JP2000307198A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JP2000307198A
JP2000307198A JP11117480A JP11748099A JP2000307198A JP 2000307198 A JP2000307198 A JP 2000307198A JP 11117480 A JP11117480 A JP 11117480A JP 11748099 A JP11748099 A JP 11748099A JP 2000307198 A JP2000307198 A JP 2000307198A
Authority
JP
Japan
Prior art keywords
layer
molecular beam
semiconductor device
cell
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11117480A
Other languages
Japanese (ja)
Other versions
JP3608976B2 (en
Inventor
Kousei Takahashi
向星 高橋
Akiyoshi Sugawara
章義 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP11748099A priority Critical patent/JP3608976B2/en
Publication of JP2000307198A publication Critical patent/JP2000307198A/en
Application granted granted Critical
Publication of JP3608976B2 publication Critical patent/JP3608976B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To lessen the molecular beam quantities which each cell shares so as to reduce the absolute volume of a molecular beam transition response after a shutter is opened by a method wherein material is supplied to the same material of a required layer by the use of molecular beam cells. SOLUTION: An In cell and a P cell are each formed of a single molecular beam cell, a GaInP layer is grown so as to enable its three Ga cells 1, 2, and 3 to emit a molecular beam respectively, a (Al0.5Ga0.5)0.5In0.5P layer is grown so as to enable its a Ga cell 2 and Al cells 1 and 2 to emit a molecular beam respectively, and a (Al0.7Ga0.3)0.5In0.5P layer is grown so as to enable its Ga cells 2 and 3 and an Al cell 2 to emit a molecular beam respectively. Ga cells 1 and 2 are kept at temperatures about 50 deg.C lower than those at which they are grown when (Al0.7Ga0.3)0.5In0.5P layers 13 and 17 are grown. By this setup, the ratio of Al to Ga is instantaneously changed to grow layers of different band gaps successively keeping the ratio of the sum of molecular beams of Al and Ga to a molecular beam of In constant or a lattice constant unchanged.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体レーザ素子
などの半導体素子の薄層構造を高精度に制御形成するた
めの製造技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a manufacturing technique for controlling and forming a thin layer structure of a semiconductor device such as a semiconductor laser device with high precision.

【0002】[0002]

【従来の技術】近年の半導体エピタキシャル技術の進歩
はめざましく、さまざまな分野で高性能半導体薄膜を利
用した素子が実用化されている。特に分子線エピタキシ
ャル法(MBE法)や有機金属気層成長法(MOCVD法)の実用化
により成長可能な薄層構造の種類が増大したことは周知
のことである。
2. Description of the Related Art In recent years, semiconductor epitaxial technology has made remarkable progress, and devices utilizing high-performance semiconductor thin films have been put to practical use in various fields. In particular, it is well known that the types of thin layer structures that can be grown have increased due to the practical use of molecular beam epitaxy (MBE) and metal organic vapor deposition (MOCVD).

【0003】なかでもMBE法は半導体薄層の層厚制御性
が優れており、構成元素の単分子層程度までの精度で制
御形成が可能である。したがって、近年注目され実用化
されている量子井戸構造や超格子構造を用いた素子の形
成に特に有利である。このため、高速電子デバイスの薄
層形成技術としては主流となってきている。
Above all, the MBE method is excellent in controllability of the thickness of a semiconductor thin layer, and can be controlled and formed with an accuracy of about a monolayer of constituent elements. Therefore, it is particularly advantageous for forming an element using a quantum well structure or a superlattice structure which has been attracting attention and put to practical use in recent years. For this reason, it is becoming mainstream as a thin layer forming technology for high-speed electronic devices.

【0004】反面、MBE法は、超高真空を利用する装置
の構成上、複雑な薄層構造を持つ素子、たとえば半導体
レーザなどでは困難な点が多い。このため、特に赤色半
導体レーザなどの、組成によって格子定数が変化するい
わゆる格子不整合系の材料などでは、MOCVD法が主流と
なっていた。しかし、赤色レーザなどの分野でも素子の
高性能化にともない量子井戸構造の利用が不可欠とな
り、また比較的低温で良質な結晶が成長できるMBE法は
ドーピング濃度の制御性も優れていることから、MBE法
のこれらの分野での技術革新が求められている。以下に
MBE法による半導体レーザの従来技術を挙げ、問題点に
ついて述べる。
On the other hand, the MBE method has many difficulties with devices having a complicated thin layer structure, for example, semiconductor lasers, due to the configuration of an apparatus utilizing an ultra-high vacuum. For this reason, the MOCVD method has become the mainstream especially for so-called lattice mismatched materials whose lattice constant changes depending on the composition, such as a red semiconductor laser. However, in the field of red lasers and the like, the use of a quantum well structure is indispensable as the performance of the device becomes higher, and the MBE method that can grow high-quality crystals at a relatively low temperature has excellent controllability of the doping concentration. There is a need for technological innovation in these areas of the MBE method. less than
The problems of the semiconductor laser based on the MBE method are described.

【0005】図5、6を用いて、MBE法によるAlGaInP系
の赤色半導体レーザの製造法の従来例を説明する。
A conventional example of a method for manufacturing an AlGaInP-based red semiconductor laser by the MBE method will be described with reference to FIGS.

【0006】図6に示す様に、n-GaAs基板30上に分子
線エピタキシャル法を用いてn-GaAsバッファ層31、n-Ga
0.5In0.5P層32、n-Al0.5In0.5Pクラッド層(厚さ1μm)3
3、Ga0.5In0.5P活性層34、p-Al0.5In0.5Pクラッド層(厚
さ1μm)35、p-Ga0.5In0.5P層36、p-GaAsキャップ層37
を順次成長する。
As shown in FIG. 6, an n-GaAs buffer layer 31 and an n-Ga buffer layer 31 are formed on an n-GaAs substrate 30 by molecular beam epitaxy.
0.5 In 0.5 P layer 32, n-Al 0.5 In 0.5 P cladding layer (thickness 1 μm) 3
3, Ga 0.5 In 0.5 P active layer 34, p-Al 0.5 In 0.5 P cladding layer (thickness 1 μm) 35, p-Ga 0.5 In 0.5 P layer 36, p-GaAs cap layer 37
Grow sequentially.

【0007】この場合、 n-GaAsバッファ層31とn-Ga0.5
In0.5P層32の間とp-Ga0.5In0.5P層36とp-GaAsキャップ
層37の間はV族分子線の切り替えのために成長を休止し
た。しかしそのほかでは、 Ga0.5In0.5PとAl0.5In0.5P
を交互に連続成長した。この理由は、これらの層は、レ
ーザ発振を起こす層もしくはレーザ光の集中する部分で
あり、成長休止した場合、燐の脱離や不純物の混入によ
る結晶性の悪化がレーザ特性を劣化させるためである。
In this case, the n-GaAs buffer layer 31 and the n-Ga 0.5
The growth was stopped between the In 0.5 P layer 32 and between the p-Ga 0.5 In 0.5 P layer 36 and the p-GaAs cap layer 37 for switching the group V molecular beam. However, in others, Ga 0.5 In 0.5 P and Al 0.5 In 0.5 P
Were continuously and alternately grown. The reason for this is that these layers are layers that cause laser oscillation or portions where laser light is concentrated, and when growth is stopped, deterioration in crystallinity due to desorption of phosphorus or mixing of impurities deteriorates laser characteristics. is there.

【0008】次に、図5に上記の連続成長の部分を成長
する時の各セルの分子線量を示す。In、Al、Ga、Pセル
はそれぞれ1個づつ使用して格子不整合ない構造を連続
的に成長できた。本従来例の様に、簡単な赤色レーザを
成長する場合は、特に大きな問題はないが、3種類以上
の組成を成長する場合には、従来の方法では、成長中に
使用しているセルの設定を変更するか、成長を休止する
必要があった。このいずれの手段もレーザ特性に影響を
及ぼす結晶性の悪化を引き起こす原因となる。すなわち
前者の場合、成長中の設定変更により格子定数の不安定
が生じ結晶性の再現性が悪くなる。後者の場合、燐の脱
離や不純物の混入により結晶性が悪化する。
Next, FIG. 5 shows the molecular dose of each cell when growing the above-mentioned continuous growth portion. In, Al, Ga, and P cells were used one by one, and a structure without lattice mismatch could be continuously grown. In the case of growing a simple red laser as in this conventional example, there is no particular problem. However, in the case of growing three or more types of compositions, the conventional method uses a method of growing a cell used during growth. Needed to change settings or pause growth. Either of these methods causes deterioration in crystallinity that affects laser characteristics. That is, in the former case, the setting change during the growth causes instability of the lattice constant and deteriorates the reproducibility of crystallinity. In the latter case, crystallinity is degraded due to desorption of phosphorus and mixing of impurities.

【0009】次に上記の問題点を解決するために用いら
れている、より複雑な素子構造の成長方法の従来例を図
7、8を用いて説明する。
Next, a conventional example of a method for growing a more complicated device structure used to solve the above problem will be described with reference to FIGS.

【0010】図8に示す様に、n-GaAs基板40上にMBE法
を用いてn-GaAsバッファ層41、n-Ga 0.5In0.5P層42、n-
(Al0.7Ga0.3)0.5In0.5Pクラッド層(厚さ1μm)43、(Al
0.5Ga0 .5)0.5In0.5P光ガイド層(厚さ30nm)44、Ga0.5In
0.5P/(Al0.5Ga0.5)0.5In0.5P多重量子井戸活性層45、(A
l0.5Ga0.5)0.5In0.5P光ガイド層(厚さ30nm)46、p-(Al0
.7Ga0.3)0.5In0.5Pクラッド層(厚さ1μm)47、p-Ga0.5I
n0.5P層48、p-GaAsキャップ層49を順次成長した。ここ
で、上記多重量子井戸活性層は、Ga0.5In0.5P量子井戸
層(厚さ8nm)45aを3層、(Al0.5Ga0.5)0.5In0.5P障壁層
(厚さ5nm)45bを2層交互に積層したものである。
As shown in FIG. 8, an n-GaAs substrate 40 is provided with an MBE method.
N-GaAs buffer layer 41, n-Ga 0.5In0.5P layer 42, n-
(Al0.7Ga0.3)0.5In0.5P clad layer (thickness 1μm) 43, (Al
0.5Ga0 .Five)0.5In0.5P light guide layer (thickness 30 nm) 44, Ga0.5In
0.5P / (Al0.5Ga0.5)0.5In0.5P multiple quantum well active layer 45, (A
l0.5Ga0.5)0.5In0.5P light guide layer (thickness 30 nm) 46, p- (Al0
.7Ga0.3)0.5In0.5P clad layer (thickness 1μm) 47, p-Ga0.5I
n0.5A P layer 48 and a p-GaAs cap layer 49 were sequentially grown. here
In the multiple quantum well active layer, Ga0.5In0.5P quantum well
3 layers (8 nm thick) 45a, (Al0.5Ga0.5)0.5In0.5P barrier layer
(Thickness: 5 nm) 45b are alternately laminated in two layers.

【0011】この場合、 n-GaAsバッファ層41とn-Ga0.5
In0.5P層42の間とp-Ga0.5In0.5P層48とp-GaAsキャップ
層49の間はV族分子線の切り替えのために成長を休止す
る。しかしそのほかでは、 Ga0.5In0.5P、(Al0.5Ga0.5)
0.5In0.5P 、(Al0.7Ga0.3)0.5In0.5Pの3種類の組成の層
を連続成長する。この理由は、これらの層は、レーザ発
振を起こす層もしくはレーザ光の集中する部分であり、
成長休止した場合、燐の脱離や不純物の混入による結晶
性の悪化がレーザ特性を劣化させるためである。
In this case, the n-GaAs buffer layer 41 and the n-Ga 0.5
The growth is stopped between the In 0.5 P layer 42 and between the p-Ga 0.5 In 0.5 P layer 48 and the p-GaAs cap layer 49 for switching the group V molecular beam. However, in others, Ga 0.5 In 0.5 P, (Al 0.5 Ga 0.5 )
Layers of three compositions of 0.5 In 0.5 P and (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P are continuously grown. The reason is that these layers are layers that cause laser oscillation or portions where laser light is concentrated,
This is because, when the growth is stopped, deterioration of crystallinity due to desorption of phosphorus or mixing of impurities deteriorates laser characteristics.

【0012】次に、図7に上記の連続成長の部分を成長
する時の各セルの分子線量を示す。InとPセルはそれぞ
れ1個づつの分子線セルを使用するが、Ga0.5In0.5P層
をGa1セル、(Al0.7Ga0.3)0.5In0.5P層をGa2セルとAl1セ
ル、(Al0.5Ga0.5)0.5In0.5P層をGa3セルとAl2セルをそ
れぞれの分子線を発射するように設定して成長を行う。
したがって、3個のGaセル、2個のAlセルを用いる。
Next, FIG. 7 shows the molecular dose of each cell when growing the above-mentioned continuous growth portion. One molecular beam cell is used for each of the In and P cells, but the Ga 0.5 In 0.5 P layer is used for the Ga1 cell, the (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P layer is used for the Ga2 cell and the Al1 cell, and the (Al 0.5 Ga cell). The 0.5 ) 0.5 In 0.5 P layer is grown by setting the Ga3 cell and the Al2 cell to emit respective molecular beams.
Therefore, three Ga cells and two Al cells are used.

【0013】このようにしてAlとGaの分子線の合計とIn
の分子線の比率を一定に保ったまま、すなわち格子定数
を一定に保ったままAlをGaの比率を瞬時に変えてバンド
ギャップの違う層を連続的に成長できる。このように、
各組成に対応する分子線を別の分子線セルから供給する
ことにより、多種類の組成の層を含む素子の成長であっ
ても各組成を連続成長できる。
Thus, the sum of the molecular beams of Al and Ga and In
While the ratio of the molecular beams is kept constant, that is, while the lattice constant is kept constant, the ratio of Al to Ga can be changed instantaneously to continuously grow layers having different band gaps. in this way,
By supplying a molecular beam corresponding to each composition from another molecular beam cell, each composition can be continuously grown even when a device including layers of various compositions is grown.

【0014】[0014]

【発明が解決しようとする課題】上記の改良された従来
例における問題点を以下に列挙する。第一の問題点は、
たとえば、図7、8における多重量子井戸活性層45を連
続成長する際には、Ga1分子線セルGa 3分子線セルおよ
びAl2分子線セルを開閉して組成を変更する。しかし、
シャッタを開けた際の分子線強度は、ある一定の過渡変
動を持つ。これは、シャッタが閉じている時には、セル
内部の熱輻射がシャッタで反射し材料表面の温度を上昇
させるのに対し、シャッタを開けた直後に熱輻射の反射
がなくなるため、急激に材料表面温度が低下するためで
ある。この時の分子線強度の変動は、セルの大きさや、
材料充填量に依存するが、約10%程度となることが多
い。特に大型の材料セルに多量の材料を充填する必要の
ある、量産用MBE装置では、大きな値となる。
The problems in the above-mentioned improved prior art are listed below. The first problem is
For example, when continuously growing the multiple quantum well active layer 45 in FIGS. 7 and 8, the composition is changed by opening and closing the Ga1 molecular beam cell, the Ga3 molecular beam cell and the Al2 molecular beam cell. But,
The molecular beam intensity when the shutter is opened has a certain transient fluctuation. This is because when the shutter is closed, the heat radiation inside the cell is reflected by the shutter and raises the temperature of the material surface, whereas the reflection of the heat radiation disappears immediately after the shutter is opened, so that the material surface temperature sharply increases. Is to be reduced. The fluctuation of the molecular beam intensity at this time depends on the size of the cell,
Although it depends on the material filling amount, it is often about 10%. In particular, the value is large in a mass production MBE apparatus in which a large material cell needs to be filled with a large amount of material.

【0015】この問題点は、AlGaInP系などの、組成に
よって格子定数が変化するいわゆる格子不整合系の材料
で特に大きい。分子線の過渡応答による組成のずれが格
子不整合による結晶転移の原因となるからである。
This problem is particularly significant in a so-called lattice mismatched material such as an AlGaInP system in which the lattice constant changes depending on the composition. This is because the composition shift due to the transient response of the molecular beam causes crystal transition due to lattice mismatch.

【0016】また、量子井戸構造や超格子構造など、層
厚がキャリアのドブロイ波長より小さい構造を作製する
場合にも大きな問題となる。
[0016] In addition, a large problem arises when a structure having a layer thickness smaller than the de Broglie wavelength of the carrier, such as a quantum well structure or a superlattice structure, is produced.

【0017】分子線過渡応答がバンドギャップの変動の
みならず成長速度の変動をもたらし、このような構造で
重要な薄層層厚の制御を困難とするからである。
This is because the transient response of the molecular beam causes not only the fluctuation of the band gap but also the fluctuation of the growth rate, which makes it difficult to control the thickness of the thin layer which is important in such a structure.

【0018】第2の問題点として、従来例では、各セル
の分子線量をシャッタが閉じているときも各層の組成に
対応する値に設定しているため、実効的な成長に必要な
材料の量よりかなり多くの材料を消費することがある。
この問題点を解決するために、隣接しない層で同一のセ
ルを用いそれらの層を成長する間の時間にセル温度を変
更する方法も用いられているが、各層の組成が大きく異
なる場合には温度変更の値が大きく、変更後の層でのセ
ル温度が充分安定しないという、第3の問題点が発生す
る。
As a second problem, in the conventional example, since the molecular dose of each cell is set to a value corresponding to the composition of each layer even when the shutter is closed, the material necessary for effective growth is set. May consume significantly more material than quantity.
In order to solve this problem, a method of using the same cell in non-adjacent layers and changing the cell temperature during the time during which those layers are grown is also used, but when the composition of each layer is significantly different, A third problem arises in that the value of the temperature change is large and the cell temperature in the layer after the change is not sufficiently stabilized.

【0019】第4の問題点は、上述の様に、各セルの分
子線量をシャッタが閉じているときも、各層の組成に対
応する値に設定しているため、多くの材料分子がセルシ
ャッタに付着しシャッタの交換頻度を増加させたり、シ
ャッタに付着した材料クラスタの飛散による成長層の表
面欠陥の増大などを引き起こすことがある。
The fourth problem is that, as described above, even when the shutter is closed, the molecular dose of each cell is set to a value corresponding to the composition of each layer. May cause an increase in the frequency of replacement of the shutter, scattering of material clusters attached to the shutter, and an increase in surface defects of the grown layer.

【0020】本発明は上述する課題を解決するためにな
されたものであり、各セルの分担する分子線量が低くな
るためシャッタを開けたあとの分子線過渡応答が、その
比率は大きく変えられないが、絶対量は飛躍的に低減さ
せることを目的とする。
The present invention has been made to solve the above-mentioned problems, and the ratio of the molecular beam transient response after the shutter is opened cannot be largely changed because the molecular dose shared by each cell is low. However, the purpose is to drastically reduce the absolute amount.

【0021】また、分子線の設定量が低くし、設定変更
した場合の分子線の安定性を良くすることを目的とす
る。
It is another object of the present invention to reduce the set amount of the molecular beam and improve the stability of the molecular beam when the setting is changed.

【0022】[0022]

【課題を解決するための手段】この発明(請求項1)に
係る半導体素子の製造方法は、分子線エピタキシャル成
長法により、複数の層を積層して半導体素子を製造する
際、所望の層の同一材料に対する原料の供給を、複数の
分子線セルを用いてなることによって上記の目的を達成
する。
According to a method of manufacturing a semiconductor device according to the present invention (claim 1), when a plurality of layers are stacked by a molecular beam epitaxial growth method to manufacture a semiconductor device, the same layer as a desired layer is formed. The above object is achieved by supplying a raw material to a material by using a plurality of molecular beam cells.

【0023】この発明(請求項2)に係る半導体素子の
製造方法は、請求項1に記載の半導体素子の製造方法の
うち、前記複数の層が、格子定数を略一定であって、バ
ンドギャップの異なる層を含み、これらを連続的に形成
してなることによって上記の目的を達成する。
According to a second aspect of the present invention, there is provided a method of manufacturing a semiconductor device according to the first aspect, wherein the plurality of layers have a substantially constant lattice constant and a band gap. The above-mentioned object is achieved by forming these layers in a continuous manner.

【0024】この発明(請求項3)に係る半導体素子の
製造方法は、請求項1に記載の半導体素子の製造方法の
うち、前記複数の層が、組成の異なる多元混晶層を含ん
でなり、該多元混晶層が、その組成によって格子定数が
格子不整合を起こす程度に大きく異なる、格子不整合系
であることによって上記の目的を達成する。
According to a third aspect of the present invention, there is provided a method of manufacturing a semiconductor device according to the first aspect, wherein the plurality of layers include multi-element mixed crystal layers having different compositions. The above object is attained by the fact that the multi-element mixed crystal layer is a lattice-mismatched system in which the lattice constant is largely different depending on the composition so as to cause lattice mismatch.

【0025】この発明(請求項4)に係る半導体素子の
製造方法は、請求項1乃至3のいずれかに記載の半導体
素子の製造方法であって、組成が異なる層毎に、その組
成を決定する同一の材料の分子線セルの数が異なってな
ることによって上記の目的を達成する。
A method of manufacturing a semiconductor device according to the present invention (claim 4) is the method of manufacturing a semiconductor device according to any one of claims 1 to 3, wherein the composition is determined for each layer having a different composition. The above object is achieved by using different numbers of molecular beam cells of the same material.

【0026】この発明(請求項5)に係る半導体素子の
製造方法は、請求項1乃至4のいずれかに記載の半導体
素子の製造方法であって、異なる組成を有し、互いに隣
接しない層を形成する際、同一の分子線セルを用いてな
ることによって上記の目的を達成する。
According to a fifth aspect of the present invention, there is provided a method of manufacturing a semiconductor device according to any one of the first to fourth aspects, wherein layers having different compositions and not adjacent to each other are formed. The above object is achieved by using the same molecular beam cell when forming.

【0027】この発明(請求項6)に係る半導体素子の
製造方法は、請求項5に記載の半導体素子の製造方法で
あって、隣接する層を形成している間に、前記同一の分
子線セルが単位時間当りに発射する分子線量を変更して
なることによって上記の目的を達成する。
A method of manufacturing a semiconductor device according to the present invention (claim 6) is the method of manufacturing a semiconductor device according to claim 5, wherein the same molecular beam is formed while forming adjacent layers. The above object is achieved by changing the molecular dose emitted by the cell per unit time.

【0028】この発明(請求項7)に係る半導体素子の
製造方法は、請求項1乃至6のいずれかに記載の半導体
素子の製造方法であって、待機中の分子線セルの温度
を、その使用中に比べてより低くしてなることによっ
て、上記の目的を達成する。
A method of manufacturing a semiconductor device according to the present invention (claim 7) is the method of manufacturing a semiconductor device according to any one of claims 1 to 6, wherein the temperature of the molecular beam cell in a standby state is set to The above object is achieved by being lower than in use.

【0029】この発明(請求項8)に係る半導体素子
は、請求項1乃至7のいずれかに記載の半導体素子の製
造方法で形成される層の厚さが電流キャリアのドブロイ
波長より小さくてなることによって、上記の目的を達成
する。
In the semiconductor device according to the present invention (claim 8), the thickness of the layer formed by the method for manufacturing a semiconductor device according to any one of claims 1 to 7 is smaller than the de Broglie wavelength of the current carrier. Thereby, the above object is achieved.

【0030】即ち、上記の第1、第2および第4の問題
点を解決するために、分子線エピタキシャル法により複
数の多元混晶層を成長する際、その内のすべてもしくは
一部の層において、第1の分子を単位時間当り総和で第1
の分子線量だけ発射する単一または複数の第1の分子線
セルと、第2の分子を総和で第2の分子線量だけ発射する
単一または複数の第2の分子線セルを同時に稼働させ
て、第1の分子と第2の分子との組成比が(第1の分子線
量/第2の分子線量)である第1混晶層を製作し、続い
て、第1の分子を単位時間当り総和で第3の分子線量だけ
発射する第1工程とは個数の異なる単一また複数の第1
の分子線セルと、第2の分子を総和で第4の分子線量だけ
発射する第1工程とは個数の異なる単一または複数の第2
の分子線セルを同時に稼働させて、第1の分子と第2の分
子との組成比が(第3の分子線量/第4の分子線量)であ
る第2混晶層を製作する。
That is, in order to solve the above first, second and fourth problems, when a plurality of multi-element mixed crystal layers are grown by the molecular beam epitaxy method, all or some of the layers are grown. The first numerator in total per unit time
A single or a plurality of first molecular beam cells that emit the same molecular dose and a single or a plurality of second molecular beam cells that emit the second molecules by the total second molecular dose are simultaneously operated. A first mixed crystal layer in which the composition ratio of the first molecule to the second molecule is (first molecular dose / second molecular dose), A single or a plurality of first and / or multiple different numbers from the first step of firing the third molecular dose in total
And a first step of firing a second molecule by a fourth molecular dose in total is a single or multiple second
Are simultaneously operated to produce a second mixed crystal layer in which the composition ratio of the first molecule to the second molecule is (third molecular dose / fourth molecular dose).

【0031】また第2および第4の問題点を解決する手
段として、上記分子線セルのセル温度を分子線を発射し
ていない工程において、分子線を発射している工程に比
べて低く設定する第3の問題点を解決するために、上記
手段と併用して、隣接しない複数の層を製作するのに、
同一種類の分子線を発射する同一の分子線セルを用い、
上記隣接しない複数の層の間の層を成長させている期間
に、上記分子線セルが単位時間当りに発射する分子線量
を変更して上記隣接する複数の層を作製する。
As means for solving the second and fourth problems, the cell temperature of the molecular beam cell is set lower in the step where the molecular beam is not emitted than in the step where the molecular beam is emitted. In order to solve the third problem, when a plurality of non-adjacent layers are manufactured in combination with the above-described means,
Using the same molecular beam cell that launches the same type of molecular beam,
While the layers between the non-adjacent layers are being grown, the molecular beam emitted by the molecular beam cell per unit time is changed to produce the adjacent layers.

【0032】以下、本発明の作用を記載する。Hereinafter, the operation of the present invention will be described.

【0033】上記手段を用いた場合、各セルの分担する
分子線量が低くなるためシャッタを開けたあとの分子線
過渡応答は、比率は大きく変わらないが、絶対量は飛躍
的に低減する。
When the above means is used, the ratio of the molecular beam transient response after opening the shutter is not largely changed, but the absolute amount is drastically reduced because the molecular dose shared by each cell is low.

【0034】また、分子線の設定量が低くなるため、設
定変更した場合の分子線の安定性が良くなる。
Further, since the set amount of the molecular beam is reduced, the stability of the molecular beam when the setting is changed is improved.

【0035】[0035]

【発明の実施の形態】<実施例1>図1、2を用いて、赤
色半導体レーザ素子の製造方法の本発明による実施例1
を説明する。
<Embodiment 1> Embodiment 1 of a method for manufacturing a red semiconductor laser device according to the present invention will be described with reference to FIGS.
Will be described.

【0036】図2に示す様に、n-GaAs基板10上にMBE法
を用いてn-GaAsバッファ層11、n-Ga 0.5In0.5P層12、n-
(Al0.7Ga0.3)0.5In0.5Pクラッド層(厚さ1μm)13、(Al
0.5Ga0 .5)0.5In0.5P光ガイド層(厚さ50nm)14、Ga0.6In
0.4P/(Al0.5Ga0.5)0.5In0.5P多重量子井戸活性層15、(A
l0.5Ga0.5)0.5In0.5P光ガイド層(厚さ50nm)16、p-(Al0
.7Ga0.3)0.5In0.5Pクラッド層(厚さ1μm)17、p-Ga0.5I
n0.5P層18、p-GaAsキャップ層19を順次成長した。ここ
で、上記多重量子井戸活性層は、Ga0.6In0.4P量子井戸
層(厚さ5nm)15aを5層、(Al0.5Ga0.5)0.5In0.5P障壁層
(厚さ5nm)15bを4層交互に積層したものである。
As shown in FIG. 2, an MBE method is formed on an n-GaAs substrate 10.
N-GaAs buffer layer 11, n-Ga 0.5In0.5P layer 12, n-
(Al0.7Ga0.3)0.5In0.5P clad layer (thickness 1μm) 13, (Al
0.5Ga0 .Five)0.5In0.5P light guide layer (50 nm thick) 14, Ga0.6In
0.4P / (Al0.5Ga0.5)0.5In0.5P multiple quantum well active layer 15, (A
l0.5Ga0.5)0.5In0.5P light guide layer (thickness: 50 nm) 16, p- (Al0
.7Ga0.3)0.5In0.5P clad layer (thickness 1μm) 17, p-Ga0.5I
n0.5A P layer 18 and a p-GaAs cap layer 19 were sequentially grown. here
In the multiple quantum well active layer, Ga0.6In0.4P quantum well
5 layers (thickness: 5 nm) 15a, (Al0.5Ga0.5)0.5In0.5P barrier layer
(Thickness: 5 nm) 15b are alternately laminated in four layers.

【0037】本実施例の場合、 n-GaAsバッファ層11とn
-Ga0.5In0.5P層12の間とp-Ga0.5In0 .5P層18とp-GaAsキ
ャップ層19の間はV族分子線の切り替えのために成長を
休止したが、そのほかでは、 Ga0.5In0.5P、 Ga0.6In
0.4P、 (Al0.5Ga0.5)0.5In0.5P、(Al0.7Ga0.3)0.5In0.5
Pの4種類の組成の層を連続成長した。
In this embodiment, the n-GaAs buffer layer 11 and n
Although during -ga 0.5 an In 0.5 between the P layer 12 and the p-Ga 0.5 In 0 .5 P layer 18 and the p-GaAs cap layer 19 has suspended growth for switching the group V molecular beams, in other is Ga 0.5 In 0.5 P, Ga 0.6 In
0.4 P, (Al 0.5 Ga 0.5 ) 0.5 In 0.5 P, (Al 0.7 Ga 0.3 ) 0.5 In 0.5
Layers having four compositions of P were continuously grown.

【0038】次に、図1に上記の連続成長の部分を成長
する時の各セルの分子線量を、図9にその際のセル温度
の推移をそれぞれ示す。InとPセルはそれぞれ1個づつ
の分子線セルを使用したが、 Ga0.5In0.5P層をGa1、
2、3の3個のGaセル、(Al0.5Ga0.5)0.5In0.5P層をGa2
セルとAl1、2の2個のAlセル、(Al0.7Ga0.3)0.5In0.5P
層をGa2、3の2個のGaセルとAl2セルをそれぞれの分子
線を発射するように設定して成長を行った。 Ga1とGa2
セルは、 (Al0.7Ga0.3)0.5In0.5P層13および17を成長
している間には、成長時にくらべセル温度を約50℃低
く設定した。本実施例では、3個のGaセル、2個のAlセル
を用いた。
Next, FIG. 1 shows the molecular dose of each cell when growing the above-mentioned continuous growth portion, and FIG. 9 shows the transition of the cell temperature at that time. While In and P cells, respectively using molecular beam cells one by one, Ga 0.5 In 0.5 P layer Ga1,
Two or three Ga cells, (Al 0.5 Ga 0.5 ) 0.5 In 0.5 P layer,
Two Al cells of the cell and Al1,2, (Al 0.7 Ga 0.3) 0.5 In 0.5 P
The layers were grown with two Ga cells, Ga2 and 3, and an Al2 cell set to emit their respective molecular beams. Ga1 and Ga2
During growth of the (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P layers 13 and 17, the cell temperature was set to be about 50 ° C. lower than during the growth. In this example, three Ga cells and two Al cells were used.

【0039】このようにしてAlとGaの分子線の合計とIn
の分子線の比率を一定に保ったまま、すなわち格子定数
を一定に保ったままAlをGaの比率を瞬時に変えてバンド
ギャップの違う層を連続的に成長できた。
In this way, the sum of the molecular beams of Al and Ga and In
While the ratio of the molecular beams was kept constant, that is, while the lattice constant was kept constant, Al was changed in the ratio of Ga instantaneously, and layers having different band gaps could be continuously grown.

【0040】本実施例の様に、所望の層の同一材料に対
する原料の供給を、複数の分子線セルを用いて行うこと
により、シャッタを開いた時の分子線強度の過渡応答の
絶対量を減らすことができた。本実施例のように組成に
より格子定数が変動する格子不整合系では、この過渡応
答による組成の変動が大きい場合、結晶転位の発生など
により素子の特性が著しく劣化する。本実施例の適用に
よりこの問題が解決できた。また、特に層厚が5nmと小
さい量子井戸活性層では、分子線の過渡応答は組成の変
動と成長速度の変動の原因となるため影響が大きいが、
本実施例により構造が安定し素子の発振波長の制御性が
飛躍的に改善できた。
As in this embodiment, the supply of the raw material for the same material in the desired layer is performed using a plurality of molecular beam cells, so that the absolute amount of the transient response of the molecular beam intensity when the shutter is opened can be reduced. Could be reduced. In a lattice-mismatched system in which the lattice constant fluctuates depending on the composition as in the present embodiment, when the composition fluctuates greatly due to the transient response, the characteristics of the device are significantly degraded due to the occurrence of crystal dislocation and the like. This problem was solved by applying this embodiment. In particular, in a quantum well active layer having a small layer thickness of 5 nm, the transient response of a molecular beam has a large effect because it causes a change in composition and a change in growth rate.
According to the present embodiment, the structure was stabilized, and the controllability of the oscillation wavelength of the device could be remarkably improved.

【0041】さらに、1つの層を複数の分子線セルを用
いて成長するためことにより、各セルの設定分子線強度
を最低限にまで低くできるため、材料の消費量を低下で
き、シャッタへの材料付着も低減できた。また、この効
果は13、17層でGa1、2セルの温度を低下させて待機
させることにより、より顕著になっている。低温で待機
後、そのセルを使用するまでにセル温度を成長時の温度
まで上昇しておく必要がある。待機時には、セル温度
は、充分低い方が上述の効果を顕著とできるが、その後
の成長時の使用温度に比べあまり低いと温度を再上昇し
てからの温度安定に時間がかかるため、実質的な待機時
間が短くなり効果が少ない。しかし、本実施例では、各
セルの設定温度が前記の改良された従来例に比べ、50
℃程度低いためこの悪影響が低減できた。 <実施例2>上記実施例1では、3個のGaセルを用いた
が、成長待機中にGaセル温度を変更することにより、2
個のGaセルで複雑なレーザ構造を精密に作製できる。こ
の実施例2を図3、4を用いて下記に説明する。
Further, since one layer is grown using a plurality of molecular beam cells, the set molecular beam intensity of each cell can be reduced to the minimum, so that the material consumption can be reduced, and Material adhesion was also reduced. Further, this effect is more remarkable by lowering the temperature of the Ga1 and 2 cells in the 13th and 17th layers and making them stand by. After waiting at a low temperature, it is necessary to raise the cell temperature to the growth temperature before using the cell. At the time of standby, the above effect can be remarkable if the cell temperature is sufficiently low. However, if the cell temperature is too low compared to the use temperature at the time of subsequent growth, it takes time to stabilize the temperature after the temperature is raised again. The waiting time is short and the effect is small. However, in this embodiment, the set temperature of each cell is 50 times smaller than that of the above-described improved conventional example.
Since the temperature was low by about ° C, this adverse effect could be reduced. <Embodiment 2> In the above-described embodiment 1, three Ga cells were used.
A complex laser structure can be precisely manufactured with one Ga cell. The second embodiment will be described below with reference to FIGS.

【0042】図4に示す様に、n-GaAs基板20上にMBE法
を用いてn-GaAsバッファ層21、n-Ga 0.5In0.5P層22、n-
(Al0.7Ga0.3)0.5In0.5Pクラッド層(厚さ1μm)23、(Al
0.5Ga0 .5)0.5In0.5P光ガイド層(厚さ50nm)24、Ga0.6In
0.4P/(Al0.5Ga0.5)0.5In0.5P多重量子井戸活性層25、(A
l0.5Ga0.5)0.5In0.5P光ガイド層(厚さ50nm)26、p-(Al0
.7Ga0.3)0.5In0.5Pクラッド層(厚さ1μm)27、p-Ga0.5I
n0.5P層28、p-GaAsキャップ層29を順次成長した。ここ
で、上記多重量子井戸活性層は、Ga0.6In0.4P量子井戸
層(厚さ5nm)25aを5層、(Al0.5Ga0.5)0.5In0.5P障壁層
(厚さ5nm)25bを4層交互に積層したものである。
As shown in FIG. 4, an MBE method is formed on an n-GaAs substrate 20.
Buffer layer 21, n-Ga 0.5In0.5P layer 22, n-
(Al0.7Ga0.3)0.5In0.5P clad layer (thickness 1μm) 23, (Al
0.5Ga0 .Five)0.5In0.5P light guide layer (50 nm thick) 24, Ga0.6In
0.4P / (Al0.5Ga0.5)0.5In0.5P multiple quantum well active layer 25, (A
l0.5Ga0.5)0.5In0.5P light guide layer (50 nm thick) 26, p- (Al0
.7Ga0.3)0.5In0.5P clad layer (1μm thickness) 27, p-Ga0.5I
n0.5A P layer 28 and a p-GaAs cap layer 29 were sequentially grown. here
In the multiple quantum well active layer, Ga0.6In0.4P quantum well
5 layers (thickness 5 nm) 25a, (Al0.5Ga0.5)0.5In0.5P barrier layer
(Thickness: 5 nm) 25b are alternately laminated in four layers.

【0043】本実施例の場合も、 n-GaAsバッファ層21
とn-Ga0.5In0.5P層22の間とp-Ga0.5In0.5P層28とp-GaAs
キャップ層29の間はV族分子線の切り替えのために成長
を休止したが、そのほかでは、 Ga0.5In0.5P、 Ga0.6In
0.4P、 (Al0.5Ga0.5)0.5In0.5P、(Al0.7Ga0.3)0.5In0.5
Pの4種類の組成の層を連続成長した。
In this embodiment, the n-GaAs buffer layer 21
And n-Ga 0.5 In 0.5 P layer 22 and p-Ga 0.5 In 0.5 P layer 28 and p-GaAs
Growth was suspended between the cap layers 29 to switch the group V molecular beam, but Ga 0.5 In 0.5 P, Ga 0.6 In
0.4 P, (Al 0.5 Ga 0.5 ) 0.5 In 0.5 P, (Al 0.7 Ga 0.3 ) 0.5 In 0.5
Layers having four compositions of P were continuously grown.

【0044】次に、図3に上記の連続成長の部分を成長
する時の各セルの分子線量を示す。InとPセルはそれぞ
れ1個づつの分子線セルを使用したが、 Ga0.5In0.5P層
をGa1および2の2個のGaセル、(Al0.7Ga0.3)0.5In0.5P
層をGa1セルとAl1および2の2個のAlセル、(Al0.5G
a0.5)0.5In0.5P層をGa2セルとAl1セル、 Ga0.6In0.4P層
をGa1および2の2個のGaセルをそれぞれの分子線を発射
するように設定して成長を行った。
Next, FIG. 3 shows the molecular dose of each cell when growing the above continuous growth portion. One molecular beam cell was used for each of the In and P cells, but the Ga 0.5 In 0.5 P layer was replaced with two Ga cells, Ga1 and 2, (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P
The layer is a Ga1 cell and two Al cells Al1 and 2, (Al 0.5 G
The a 0.5 ) 0.5 In 0.5 P layer was grown with a Ga2 cell and an Al1 cell, and the Ga 0.6 In 0.4 P layer was grown with two Ga cells, Ga1 and 2, each emitting a molecular beam.

【0045】Ga1は(Al0.5Ga0.5)0.5In0.5P層を成長して
いる間に、次の成長層で必要な分子線量を発射する様に
設定を変更した。同様にGa2は(Al0.7Ga0.3)0.5In0.5Pを
成長している間に、次の成長層で必要な分子線量を発射
する様に設定を変更した。したがってこの場合、2個のG
aセル、2個のAlセルを用いた。
During the growth of the (Al 0.5 Ga 0.5 ) 0.5 In 0.5 P layer, the setting of Ga1 was changed so that a required molecular dose was emitted in the next growth layer. Similarly, during the growth of (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P, the setting of Ga 2 was changed so that the required molecular dose would be emitted in the next growth layer. So in this case, two G
An a cell and two Al cells were used.

【0046】このようにしてAlとGaの分子線の合計とIn
の分子線の比率を一定に保ったまま、すなわち格子定数
を一定に保ったままAlをGaの比率を瞬時に変えてバンド
ギャップの違う層を連続的に成長できた。ただし、 Ga
0.6In0.4P層は、GaAs基板に比べて格子定数が、約1%小
さくなる。これによりレーザ発振波長をより短波長とす
ることが可能であるが、この場合もInとPのフラックス
は、一定のままで連続成長が可能である。このような格
子歪を意図的に導入する場合、組成の制御性は非常に精
密さを要するため、本発明の分子線過渡応答の影響を減
らす効果は、特に有用である。
Thus, the sum of the molecular beams of Al and Ga and In
With the molecular beam ratio kept constant, that is, while the lattice constant was kept constant, the layers with different band gaps could be continuously grown by instantaneously changing the ratio of Al to Ga. Where Ga
The lattice constant of the 0.6 In 0.4 P layer is about 1% smaller than that of the GaAs substrate. As a result, the laser oscillation wavelength can be made shorter, but also in this case, continuous growth is possible while keeping the flux of In and P constant. When such lattice strain is intentionally introduced, the controllability of the composition requires extremely high precision. Therefore, the effect of reducing the influence of the molecular beam transient response of the present invention is particularly useful.

【0047】また、本実施例では、各層、特に活性層2
5aでのGa1セル設定温度を従来例に比べ50℃程度低く
できるため、層24、26での待機時にセル設定を変更
する温度差が小さい。従来例では、層24、26の様に
薄い層の間で設定を変更した場合活性層25aでのGaセ
ル温度が安定せず、組成の制御性が悪かったが、本実施
例の場合この問題が回避できた。
In this embodiment, each layer, particularly the active layer 2
Since the set temperature of the Ga1 cell at 5a can be lowered by about 50 ° C. as compared with the conventional example, the temperature difference for changing the cell setting at the time of standby at the layers 24 and 26 is small. In the conventional example, when the setting was changed between thin layers such as the layers 24 and 26, the Ga cell temperature in the active layer 25a was not stabilized, and the controllability of the composition was poor. Could be avoided.

【0048】本実施例は、成長室に装着できるセルの個
数に限度があるMBE法では、実用上極めて重要である。
この実施例は、より複雑な多層構造を作製する場合に応
用可能である。
This embodiment is extremely important for practical use in the MBE method in which the number of cells that can be mounted in the growth chamber is limited.
This embodiment is applicable when a more complicated multilayer structure is manufactured.

【0049】[0049]

【発明の効果】本発明により、従来困難であった、MBE
法による複雑な多層膜の成長時の精密な組成制御を可能
とした。このため、格子不整合系におけるSCH量子井戸
活性層を有するレーザなどの非常に複雑な構造の半導体
レーザの成長が容易となった。
According to the present invention, MBE, which was conventionally difficult,
The precise composition control at the time of the growth of the complicated multilayer film by the method became possible. This facilitated the growth of a semiconductor laser having a very complicated structure, such as a laser having a SCH quantum well active layer in a lattice mismatched system.

【0050】本発明を用いた場合、多層構造の自由度
は、非常に大きくなり、さらに複雑な超格子構造や意図
的に格子不整合を導入した構造なども容易に作製するこ
とが可能となった。また、本発明により材料の消費量を
減ら須個とができ、さらにセルシャッタへの不要な材料
の付着量を減らすことができたため、長期間安定した成
長が実現できた。
When the present invention is used, the degree of freedom of the multilayer structure becomes extremely large, and a complicated superlattice structure or a structure in which lattice mismatch is intentionally introduced can be easily manufactured. Was. Further, according to the present invention, the amount of material consumption can be reduced, and the amount of unnecessary material attached to the cell shutter can be reduced, so that stable growth can be realized for a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の各成長層における各セルの
分子線量を示す図である。
FIG. 1 is a diagram showing the molecular dose of each cell in each growth layer of Example 1 of the present invention.

【図2】本発明の実施例1のレーザ構造の成長層の断面
図である。
FIG. 2 is a sectional view of a growth layer of the laser structure according to the first embodiment of the present invention.

【図3】本発明の実施例2の各成長層における各セルの
分子線量を示す図である。
FIG. 3 is a diagram showing a molecular dose of each cell in each growth layer of Example 2 of the present invention.

【図4】本発明の実施例2のレーザ構造の成長層の断面
図を示す図である。
FIG. 4 is a diagram showing a cross-sectional view of a growth layer of a laser structure according to Example 2 of the present invention.

【図5】従来例の各成長層における各セルの分子線量を
示す図である。
FIG. 5 is a diagram showing the molecular dose of each cell in each growth layer of the conventional example.

【図6】従来例のレーザ構造の成長層の断面図である。FIG. 6 is a sectional view of a growth layer of a conventional laser structure.

【図7】他の従来例の各成長層における各セルの分子線
量を示す図である。
FIG. 7 is a diagram showing the molecular dose of each cell in each growth layer of another conventional example.

【図8】他の従来例のレーザ構造の成長層の断面図であ
る。
FIG. 8 is a cross-sectional view of a growth layer of another conventional laser structure.

【図9】本発明の実施例1の各成長層におけるGa1セル温
度の温度推移を示す図である。
FIG. 9 is a diagram illustrating a temperature transition of a Ga1 cell temperature in each growth layer according to the first embodiment of the present invention.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 分子線エピタキシャル成長法により、複
数の層を積層して半導体素子を製造する際、 所望の層の同一材料に対する原料の供給を、複数の分子
線セルを用いてなることを特徴とする半導体素子の製造
方法。
When manufacturing a semiconductor device by stacking a plurality of layers by a molecular beam epitaxial growth method, a plurality of molecular beam cells are used to supply a raw material for the same material of a desired layer. Semiconductor device manufacturing method.
【請求項2】 前記複数の層は、格子定数を略一定であ
って、バンドギャップの異なる層を含み、これらを連続
的に形成してなることを特徴とする請求項1に記載の半
導体素子の製造方法。
2. The semiconductor device according to claim 1, wherein the plurality of layers include layers having substantially constant lattice constants and different band gaps, and are formed continuously. Manufacturing method.
【請求項3】 前記複数の層は、組成の異なる多元混晶
層を含んでなり、該多元混晶層が、その組成によって格
子定数が格子不整合を起こす程度に大きく異なる、格子
不整合系であることを特徴とする請求項1に記載の半導
体素子の製造方法。
3. The lattice-mismatched system according to claim 1, wherein the plurality of layers include a multi-element mixed crystal layer having a different composition, and the multi-element mixed crystal layers differ greatly in lattice constant depending on the composition to such an extent that a lattice mismatch occurs. The method according to claim 1, wherein:
【請求項4】 請求項1乃至3のいずれかに記載の半導
体素子の製造方法であって、組成が異なる層毎に、その
組成を決定する同一の材料の分子線セルの数が異なって
なることを特徴とする半導体素子の製造方法。
4. The method for manufacturing a semiconductor device according to claim 1, wherein the number of molecular beam cells of the same material that determines the composition is different for each layer having a different composition. A method for manufacturing a semiconductor device, comprising:
【請求項5】 請求項1乃至4のいずれかに記載の半導
体素子の製造方法であって、異なる組成を有し、互いに
隣接しない層を形成する際、同一の分子線セルを用いて
なることを特徴とする半導体素子の製造方法。
5. The method for manufacturing a semiconductor device according to claim 1, wherein the same molecular beam cell is used when forming layers having different compositions and not adjacent to each other. A method for manufacturing a semiconductor device, comprising:
【請求項6】 請求項5に記載の半導体素子の製造方法
であって、隣接する層を形成している間に、前記同一の
分子線セルが単位時間当りに発射する分子線量を変更し
てなることを特徴とする半導体素子の製造方法。
6. The method for manufacturing a semiconductor device according to claim 5, wherein a molecular dose emitted by the same molecular beam cell per unit time is changed while forming adjacent layers. A method of manufacturing a semiconductor device.
【請求項7】 請求項1乃至6のいずれかに記載の半導
体素子の製造方法であって、待機中の分子線セルの温度
を、その使用中に比べてより低くしてなることを特徴と
する半導体素子の製造方法。
7. The method for manufacturing a semiconductor device according to claim 1, wherein a temperature of the molecular beam cell in a standby state is lower than that in a use state of the cell. Semiconductor device manufacturing method.
【請求項8】 請求項1乃至7のいずれかに記載の半導
体素子の製造方法で形成される層は、その厚さが電流キ
ャリアのドブロイ波長より小さくてなることを特徴とす
る半導体素子。
8. The semiconductor device according to claim 1, wherein the layer formed by the method for manufacturing a semiconductor device according to claim 1 has a thickness smaller than a de Broglie wavelength of a current carrier.
JP11748099A 1999-04-26 1999-04-26 Manufacturing method of semiconductor device Expired - Fee Related JP3608976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11748099A JP3608976B2 (en) 1999-04-26 1999-04-26 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11748099A JP3608976B2 (en) 1999-04-26 1999-04-26 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2000307198A true JP2000307198A (en) 2000-11-02
JP3608976B2 JP3608976B2 (en) 2005-01-12

Family

ID=14712756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11748099A Expired - Fee Related JP3608976B2 (en) 1999-04-26 1999-04-26 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP3608976B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7682670B2 (en) * 2005-11-01 2010-03-23 Choshu Industry Co., Ltd. Method for controlling the volume of a molecular beam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7682670B2 (en) * 2005-11-01 2010-03-23 Choshu Industry Co., Ltd. Method for controlling the volume of a molecular beam

Also Published As

Publication number Publication date
JP3608976B2 (en) 2005-01-12

Similar Documents

Publication Publication Date Title
US4794611A (en) Semiconductor laser having superlattice structure
JPH0249007B2 (en)
US4916708A (en) Semiconductor light-emitting devices
US4860297A (en) Quantum well semiconductor laser device
JP2000307198A (en) Semiconductor device and its manufacture
JPH10284795A (en) Semiconductor laser element providing distortion amount and layer thickness modulating multiple quantum-well structure and manufacture therefor
JPH05259079A (en) Semiconductor growth method and manufacture of semiconductor laser
JPH1168238A (en) Semiconductor optical element and its manufacture
JP2001237413A (en) Method of forming quantum dot
US6717175B2 (en) Semiconductor laser device and method for manufacturing the same
JPH1187689A (en) Manufacture of quantum dot
JPS63179590A (en) Algainp semiconductor light emitting element
JPH11330623A (en) Manufacture of semiconductor element
JP3462801B2 (en) Manufacturing method of GaAs semiconductor
JP3422933B2 (en) Method for manufacturing semiconductor device
JPH02106082A (en) Semiconductor light emitting element
JPS6062109A (en) Compound semiconductor material
JPH1192297A (en) Production of disordered crystal structure, production of semiconductor laser and production of semiconductor laser having window structure
JPH05267777A (en) Quantum well laser and manufacture thereof
JPH08236551A (en) Manufacture of compound semiconductor and semiconductor light-emitting element
JPS61218190A (en) Semiconductor laser device
JPH03209893A (en) Semiconductor laser and manufacture thereof
JPS6092685A (en) Manufacture of multiplex quantum well structure semiconductor laser
JPH05259582A (en) Semiconductor growth method and manufacture of semiconductor laser
JPH04130786A (en) Semiconductor laser element and manufacture thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040611

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040611

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041012

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees