophilic treatment is not performed. On the other hand, the hydrophilic treatment by impregnating HNO 3 + SiCl 4 in Example 1 gives An adsorption difference (about 94% of silica gel) was achieved.

【0026】更に、実施例2においてポリアクリル酸ナ
トリウムの含浸のみ、またはHNO 3 含浸+ポリアクリ
ル酸ナトリウム含浸の親水処理を施すことにより、いず
れも、実施例1のHNO3 含浸+SiCl4 含浸の場合
に対して24%、シリカゲルに対して17%、水吸着量
差が向上した。
Further, in Example 2, the polyacrylic acid
Thorium impregnation only or HNO Three Impregnation + polyacryl
By applying hydrophilic treatment with sodium luate impregnation,
Also, the HNO of Example 1Three Impregnation + SiClFourIn case of impregnation
24% for silica gel, 17% for silica gel, water adsorption
The difference has improved.

【0027】実施例2による親水処理を施した吸着材料
について、FT−IR分析(フーリエ変換型赤外分光分
析)を行った。比較として親水処理なしの吸着について
も分析を行った。分析結果を図8にまとめて示す。
FT-IR analysis (Fourier transform infrared spectroscopy) was performed on the hydrophilically treated adsorbent material of Example 2. As a comparison, analysis was also performed on the adsorption without the hydrophilic treatment. The analysis results are summarized in FIG.

【0028】ポリアクリル酸ナトリウムの含浸のみによ
る親水処理を行った吸着材料については、基材のCおよ
び微量吸着されているH2 Oに対応する各IR吸収ピー
クの他に、C−H結合、CO−O−M結合、C−H結合
のそれぞれに対応する各ピークが検出されており、図9
に示したようなポリマー構造を有するポリアクリル酸重
合体がそのまま吸着材料の表面に形成されていると考え
られる。
With respect to the adsorbed material subjected to hydrophilic treatment only by impregnation with sodium polyacrylate, in addition to the IR absorption peaks corresponding to C and a small amount of H 2 O adsorbed on the base material, a C—H bond, Each peak corresponding to each of the CO-OM bond and the CH bond was detected, and FIG.
It is considered that the polyacrylic acid polymer having the polymer structure as shown in (1) is formed on the surface of the adsorption material as it is.

【0029】これに対して、HNO3 含浸+ポリアクリ
ル酸ナトリウム含浸による親水処理を行った吸着材料に
ついては、NO3 基のピークが認められることに加え
て、CO−O−M結合のIR吸収ピークがシフトしてお
り、HNO3 との間に相互作用が生じていると考えられ
る。
On the other hand, in the case of the adsorbed material subjected to the hydrophilic treatment by HNO 3 impregnation + sodium polyacrylate impregnation, in addition to the peak of the NO 3 group, the IR absorption of CO—O—M bond The peak is shifted, and it is considered that an interaction has occurred with HNO 3 .

【0030】すなわち、図10に模式的に示したよう
に、ポリアクリル酸ナトリウム含浸のみの場合には同図
(1)のように図9の構造を持つポリマーがそのまま吸
着材料表面に存在するのに対して、HNO3 含浸+ポリ
アクリル酸ナトリウム含浸の場合には同図(2)のよう
にHNO3 により状態変化したポリマーとNO3 基とが
吸着材料表面に存在すると考えられる。後者の状態で親
水基が吸着材料表面に存在することが、特に高い水吸着
性能に寄与していると考えられる。
That is, as schematically shown in FIG. 10, in the case of impregnation only with sodium polyacrylate, the polymer having the structure of FIG. 9 exists on the surface of the adsorbing material as it is as shown in FIG. On the other hand, in the case of HNO 3 impregnation + sodium polyacrylate impregnation, it is considered that the polymer changed state by HNO 3 and NO 3 groups exist on the surface of the adsorbing material as shown in FIG. It is considered that the presence of the hydrophilic group on the surface of the adsorption material in the latter state contributes to particularly high water adsorption performance.

【0031】[0031]

【発明の効果】以上説明したように、本発明によれば、
特に水分に対する吸着能力を高めた炭化木材系の吸着材
料およびその製造方法が提供される。本発明の炭化木材
系吸着材料は、室内用エアコンシステム等の吸着式冷凍
機に従来用いられていた代表的な吸着材料であるシリカ
ゲルに比べて、同等あるいは更に高い水分吸着性能を発
揮する。
As described above, according to the present invention,
In particular, there is provided a carbonized wood-based adsorbing material having an improved ability to adsorb moisture and a method for producing the same. The carbonized wood-based adsorbent material of the present invention exhibits the same or higher moisture adsorption performance than silica gel which is a typical adsorbent material conventionally used in an adsorption refrigerator such as an indoor air conditioner system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明による吸着材料の製造方法の望
ましい工程例を示すフローチャートである。
FIG. 1 is a flowchart showing a preferred example of a process of a method for producing an adsorbent material according to the present invention.

【図2】図2は、炭化処理温度と、その後に行う賦活処
理後の比表面積との関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a carbonization temperature and a specific surface area after a subsequent activation treatment.

【図3】図3は、賦活処理による重量減少率と得られる
比表面積との関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a weight reduction rate by an activation treatment and an obtained specific surface area.

【図4】図4は、親水処理しない従来の吸着材料と親水
処理を行った本発明の吸着材料について、相対圧と水吸
着量との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the relative pressure and the amount of water adsorbed for a conventional adsorbent material without hydrophilic treatment and an adsorbent material of the present invention subjected to hydrophilic treatment.

【図5】図5は、従来のシリカゲルと本発明の吸着材料
について、吸着時間と水吸着量との関係を示すグラフで
あり、図5(2)は図5(1)の短時間領域を拡大して
示したものである。
FIG. 5 is a graph showing the relationship between the adsorption time and the amount of water adsorbed on the conventional silica gel and the adsorbent of the present invention. FIG. 5 (2) shows the short-time region of FIG. 5 (1). It is shown enlarged.

【図6】図6は、親水処理しない従来の吸着材料と親水
処理を行った本発明の吸着材料について、相対圧と水吸
着量との関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the relative pressure and the amount of water adsorbed on a conventional adsorbent material without hydrophilic treatment and on an adsorbent material of the present invention subjected to hydrophilic treatment.

【図7】図7は、従来のシリカゲルおよび親水処理なし
の吸着材料、親水処理を行った本発明の吸着材料につい
て、相対圧0.15と0.3とにおける水吸着量の差を
比較して示すグラフである。
FIG. 7 is a comparison of the difference in water adsorption between a conventional silica gel, an adsorbent without hydrophilic treatment, and an adsorbent of the present invention subjected to hydrophilic treatment at relative pressures of 0.15 and 0.3. FIG.

【図8】図8は、親水処理なしおよび本発明による親水
処理を行った吸着材料についてのFT−IR分析チャー
トである。
FIG. 8 is an FT-IR analysis chart of the adsorption material without the hydrophilic treatment and with the hydrophilic treatment according to the present invention.

【図9】図9は、ポリアクリル酸ナトリウムの構造式を
示す。
FIG. 9 shows the structural formula of sodium polyacrylate.

【図10】図10は、(1)ポリアクリル酸ナトリウム
含浸のみの場合と(2)HNO3含浸+ポリアクリル酸
ナトリウム含浸の場合について、吸着材料表面での親水
基の存在状態を模式的に示す断面図である。
FIG. 10 is a diagram schematically showing the state of the presence of a hydrophilic group on the surface of an adsorbent material in the case of (1) only impregnation with sodium polyacrylate and in the case of (2) impregnation with HNO 3 + sodium polyacrylate. FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉山 雅彦 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 近藤 拓也 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 竹内 雅彦 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 長谷 貞三 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 大竹 和実 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 4D052 AA08 HA21 HA27 HA39 HB06 4G066 AA31D AA42A AA42B AA53D AC17B AC17D AC21C AC21D AC22C AC22D AC25C AC25D AD15A AD15B AD20A AD20B AE05A AE05B BA22 BA26 BA36 CA43 DA03 EA20 FA12 FA18 FA23 FA34 FA38 4H012 JA01  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masahiko Sugiyama 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation (72) Inventor Takuya Kondo 1 Toyota Town Toyota City, Aichi Prefecture Toyota Motor Corporation ( 72) Inventor Masahiko Takeuchi 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (72) Inventor Sadazo Hase 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (72) Inventor Kazumi Otake Aichi 1F, Toyota-cho, Toyota-shi, TOYOTA FA18 FA23 FA34 FA38 4H012 JA01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 炭化された木材から実質的に成り、炭化
前の該木材の導管に対応する部分に細孔を有し、該細孔
内に親水基が配置されていることを特徴とする吸着材
料。
1. A material which is substantially made of carbonized wood, has pores in a portion corresponding to a conduit of the wood before carbonization, and has a hydrophilic group disposed in the pores. Adsorption material.
【請求項2】 請求項1記載の吸着材料において、該親
水基としてシラノール基を含むことを特徴とする吸着材
料。
2. The adsorptive material according to claim 1, wherein the hydrophilic group contains a silanol group.
【請求項3】 請求項1記載の吸着材料において、該親
水基としてカルボキシル基を含むことを特徴とする吸着
材料。
3. The adsorptive material according to claim 1, wherein the hydrophilic group contains a carboxyl group.
【請求項4】 下記の工程:木材を真空中または不活性
雰囲気中において400〜800℃にて炭化する工程、 上記炭化された木材を賦活処理する工程、および上記賦
活処理された木材に親水基を付与する工程を含むことを
特徴とする吸着材料の製造方法。
4. The following steps: a step of carbonizing the wood in a vacuum or an inert atmosphere at 400 to 800 ° C., a step of activating the carbonized wood, and a step of applying a hydrophilic group to the activated wood. A method for producing an adsorbent material, the method comprising:
【請求項5】 請求項4記載の方法において、前記炭化
する工程の前に、下記の工程:木材に樹脂を含浸する工
程、および上記含浸された樹脂を硬化する工程を更に含
むことを特徴とする吸着材料の製造方法。
5. The method according to claim 4, further comprising, before the carbonizing step, the following steps: a step of impregnating the wood with a resin, and a step of curing the impregnated resin. Manufacturing method of adsorbent material.
JP20051899A 1999-02-25 1999-07-14 Adsorbing material and method for producing the same Expired - Fee Related JP3744268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20051899A JP3744268B2 (en) 1999-02-25 1999-07-14 Adsorbing material and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-47919 1999-02-25
JP4791999 1999-02-25
JP20051899A JP3744268B2 (en) 1999-02-25 1999-07-14 Adsorbing material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000308824A true JP2000308824A (en) 2000-11-07
JP3744268B2 JP3744268B2 (en) 2006-02-08

Family

ID=26388127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20051899A Expired - Fee Related JP3744268B2 (en) 1999-02-25 1999-07-14 Adsorbing material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3744268B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140080910A (en) * 2012-12-20 2014-07-01 재단법인 포항산업과학연구원 Method for manufacturing porous pelletized activated carbon from wood pellet and porous pelletized activated carbon manufactured therefrom
CN105382902A (en) * 2015-11-20 2016-03-09 桂林融通科技有限公司 Novel wood impregnation and carbonization treatment method
CN105479569A (en) * 2015-11-20 2016-04-13 桂林融通科技有限公司 Carbonized wood production method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140080910A (en) * 2012-12-20 2014-07-01 재단법인 포항산업과학연구원 Method for manufacturing porous pelletized activated carbon from wood pellet and porous pelletized activated carbon manufactured therefrom
KR102023064B1 (en) 2012-12-20 2019-09-19 재단법인 포항산업과학연구원 Method for manufacturing porous pelletized activated carbon from wood pellet and porous pelletized activated carbon manufactured therefrom
CN105382902A (en) * 2015-11-20 2016-03-09 桂林融通科技有限公司 Novel wood impregnation and carbonization treatment method
CN105479569A (en) * 2015-11-20 2016-04-13 桂林融通科技有限公司 Carbonized wood production method

Also Published As

Publication number Publication date
JP3744268B2 (en) 2006-02-08

Similar Documents

Publication Publication Date Title
KR101360474B1 (en) Vaccum insulation panel using getter composites
EP0554805A1 (en) Air separation by pressure swing adsorption with a high capacity carbon molecular sieve
JP2017508121A (en) Hybrid adsorption device heat exchange device and manufacturing method
JP2001240407A (en) Activated carbon and its manufacturing method
JP4864238B2 (en) Activated carbon and its manufacturing method
KR20190072889A (en) Activated carbon with improved butane adsorption capacity and method of producing the same
JP5026345B2 (en) Adsorbent system and method for regenerating the system
KR101918652B1 (en) Activated carbon for removal of formaldehyde gas and the method thereof
JP2000308824A (en) Adsorption material and manufacture of the same
JP2002255531A (en) Carbonaceous porous material and apparatus for utilizing waste heat
JP2023542069A (en) microporous airgel
JP6991116B2 (en) Covalent organic framework composition and method for producing the same
CN112480467B (en) Moisture-proof modified phenolic aldehyde heat-insulating material and preparation method thereof
KR20190063869A (en) Preparation of porous carbon materials by kenaf and manufacturing methode
JP2007331982A (en) Method for manufacturing hydrophobic zeolite
KR100644367B1 (en) Composite type of silica gel-graphite and preparation method for the same
JP4854969B2 (en) Novel storage material having nanoporous carbon structure and method for producing the same
JP4238351B2 (en) Novel carbon-based hydrocarbon occlusion body and method for producing the same
JP2001219059A (en) Moisture conditioning/deodorizing material using siliceous shale
JP4469683B2 (en) Method for producing carbonized deodorizing material
KR102096304B1 (en) moisture adsorption zeolite-Organic and inorganic nanoporous material Compositions for surface coating and methods for producing the same
KR20050068090A (en) Making method porous carbon using close packed monodispersed silica sphere
CN114471443B (en) Manganese oxide@nitrogen doped block carbon aerogel material and preparation and application thereof
CN113150368B (en) Moisture-proof modified phenolic aldehyde heat-insulating material and preparation method thereof
JP2007223826A (en) Heat-resistant activated carbon and method of manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees