JP2000308368A - Power conversion circuit - Google Patents

Power conversion circuit

Info

Publication number
JP2000308368A
JP2000308368A JP11112120A JP11212099A JP2000308368A JP 2000308368 A JP2000308368 A JP 2000308368A JP 11112120 A JP11112120 A JP 11112120A JP 11212099 A JP11212099 A JP 11212099A JP 2000308368 A JP2000308368 A JP 2000308368A
Authority
JP
Japan
Prior art keywords
voltage
inverter
phase
power
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11112120A
Other languages
Japanese (ja)
Other versions
JP3666557B2 (en
Inventor
Junichi Ito
淳一 伊東
Koetsu Fujita
光悦 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP11212099A priority Critical patent/JP3666557B2/en
Publication of JP2000308368A publication Critical patent/JP2000308368A/en
Application granted granted Critical
Publication of JP3666557B2 publication Critical patent/JP3666557B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To realize a system whose efficiency is high and which is small by a method, wherein an inverter output voltage is increased without increasing a DC link voltage, a motor current is reduced and a copper loss and the generation of heat are suppressed. SOLUTION: This power conversion circuit is provided with a power-supply side leg LG, in which two semiconductor switch parts are connected in series. The power conversion circuit is provided with a smoothing capacitor Cdc which is connected to both ends of the leg. The power conversion circuit is provided with a polyphase inverter INV, whose DC input side is connected to both ends of the capacitor. The power conversion circuit is provided with a single-phase AC power supply AC connected to the neutral point of a polyphase motor M, one end of which is connected to the middle point of the power-supply-side leg LG and the other end of which is star-connected to the AC output side of an inverter INV. In the power sonversion circuit, the zero-volt vector of the inverter INV is controlled, the neutral-point potential of the motor M is controlled, the semiconductor switch parts in the power-supply side leg LG are operated, the intermediate-point potential of the power-supply side leg LG is operated, and the input current of the inverter INV is controlled. Then, a zero-phase voltage is superposed on the phase output voltage command value of the inverter INV, and the maximum output voltage of the inverter INV is increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、単相交流電源から
多相交流に変換する電力変換回路において、その出力電
圧の増加及び直流リンク電圧利用率の改善を可能にした
電力変換回路に関する。ここで、電圧利用率とは電力変
換回路(インバータ)の最大出力線間電圧基本波のピー
ク値/直流リンク電圧を意味する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power conversion circuit for converting a single-phase AC power supply to a multi-phase AC power supply, the output voltage of which is increased and the DC link voltage utilization factor is improved. Here, the voltage utilization rate means the peak value of the maximum output line voltage fundamental wave of the power conversion circuit (inverter) / DC link voltage.

【0002】[0002]

【従来の技術】以下では、単相−三相電力変換回路を例
示して従来技術を説明する。図3は、単相交流を少ない
スイッチング素子と簡単な構成によって三相交流に変換
する単相−三相電力変換回路の従来技術であり、負荷で
ある三相交流電動機の巻線の中性点を利用したものであ
る。この技術は、本出願人による特開平10−3370
47号公報の図2や「平成9年電気学会産業応用部門全
国大会56」によって広く公知になっているが、回路の
構成及び動作を簡単に説明すると以下のようになる。
2. Description of the Related Art The prior art will be described below by exemplifying a single-phase to three-phase power conversion circuit. FIG. 3 shows a prior art of a single-phase to three-phase power conversion circuit for converting a single-phase AC into a three-phase AC with a small number of switching elements and a simple configuration, and a neutral point of a winding of a three-phase AC motor as a load. It is a thing using. This technique is disclosed in Japanese Patent Application Laid-Open No. 10-3370 by the present applicant.
Although it is widely known in FIG. 2 of JP-A-47-47 and “The National Institute of Electrical Engineers of Japan in 1997,” the circuit configuration and operation are briefly described as follows.

【0003】図3において、S1,S2はスイッチング
素子とダイオードとの逆並列回路を2個直列接続した半
導体スイッチ部であり、これらによって電源側レッグL
Gが構成される。また、S11〜S16も同様の半導体
スイッチ部であり、これらによって三相の電圧形インバ
ータINVが構成される。Cdcは平滑コンデンサであ
る。インバータINVの各相出力端子は三相誘導電動機
等の交流電動機Mの巻線の各一端に接続され、その中性
点は単相交流電源ACを介して電源側レッグLGの半導
体スイッチ部S1,S2の直列回路の中点(仮想中性
点)に接続されている。なお、電動機Mは固定子巻線が
星形接続されており、各巻線の誘起電圧を交流電源の記
号で図示してある。
In FIG. 3, S1 and S2 are semiconductor switch sections in which two anti-parallel circuits of a switching element and a diode are connected in series.
G is configured. Also, S11 to S16 are similar semiconductor switch units, and these constitute a three-phase voltage source inverter INV. C dc is a smoothing capacitor. Each phase output terminal of the inverter INV is connected to one end of a winding of an AC motor M such as a three-phase induction motor, and its neutral point is connected via a single-phase AC power supply AC to a semiconductor switch section S1, It is connected to the middle point (virtual neutral point) of the series circuit of S2. In the motor M, the stator windings are connected in a star shape, and the induced voltage of each winding is shown by the symbol of the AC power supply.

【0004】図3の構成において、インバータINVの
零電圧ベクトルを制御することにより電動機Mの中性点
電位v0を制御できることから、インバータINVの零
電圧ベクトルと電源側レッグLGとによりインバータI
NVの入力電流を制御する。この結果、従来の単相フル
ブリッジ形AC/DCコンバータを用いる場合と同様に
入力電流を制御することができる。電動機Mに印加され
る電圧はインバータINVの線間電圧であるから、零相
分電圧は電動機M側に現れず、電動機駆動に影響しな
い。従って、インバータINVの零相分電圧は自由度が
ある。そこで、図3の回路では零相分を用いてインバー
タINVの入力電流の制御を行い、正相分を用いて電動
機電流の制御を行うものである。
In the configuration shown in FIG. 3, since the neutral point potential v 0 of the motor M can be controlled by controlling the zero voltage vector of the inverter INV, the inverter IV is controlled by the zero voltage vector of the inverter INV and the power supply side leg LG.
Controls the input current of NV. As a result, the input current can be controlled as in the case of using the conventional single-phase full-bridge AC / DC converter. Since the voltage applied to the motor M is the line voltage of the inverter INV, the zero-phase component voltage does not appear on the motor M side and does not affect the motor driving. Therefore, the zero phase voltage of the inverter INV has a degree of freedom. Therefore, in the circuit of FIG. 3, the input current of the inverter INV is controlled using the zero-phase component, and the motor current is controlled using the positive-phase component.

【0005】この回路における制御ブロック図は、図4
のように構成されている。図4において、1は自動電圧
調整器(AVR)、2,6,7,8,9は比較器、3は
PLL(フェイズ・ロックド・ループ)回路、4,1
0,11,12はsinテーブル、5は自動電流調整器
(ACR)、20,21,22,23は加算器である。
A control block diagram of this circuit is shown in FIG.
It is configured as follows. 4, 1 is an automatic voltage regulator (AVR), 2, 6, 7, 8, 9 are comparators, 3 is a PLL (phase locked loop) circuit, and 4, 1
Reference numerals 0, 11, and 12 denote sine tables, 5 denotes an automatic current regulator (ACR), and 20, 21, 22, and 23 denote adders.

【0006】図4の構成において、直流リンク電圧指令
値Vdc *と検出値Vdcとの偏差はAVR1に入力され
る。また、電源電圧Vsが入力されている比較器2の出
力はPLL回路3を介してsinテーブル4に入力され、
電源電圧に同期した正弦波データが読み出される。この
正弦波データはAVR1の出力に乗じられて、電源電流
指令値is *となる。この指令値is *と検出値isとの偏
差が加算器23により求められてACR5に入力され
る。ACR5の出力は電源側レッグLGの中点の電圧指
令値vx *として比較器6に入力され、キャリア(三角
波)との比較に用いられる。比較器6の出力とその反転
信号とは、電源側レッグLGの半導体スイッチ部S1,
S2のスイッチング素子を駆動するPWMパルスとな
る。
In the configuration shown in FIG. 4, the deviation between the DC link voltage command value V dc * and the detected value V dc is input to AVR1. The output of the comparator 2 to the power supply voltage V s is input is input to the sin table 4 through the PLL circuit 3,
Sine wave data synchronized with the power supply voltage is read. The sine wave data is multiplied by the output of AVR1, the source current command value i s *. The deviation between the command value i s * and the detection value i s is input to the ACR5 sought by the adder 23. The output of the ACR 5 is input to the comparator 6 as a voltage command value v x * at the middle point of the power supply leg LG, and is used for comparison with a carrier (triangular wave). The output of the comparator 6 and its inverted signal are connected to the semiconductor switch units S1 and S1 of the power side leg LG.
It becomes a PWM pulse for driving the switching element of S2.

【0007】一方、回転数指令値(角周波数指令値)ω
*はsinテーブル10,11,12に入力され、互いに2
π/3〔rad〕の位相差を持つ三相の正弦波データが出
力される。これらの正弦波データには振幅指令値a*
乗じられ、その結果が比較器7,8,9に入力される。
これらの比較器7,8,9は正弦波データと前記キャリ
アとを比較し、インバータINVの半導体スイッチ部S
11〜S16のスイッチング素子に対するPWMパルス
が生成される。
On the other hand, the rotational speed command value (angular frequency command value) ω
* Is input to the sine tables 10, 11, and 12
Three-phase sine wave data having a phase difference of π / 3 [rad] is output. These sine wave data are multiplied by the amplitude command value a * , and the result is input to the comparators 7, 8, and 9.
These comparators 7, 8, and 9 compare the sine wave data with the carrier and determine the semiconductor switch S of the inverter INV.
PWM pulses for the switching elements 11 to S16 are generated.

【0008】この制御ブロックでは、直流リンク電圧V
dcが電源電圧Vs(実効値)の2√2倍以上の関係にあ
る場合にはインバータINV側の電圧指令値の零相電圧
を零とし、電動機Mの中性点電位v0を直流リンク電圧
dcの中点電位とみなし、AC/DC変換動作について
は従来のハーフブリッジAC/DCコンバータと同様に
制御していた。
In this control block, the DC link voltage V
When dc has a relationship of 2√2 times or more of the power supply voltage V s (effective value), the zero-phase voltage of the voltage command value on the inverter INV side is set to zero, and the neutral point potential v 0 of the motor M is connected to the DC link. The voltage Vdc was regarded as the midpoint potential, and the AC / DC conversion operation was controlled in the same manner as the conventional half-bridge AC / DC converter.

【0009】[0009]

【発明が解決しようとする課題】図3、図4の制御方法
では、電動機Mに零相分電流として電源電流isを重畳
することから、電動機電流が増加する。この結果、銅損
が増大し、電動機Mの発熱も大きくなる。電動機Mの銅
損を低減するためには、電動機Mに流れる正相分電流の
低減が必要である。この場合、正相分電流を小さくした
としても、電動機Mの定格入力電圧(すなわち、インバ
ータINVの出力電圧)を大きくすれば同じ電動機出力
を得ることができる。従って、電動機Mにおける損失や
発熱を少なくしながら所望の出力を得るためには、電動
機電流を小さくしつつインバータINVの出力電圧を大
きくすることが望まれる。
[SUMMARY OF THE INVENTION] Figure 3, the control method of FIG. 4, the superimposing the supply current i s as zero-phase current to the electric motor M, the motor current increases. As a result, copper loss increases and heat generation of the electric motor M also increases. In order to reduce the copper loss of the motor M, it is necessary to reduce the positive-phase current flowing through the motor M. In this case, even if the positive-phase current is reduced, the same motor output can be obtained by increasing the rated input voltage of the motor M (that is, the output voltage of the inverter INV). Therefore, in order to obtain a desired output while reducing the loss and heat generation in the motor M, it is desired to increase the output voltage of the inverter INV while reducing the motor current.

【0010】従来の制御方法において、インバータIN
Vの制御回路では正弦波と三角波とを比較してPWMパ
ルスを得ているので、直流リンク電圧の中点電位から見
たインバータINVの相電圧基本波のピーク値は(1/
2)Vdcが最大である。線間電圧は相電圧の√3倍であ
ることから、線間電圧基本波のピーク値は(√3/2)
dcが限界である。他方、インバータINVの出力電圧
を大きくするために、単に直流リンク電圧Vdcを上昇さ
せることが考えられるが、この方法では使用素子耐圧が
上昇するので好ましくない。
In the conventional control method, the inverter IN
In the control circuit of V, the PWM pulse is obtained by comparing the sine wave and the triangular wave, so that the peak value of the phase voltage fundamental wave of the inverter INV as viewed from the midpoint potential of the DC link voltage is (1/1).
2) V dc is maximum. Since the line voltage is √3 times the phase voltage, the peak value of the line voltage fundamental wave is (√3 / 2)
V dc is the limit. On the other hand, in order to increase the output voltage of the inverter INV, it is conceivable to simply increase the DC link voltage Vdc. However, this method is not preferable because the withstand voltage of the element to be used increases.

【0011】そこで本発明は、直流リンク電圧を上昇さ
せる方法によらずに直流リンク電圧利用率を改善してイ
ンバータの出力電圧を増加させると共に、電動機電流を
低減して発熱を抑えるようにした、高効率かつ小形の電
力変換回路を提供しようとするものである。
Therefore, the present invention improves the DC link voltage utilization rate and increases the output voltage of the inverter without depending on the method of increasing the DC link voltage, and suppresses heat generation by reducing the motor current. An object is to provide a highly efficient and compact power conversion circuit.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するた
め、本発明では、インバータ側の電圧指令値の零相電圧
を零ではなく、インバータの線間電圧が所望の値とな
り、かつ、PWMインバータの変調率が1を超えないよ
うに(比較するキャリアより大きくなることがないよう
に)、零相電圧を重畳する。また、これに伴い、電源側
レッグの電圧指令値に該零相電圧を重畳するようにし
た。
In order to solve the above-mentioned problems, according to the present invention, the zero-phase voltage of the voltage command value on the inverter side is not zero, the line voltage of the inverter becomes a desired value, and the PWM inverter The zero-phase voltage is superimposed so that the modulation rate of the signal does not exceed 1 (so as not to be larger than the carrier to be compared). Accordingly, the zero-phase voltage is superimposed on the voltage command value of the power supply side leg.

【0013】すなわち、請求項1記載の発明は、半導体
スイッチ部を2個直列に接続した電源側レッグと、この
電源側レッグの両端に接続された平滑コンデンサと、こ
の平滑コンデンサの両端に直流入力側が接続された多相
インバータと、前記電源側レッグの中点に一端が接続さ
れ、かつ、他端が前記インバータの交流出力側に星形結
線されてなる多相負荷の中性点に接続された単相交流電
源とを備え、前記インバータの零電圧ベクトルを制御し
て前記多相負荷の中性点電位を制御し、かつ、電源側レ
ッグの半導体スイッチ部の動作により電源側レッグの中
点電位を制御して前記インバータの入力電流を制御する
ようにした電力変換回路において、前記インバータの各
相出力電圧指令値に零相電圧を重畳して前記インバータ
の最大出力電圧を増加させるものである。
That is, according to the first aspect of the present invention, there are provided a power supply side leg in which two semiconductor switches are connected in series, a smoothing capacitor connected to both ends of the power supply side leg, and a DC input to both ends of the smoothing capacitor. Side, and one end is connected to the midpoint of the power supply side leg, and the other end is connected to the neutral point of a polyphase load that is star-connected to the AC output side of the inverter. A single-phase AC power supply, and controls the zero-voltage vector of the inverter to control the neutral point potential of the multi-phase load, and operates the semiconductor switch of the power-side leg to operate the midpoint of the power-side leg. In a power conversion circuit configured to control an input current of the inverter by controlling a potential, a zero-phase voltage is superimposed on an output voltage command value of each phase of the inverter, and a maximum output voltage of the inverter is obtained. It is intended to be pressurized.

【0014】また、請求項2記載の発明は、請求項1記
載の電力変換回路において、前記電源側レッグの中点電
位を制御する電圧指令値に前記零相電圧を重畳するもの
である。
According to a second aspect of the present invention, in the power conversion circuit according to the first aspect, the zero-phase voltage is superimposed on a voltage command value for controlling a midpoint potential of the power supply side leg.

【0015】そして、請求項3に記載するように、前記
零相電圧としては、前記インバータの出力周波数を基本
周波数としたインバータ相数に等しい複数調波電圧(例
えば第三高調波電圧)とすると良い。
According to a third aspect of the present invention, the zero-phase voltage is a multi-harmonic voltage (for example, a third harmonic voltage) equal to the number of inverter phases with the output frequency of the inverter as a fundamental frequency. good.

【0016】前述のように、電動機の銅損を減らすため
には電動機の正相分電流を低減することが望ましい。電
力は電圧と電流との積に比例するので、電圧を大きくす
ることにより、同一電力のもとで電流を小さくすること
ができる。よって、インバータの出力電圧はできる限り
大きくする必要がある。
As described above, in order to reduce the copper loss of the motor, it is desirable to reduce the positive-phase current of the motor. Since the power is proportional to the product of the voltage and the current, increasing the voltage can reduce the current under the same power. Therefore, it is necessary to increase the output voltage of the inverter as much as possible.

【0017】図3に示した電源側レッグLGは半導体ス
イッチ部(スイッチング素子及びダイオード)により構
成されているため、負荷の中性点電位v0が変動して
も、この変動を考慮して電源側レッグLGの中点電位v
xを半導体スイッチ部の動作により制御すれば、インバ
ータINVの入力電流の制御が可能である。一般に、三
相インバータの電圧利用率を改善する方法として、イン
バータの各相電圧指令値にインバータの出力電圧の第三
高調波を重畳する方法がある。この時、インバータの電
圧指令値は数式1により与えられる。
Since the power supply side leg LG shown in FIG. 3 is constituted by a semiconductor switch section (switching element and diode), even if the neutral point potential v 0 of the load fluctuates, the power supply leg LG is taken into consideration. Midpoint potential v of side leg LG
If x is controlled by the operation of the semiconductor switch unit, the input current of the inverter INV can be controlled. In general, as a method of improving the voltage utilization rate of a three-phase inverter, there is a method of superimposing the third harmonic of the output voltage of the inverter on each phase voltage command value of the inverter. At this time, the voltage command value of the inverter is given by Equation 1.

【0018】[0018]

【数1】vu *=(Vdc/2)・a・{sinωt+(1/
6)・sin3ωt} vv *=(Vdc/2)・a・{sin(ωt−2π/3)+
(1/6)・sin3ωt} vw *=(Vdc/2)・a・{sin(ωt−4π/3)+
(1/6)・sin3ωt}
## EQU1 ## v u * = (V dc / 2) ・ a {sin ωt + (1 /
6) · sin3ωt} v v * = (V dc / 2) · a · {sin (ωt-2π / 3) +
(1/6) · sin3ωt} v w * = (V dc / 2) · a · {sin (ωt-4π / 3) +
(1/6) ・ sin3ωt}

【0019】すなわち、本発明では、各相電圧指令値に
零相分として第三高調波を重畳する。インバータの出力
電圧を歪みなく得るためには、インバータの各相電圧指
令値の最大値はVdc/2以下でなくてはならない。この
ため、インバータの出力電圧指令値の変調比aは、従来
では最大で1であった(数式1の右辺第2項がない場
合)が、本発明では、数式1における右辺の(Vdc
2)・aを除く括弧内の最大値が0.866程度である
ことから、変調比aを1.15まで大きくすることがで
きる。これは、出力電圧を従来より15%大きくできる
ことを意味する。以上が、請求項1及び3記載の発明に
相当する。
That is, in the present invention, the third harmonic is superimposed on each phase voltage command value as a zero-phase component. In order to obtain the output voltage of the inverter without distortion, the maximum value of each phase voltage command value of the inverter must be Vdc / 2 or less. For this reason, the modulation ratio a of the output voltage command value of the inverter was 1 at the maximum in the past (when there is no second term on the right side of Equation 1), but in the present invention, (V dc /
2) Since the maximum value in parentheses excluding a is about 0.866, the modulation ratio a can be increased to 1.15. This means that the output voltage can be increased by 15% as compared with the conventional case. The above corresponds to the first and third aspects of the present invention.

【0020】この時、数式1から、電動機Mの中性点電
位v0は数式2によって表される。
At this time, from Equation 1, the neutral point potential v 0 of the motor M is represented by Equation 2.

【0021】[0021]

【数2】v0=(1/12)・Vdc・a・sin3ωt## EQU2 ## v 0 = (1/12) · V dc · a · sin3ωt

【0022】一方、電源側レッグLGのAC/DC制御
には、数式3の関係が成立する。
On the other hand, the AC / DC control of the power supply side leg LG satisfies the relationship of Expression 3.

【0023】[0023]

【数3】v0=vx−vs ## EQU3 ## v 0 = v x −v s

【0024】従って、電源側レッグLGの中点電位vx
は、数式4により求められる。
Therefore, the midpoint potential v x of the power supply side leg LG
Is obtained by Expression 4.

【0025】[0025]

【数4】vx=(1/12)・Vdc・a・sin3ωt+√2
s・sinωs
## EQU4 ## v x = (1/12) · V dc · a · sin3ωt + √2
V s · sin ω s t

【0026】本発明において、インバータINVの各相
電圧指令値に第三高調波を重畳した場合、電源側レッグ
LGの制御は数式4に従う。具体的には、数式4の右辺
の第2項はACRの出力によって得られるので、第1項
をACRの出力に加算することとする。この結果、AC
Rは従来の電源電流制御と同等の応答を持つものでよ
く、第三高調波による歪みを与えることなしに、電源電
流制御を行うことができる。以上が、請求項2及び3の
発明に相当する。
In the present invention, when the third harmonic is superimposed on each phase voltage command value of the inverter INV, the control of the power supply side leg LG follows Expression 4. Specifically, since the second term on the right side of Equation 4 is obtained from the output of the ACR, the first term is added to the output of the ACR. As a result, AC
R may have a response equivalent to that of the conventional power supply current control, and the power supply current control can be performed without giving a distortion due to the third harmonic. The above corresponds to claims 2 and 3.

【0027】[0027]

【発明の実施の形態】以下、図に沿って本発明の実施形
態を説明する。図1は、請求項1及び3に記載した発明
の実施形態を示す制御ブロック図であり、前述の図3の
回路を対象とした制御回路である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a control block diagram showing an embodiment of the invention described in claims 1 and 3, and is a control circuit for the circuit of FIG.

【0028】図1の制御回路が図4と異なる部分は、数
式1の右辺{ }内の第三高調波(インバータINVの
出力電圧の3倍の周波数を持つ正弦波データ)が格納さ
れたsinテーブル15を設け、この第三高調波と振幅指
令値a*との乗算結果を加算器20,21,22におい
て各相電圧指令値に重畳することにより最終的な各相電
圧指令値vu *,vv *,vw *を得るようにした点である。
sinテーブル10,11,12からは、図4と同様に回
転数指令値ω*に基づいて互いに2π/3〔rad〕の位相
差を持つ三相の正弦波データが出力され、振幅指令値a
*が乗じられる。
The control circuit of FIG. 1 is different from that of FIG. 4 in that the third harmonic (sine wave data having a frequency three times the output voltage of the inverter INV) in the right side {} of equation 1 is stored. The table 15 is provided, and the multiplication result of the third harmonic and the amplitude command value a * is superimposed on each phase voltage command value in the adders 20, 21, 22 so that the final phase voltage command value v u * is obtained. , V v * , v w * .
From the sin tables 10, 11, and 12, three-phase sine wave data having a phase difference of 2π / 3 [rad] are output based on the rotational speed command value ω * as in FIG.
* Is multiplied.

【0029】本実施形態において、電源側レッグLGの
制御は次のように行われる。従来技術と同様に、直流電
圧指令値Vdc *と検出値Vdcとの偏差はAVR1に入力
される。一方、電源電圧検出値Vsは比較器2に入力さ
れ、PLL回路3、sinテーブル4を介して電源電圧に
同期した正弦波が生成される。AVR1の出力と電源に
同期した正弦波との乗算結果が、電源電流指令値is *
なる。この電源電流指令値is *と検出値isとの偏差が
加算器23により求められてACR5に入力される。こ
のACR5の出力である電源側レッグLGの中点電位指
令値vx *を比較器6にてキャリアと比較することによ
り、従来と同様に電源側レッグLGの半導体スイッチ部
に対するPWMパルスが得られる。
In the present embodiment, the control of the power supply leg LG is performed as follows. As in the prior art, the deviation between the DC voltage command value V dc * and the detected value V dc is input to AVR1. Meanwhile, the power supply voltage detection value V s inputted to the comparator 2, a sine wave synchronized to the power supply voltage via the PLL circuit 3, sin table 4 is generated. Multiplication result between the sine wave synchronized with the output power of AVR1 becomes the source current command value i s *. The deviation between the power source current command value i s * and the detection value i s is input to the ACR5 sought by the adder 23. By comparing the midpoint potential command value v x * of the power supply leg LG, which is the output of the ACR 5, with the carrier by the comparator 6, a PWM pulse for the semiconductor switch section of the power supply leg LG can be obtained as in the related art. .

【0030】このように本実施形態では、従来技術に対
して、第三高調波が格納されたsinテーブル15及び加
算器20,21,22を追加し、各相電圧指令値に零相
分として第三高調波を重畳することにより、インバータ
INVの最大出力線間電圧基本波のピーク値を直流リン
ク電圧と等しくし、数式1によってインバータINVの
出力電圧を従来よりも15パーセント程度大きくするこ
とができる。
As described above, in the present embodiment, a sine table 15 in which the third harmonic is stored and adders 20, 21, and 22 are added to the prior art, and a zero-phase component is added to each phase voltage command value. By superimposing the third harmonic, it is possible to make the peak value of the maximum output line voltage fundamental wave of the inverter INV equal to the DC link voltage, and to increase the output voltage of the inverter INV by about 15% as compared with the conventional art by the formula 1. it can.

【0031】次に、図2は請求項2及び3に記載した発
明の実施形態である。図1と異なる点は、電源側レッグ
LG側の制御において、インバータINVに重畳される
零相分としての第三高調波が電源側レッグLGの制御に
与える影響を打ち消すように、ACR5の出力にインバ
ータINV側と同じ第三高調波を重畳することである。
すなわち、図2においてACR5の出力側に設けられた
加算器24により、インバータINV側と同様の第三調
波が重畳される。
Next, FIG. 2 shows an embodiment of the present invention described in claims 2 and 3. The difference from FIG. 1 is that, in the control of the power supply leg LG, the output of the ACR 5 is controlled so that the third harmonic as the zero-phase component superimposed on the inverter INV cancels the influence on the control of the power supply leg LG. This is to superimpose the same third harmonic as that on the inverter INV side.
That is, the third harmonic similar to that on the inverter INV side is superimposed by the adder 24 provided on the output side of the ACR 5 in FIG.

【0032】インバータINVに重畳される第三高調波
はインバータ出力電圧の3倍の周波数を持つから、電動
機の高速運転時には非常に高い周波数になる。この結
果、ACR5をこれに追従させようとすると、非常に高
速応答のACRが必要となり、制御回路のコストが上昇
する。そこで、本実施形態では、ACR5の構成は従来
技術と同様にして、前述の数式4の第1項に相当する第
三高調波をACR5の出力に加算することにより、AC
Rの負担を軽減すると共に第三高調波による歪みを与え
ることなく、従来のAC/DCコンバータと同等の速度
のACRを用いて入力電流の制御を実現可能とした。
Since the third harmonic superimposed on the inverter INV has a frequency three times as high as the inverter output voltage, the frequency becomes very high during high-speed operation of the motor. As a result, if the ACR 5 attempts to follow this, an ACR with a very high-speed response is required, and the cost of the control circuit increases. Therefore, in the present embodiment, the configuration of the ACR 5 is the same as that of the prior art, and the AC power is obtained by adding the third harmonic corresponding to the first term of Equation 4 to the output of the ACR 5.
The input current can be controlled using an ACR having a speed equivalent to that of a conventional AC / DC converter without reducing the load on R and applying distortion due to the third harmonic.

【0033】なお、本発明は、上記実施形態の三相出力
ばかりでなく、三相以外の多相出力電力変換回路に適用
することができる。
The present invention can be applied not only to the three-phase output of the above embodiment, but also to a multi-phase output power conversion circuit other than the three-phase output.

【0034】[0034]

【発明の効果】以上のように本発明によれば、インバー
タの最大線間出力電圧基本波のピーク値を直流リンク電
圧値と等しくして直流リンク電圧利用率を改善すること
ができる。すなわち、従来では、直流リンク電圧の86
%程度が限界であったため、本発明によって15%程度
の出力電圧の増加を図ることが可能になる。この結果、
インバータの直流リンク電圧を上昇させることなく、電
動機への印加電圧を従来よりも増加させることができ、
電動機電流の低減によって銅損の増加や発熱を抑制し、
小形かつ高効率のシステムを実現することができる。
As described above, according to the present invention, the DC link voltage utilization factor can be improved by making the peak value of the maximum line output voltage fundamental wave of the inverter equal to the DC link voltage value. That is, conventionally, the DC link voltage of 86
%, Which is the limit, the present invention makes it possible to increase the output voltage by about 15%. As a result,
Without increasing the DC link voltage of the inverter, the voltage applied to the motor can be increased more than before.
Reduced motor current suppresses copper loss increase and heat generation,
A compact and highly efficient system can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態を示す制御ブロック図で
ある。
FIG. 1 is a control block diagram showing a first embodiment of the present invention.

【図2】本発明の第2実施形態を示す制御ブロック図で
ある。
FIG. 2 is a control block diagram showing a second embodiment of the present invention.

【図3】従来技術を示す回路図である。FIG. 3 is a circuit diagram showing a conventional technique.

【図4】図3の制御ブロック図である。FIG. 4 is a control block diagram of FIG. 3;

【符号の説明】[Explanation of symbols]

1 AVR(自動電圧調整器) 2,6,7,8,9 比較器 3 PLL回路 4,10,11,12,15 sinテーブル 5 ACR(自動電流調整器) 20,21,22,23,24 加算器 Reference Signs List 1 AVR (automatic voltage regulator) 2, 6, 7, 8, 9 comparator 3 PLL circuit 4, 10, 11, 12, 15 sin table 5 ACR (automatic current regulator) 20, 21, 22, 23, 24 Adder

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体スイッチ部を2個直列に接続した
電源側レッグと、この電源側レッグの両端に接続された
平滑コンデンサと、この平滑コンデンサの両端に直流入
力側が接続された多相インバータと、前記電源側レッグ
の中点に一端が接続され、かつ、他端が前記インバータ
の交流出力側に星形結線されてなる多相負荷の中性点に
接続された単相交流電源とを備え、前記インバータの零
電圧ベクトルを制御して前記多相負荷の中性点電位を制
御し、かつ、電源側レッグの半導体スイッチ部の動作に
より電源側レッグの中点電位を制御して前記インバータ
の入力電流を制御するようにした電力変換回路におい
て、 前記インバータの各相出力電圧指令値に零相電圧を重畳
して前記インバータの最大出力電圧を増加させることを
特徴とする電力変換回路。
1. A power supply leg having two semiconductor switches connected in series, a smoothing capacitor connected to both ends of the power supply leg, and a polyphase inverter having a DC input connected to both ends of the smoothing capacitor. A single-phase AC power supply, one end of which is connected to the midpoint of the power supply side leg, and the other end of which is connected to the neutral point of a polyphase load which is star-connected to the AC output side of the inverter. Controlling the neutral voltage of the polyphase load by controlling the zero voltage vector of the inverter, and controlling the midpoint potential of the power supply leg by operating the semiconductor switch section of the power supply leg. In a power conversion circuit configured to control an input current, a power output characterized by increasing a maximum output voltage of the inverter by superimposing a zero-phase voltage on an output voltage command value of each phase of the inverter. Circuit.
【請求項2】 請求項1記載の電力変換回路において、 前記電源側レッグの中点電位を制御する電圧指令値に前
記零相電圧を重畳することを特徴とする電力変換回路。
2. The power conversion circuit according to claim 1, wherein the zero-phase voltage is superimposed on a voltage command value for controlling a midpoint potential of the power supply side leg.
【請求項3】 請求項1または2記載の電力変換回路に
おいて、 前記零相電圧が、前記インバータの出力周波数を基本周
波数としたインバータ相数に等しい複数調波電圧である
ことを特徴とする電力変換回路。
3. The power conversion circuit according to claim 1, wherein the zero-sequence voltage is a multi-harmonic voltage equal to the number of inverter phases whose basic frequency is the output frequency of the inverter. Conversion circuit.
JP11212099A 1999-04-20 1999-04-20 Power conversion circuit Expired - Fee Related JP3666557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11212099A JP3666557B2 (en) 1999-04-20 1999-04-20 Power conversion circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11212099A JP3666557B2 (en) 1999-04-20 1999-04-20 Power conversion circuit

Publications (2)

Publication Number Publication Date
JP2000308368A true JP2000308368A (en) 2000-11-02
JP3666557B2 JP3666557B2 (en) 2005-06-29

Family

ID=14578696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11212099A Expired - Fee Related JP3666557B2 (en) 1999-04-20 1999-04-20 Power conversion circuit

Country Status (1)

Country Link
JP (1) JP3666557B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002165488A (en) * 2000-11-21 2002-06-07 Fuji Electric Co Ltd Controller of ac motor drive system
WO2002050989A1 (en) * 2000-12-07 2002-06-27 Kabushiki Kaisha Yaskawa Denki Three-level neutral point clamping pwm inverter and neutral point voltage controller
JP2002233159A (en) * 2001-02-01 2002-08-16 Fuji Electric Co Ltd Control device for pwm power converter
US6711037B2 (en) 2001-06-13 2004-03-23 Kabushiki Kaisha Toyota Jidoshokki Power supply apparatus
CN100466449C (en) * 2000-12-07 2009-03-04 株式会社安川电机 Neutral point voltage controller
JP2011199938A (en) * 2010-03-17 2011-10-06 Hitachi Ltd Power conversion apparatus and method for control of the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5858309B2 (en) 2012-11-28 2016-02-10 富士電機株式会社 Power conversion system and control method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002165488A (en) * 2000-11-21 2002-06-07 Fuji Electric Co Ltd Controller of ac motor drive system
JP4687842B2 (en) * 2000-11-21 2011-05-25 富士電機システムズ株式会社 Control device for AC motor drive system
WO2002050989A1 (en) * 2000-12-07 2002-06-27 Kabushiki Kaisha Yaskawa Denki Three-level neutral point clamping pwm inverter and neutral point voltage controller
US6795323B2 (en) 2000-12-07 2004-09-21 Kabushiki Kaisha Yaskawa Denki Three-level neutral point clamping pwn inverter and neutral point voltage controller
CN100334801C (en) * 2000-12-07 2007-08-29 株式会社安川电机 Three-level neutral point clamping PWM inverter and neutral point voltage controller
CN100466449C (en) * 2000-12-07 2009-03-04 株式会社安川电机 Neutral point voltage controller
JP2002233159A (en) * 2001-02-01 2002-08-16 Fuji Electric Co Ltd Control device for pwm power converter
JP4725694B2 (en) * 2001-02-01 2011-07-13 富士電機システムズ株式会社 PWM power converter control device
US6711037B2 (en) 2001-06-13 2004-03-23 Kabushiki Kaisha Toyota Jidoshokki Power supply apparatus
JP2011199938A (en) * 2010-03-17 2011-10-06 Hitachi Ltd Power conversion apparatus and method for control of the same

Also Published As

Publication number Publication date
JP3666557B2 (en) 2005-06-29

Similar Documents

Publication Publication Date Title
Blaabjerg et al. A new optimized space-vector modulation strategy for a component-minimized voltage source inverter
Itoh et al. Novel unity power factor circuits using zero-vector control for single-phase input systems
Kolar et al. Review of three-phase PWM AC–AC converter topologies
US6154378A (en) Polyphase inverter with neutral-leg inductor
JP3352182B2 (en) Inverter device
WO2004062078A1 (en) Motor drive device for air conditioner
Hatua et al. A novel VSI-and CSI-fed dual stator induction motor drive topology for medium-voltage drive applications
Vafakhah et al. Interleaved Discontinuous Space-Vector PWM for a multi-level PWM VSI using a 3-phase split-wound coupled inductor
JPH11122943A (en) Multiple inverter device and control method therefor
CN112542955A (en) Power conversion system, controller, and computer readable medium
JP3588932B2 (en) Power converter, control method therefor, and uninterruptible power supply using this power converter
Rahman et al. A current-forced reversible rectifier fed single-phase variable speed induction motor drive
JPH10337087A (en) Single phase-multiphase power converting circuit
JP3666557B2 (en) Power conversion circuit
Li et al. Five-phase series-end winding motor controller: converter topology and modulation method
JP4479292B2 (en) AC / AC power converter controller
Kumar et al. A 30-pulse converter and 4-level cascaded inverter based medium voltage drive using modified LSPWM technique
JP2004222338A (en) Power conversion device
Estima et al. Efficiency evaluation of fault-tolerant operating strategies applied to three-phase permanent magnet synchronous motor drives
Khwan-on et al. A fault tolerant matrix converter motor drive under open phase faults
Jang et al. Indirect matrix converter for permanent-magnet-synchronous-motor drives by improved torque predictive control
Sun et al. An optimal winding-end connection principle with minimum bridge current stress for odd-phase series-end winding topology
JPH0746847A (en) Three-phase rectifier
Das et al. A Six-Phase Space Vector PWM Technique for Wide-Bandgap Device-Based Three-Level Inverters
JP4725694B2 (en) PWM power converter control device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080415

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees