JP2000306430A - Insulating oil - Google Patents

Insulating oil

Info

Publication number
JP2000306430A
JP2000306430A JP11488199A JP11488199A JP2000306430A JP 2000306430 A JP2000306430 A JP 2000306430A JP 11488199 A JP11488199 A JP 11488199A JP 11488199 A JP11488199 A JP 11488199A JP 2000306430 A JP2000306430 A JP 2000306430A
Authority
JP
Japan
Prior art keywords
oil
ppm
group
carbon atoms
insulating oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11488199A
Other languages
Japanese (ja)
Other versions
JP3255890B2 (en
Inventor
Yoshiyuki Morishima
欣之 森島
Kenji Fujino
憲司 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14649024&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2000306430(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP11488199A priority Critical patent/JP3255890B2/en
Publication of JP2000306430A publication Critical patent/JP2000306430A/en
Application granted granted Critical
Publication of JP3255890B2 publication Critical patent/JP3255890B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Insulating Materials (AREA)
  • Lubricants (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide high electric characteristics such as a small tan δ max and flow charge max in addition to high oxidative stability by including a specified amount of each of sulfide type sulfur and a phenolic compound with mineral oil and/or synthetic oil as the main component. SOLUTION: Insulating oil contains 50 wt.ppm, preferably more than 100 wt.ppm but 1000 weight ppm or less, preferably 500 wt.ppm or less sulfide type sulfur, and 10 wt.ppm or more but less than 300 wt.ppm phenolic compound. The phenolic compound is preferably selected from formulas I, II, III. The phenolic compound is preferable to be 2,6-tertiary butyl paracresol. In the formulas, R11,13,15,18 are 3-12C branched chain alkyl; R12,16, are methyl, ethyl; R17 is 1-4C alkylene, alkylidene; R18 is H, 1-12C alkyl; R20 is H, methyl; and R12 is direct bonding or same as R17.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気絶縁油に関
し、特に酸化安定性と電気絶縁性、流動帯電特性に優れ
た電気絶縁油に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric insulating oil, and more particularly to an electric insulating oil having excellent oxidative stability, electric insulating properties and fluid charging characteristics.

【0002】[0002]

【従来の技術】電気絶縁油は、トランス、高圧ケーブ
ル、高圧遮断器、コンデンサ等の高圧電気機器に充填さ
れ、長期安定な電気特性、耐酸化性、耐金属腐食性を維
持することが必要である。さらに、経済的な大容量送電
を行うために50万ボルト乃至300万ボルトといった
超高圧送電技術が実用されるに伴って、流動帯電の問題
が重視されてきている。これは、トランスはコイルで発
生する熱を逃がすために強制的に又は自然対流によって
電気絶縁油を循環されるように設計されており、この電
気絶縁油の循環量が増加するにつれて電荷の分離が発生
し、電気絶縁油が帯電し、この放電によって絶縁破壊に
至ることがあるためである。この流動帯電現象は電気絶
縁油の誘電正接(tanδ、JIS C 2101に規定の方法で測
定される)の増大として観測されるといわれている。
2. Description of the Related Art Electrical insulating oil is filled in high-voltage electrical equipment such as transformers, high-voltage cables, high-voltage circuit breakers, and capacitors, and is required to maintain long-term stable electrical characteristics, oxidation resistance, and metal corrosion resistance. is there. Further, as ultrahigh-voltage power transmission technology of 500,000 to 3,000,000 volts is put to practical use for economical large-capacity power transmission, the problem of flowing electrification has been emphasized. This is because the transformer is designed to circulate the electric insulating oil forcibly or by natural convection to release the heat generated in the coil, and as the amount of circulation of the electric insulating oil increases, the separation of electric charge is performed. This occurs because the electrical insulating oil is charged and this discharge may cause dielectric breakdown. It is said that this flow electrification phenomenon is observed as an increase in the dielectric loss tangent (tan δ, measured by a method specified in JIS C 2101) of the electric insulating oil.

【0003】また、この流動帯電の量自体を測定する方
法も種々提案されており(例えば、特開昭52−427
99号公報、IEEE Transaction on Power Apparatus an
d System, PAS-103, 1923 (1984)など)、また本願出願
人も改良した流動帯電を測定する方法を提案した(特願
平10−300709)。これらの方法で流動帯電を測
定することができる。流動帯電及びtanδは、電気絶縁
油の劣化(酸化)の初期において急速に増大する傾向が
認められるが、これらの最大値(以下、必要により「流
動帯電max」又は「tan δ max」という)の小さい電気
絶縁油が望まれている。
[0003] Also, various methods for measuring the amount of the flow electrification itself have been proposed (for example, see JP-A-52-427).
No. 99, IEEE Transaction on Power Apparatus an
d System, PAS-103, 1923 (1984)), and the applicant of the present application has also proposed an improved method for measuring flow electrification (Japanese Patent Application No. 10-300709). Flow charging can be measured by these methods. The flow charge and tan δ tend to increase rapidly in the early stage of the deterioration (oxidation) of the electrical insulating oil, and the maximum value (hereinafter referred to as “flow charge max” or “tan δ max” as necessary) Small electrical insulating oils are desired.

【0004】本出願人は、先に油中の塩基性窒素分、非
塩基性窒素分、スルフィド型硫黄分を特定の範囲内に制
御することにより酸化安定性に優れた電気絶縁油が得ら
れることを見いだして、特願昭58-31761(特開昭59-160
906)及び特願昭58-208247(特開昭60-101804)におい
て優れた酸化安定性を有する電気絶縁油あるいはその製
造方法を提案した。しかしながら、これら先の提案にか
かる電気絶縁油は、酸化安定性という点では優れている
ものの、前述のtan δ max又は流動帯電maxの制御性の
面では必ずしも十分満足できるものではなかった。すな
わち、酸化安定性の向上とtan δ max又は流動帯電max
増大の制御の両者を十分に満足させるのは困難であった
のである。
[0004] The applicant of the present invention can obtain an electric insulating oil having excellent oxidation stability by first controlling the basic nitrogen content, non-basic nitrogen content and sulfide type sulfur content in the oil within a specific range. Patent Application 58-31761 (JP-A-59-160)
906) and Japanese Patent Application No. 58-208247 (Japanese Patent Application Laid-Open No. 60-101804) have proposed an electric insulating oil having excellent oxidation stability or a method for producing the same. However, although the electric insulating oils according to these prior proposals are excellent in terms of oxidation stability, they are not always sufficiently satisfactory in terms of controllability of the above-mentioned tan δ max or flow charging max. That is, improvement of oxidation stability and tan δ max or flow charging max
It was difficult to satisfy both the controls for the increase sufficiently.

【0005】I&EC Product Research & Development
誌、第6巻61頁(1967)には、油中の硫黄分及び窒素分
を徹底除去し、一方、少量の多環芳香族炭化水素を含む
ホワイトオイルがtan δ maxの異常増大の防止になると
述べているが、酸化安定性及び水素ガス吸収性は十分で
ない。また、市場においても、両性能ともに好ましい電
気絶縁油は見あたらない。したがって、酸化安定性、ta
n δ maxの抑制性及び水素ガス吸収性の全てを兼ね備え
た電気絶縁油の開発が望まれている。
[0005] I & EC Product Research & Development
Journal, Vol. 6, p. 61 (1967) states that sulfur and nitrogen in oils are thoroughly removed, while white oil containing a small amount of polycyclic aromatic hydrocarbons prevents abnormal increase of tan δ max. However, oxidation stability and hydrogen gas absorption are not sufficient. In the market, there is no electrical insulating oil which is preferable for both performances. Therefore, oxidation stability, ta
There is a demand for the development of an electric insulating oil having both the suppressing property of n δ max and the hydrogen gas absorbing property.

【0006】[0006]

【発明が解決しようとする課題】そこで、本発明は、良
好な酸化安定性を保持しながら、小さいtan δ max. 又
は流動帯電maxといった優れた電気特性を兼ね備えた電
気絶縁油を提供することを課題とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an electric insulating oil having excellent electric characteristics such as a small tan δ max. Or a fluid charging max while maintaining good oxidation stability. Make it an issue.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記の課
題を解決するために鋭意検討を行った結果、本発明に至
ったものである。すなわち、本発明は、鉱油及び/又は
合成油を主成分とし、スルフィド型硫黄分50〜100
0重量ppm及びフェノール系化合物10〜300重量
ppmを含有する電気絶縁油であり、好ましくは、前記
フェノール系化合物が次の一般式(1)〜(3)から選
択される1種又は2種以上である電気絶縁油である。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, have reached the present invention. That is, the present invention comprises a mineral oil and / or a synthetic oil as a main component and a sulfide type sulfur content of 50 to 100.
An electric insulating oil containing 0 ppm by weight and 10 to 300 ppm by weight of a phenolic compound. Preferably, the phenolic compound is one or more selected from the following general formulas (1) to (3). Is an electrical insulating oil.

【化4】 (式中、R11、R13は炭素数3〜12の分岐鎖アルキル
基を表し、R12はメチル基、エチルを表す。)
Embedded image (In the formula, R 11 and R 13 represent a branched alkyl group having 3 to 12 carbon atoms, and R 12 represents a methyl group or ethyl.)

【化5】 (式中、R15は炭素数3〜12の分岐鎖アルキル基を表
し、R16はメチル基、エチル基を表し、R17は炭素数1
〜4のアルキレン基又はアルキリデン基を表す。)
Embedded image (In the formula, R 15 represents a branched alkyl group having 3 to 12 carbon atoms, R 16 represents a methyl group or an ethyl group, and R 17 represents 1 carbon atom.
Represents an alkylene group or an alkylidene group. )

【化6】 (式中、R18は炭素数3〜12の分岐鎖アルキル基を表
し、R19は水素又は炭素数1〜12のアルキル基を表
し、R20は、R19が水素の場合は、メチル基を表し、R
19が炭素数1〜12のアルキル基の場合は、水素を表
し、R21は直接結合、炭素数1〜4のアルキレン基又は
アルキリデン基を表す。)
Embedded image (Wherein, R 18 represents a branched alkyl group having 3 to 12 carbon atoms, R 19 represents hydrogen or an alkyl group having 1 to 12 carbon atoms, and R 20 represents a methyl group when R 19 is hydrogen. And R
When 19 is an alkyl group having 1 to 12 carbon atoms, it represents hydrogen, and R 21 represents a direct bond, an alkylene group having 1 to 4 carbon atoms or an alkylidene group. )

【0008】[0008]

【発明の実施の形態】以下、本発明を詳細に説明する。
最初に本願明細書で用いる用語について説明する。 〔スルフィド型硫黄分(Sf)〕:下記の一般式(4)
又は一般式(5a)〜(5e)で示される有機硫黄化合物
を構成している硫黄の総量である。すなわち、鉱油中に
もともと含有されていたもの、水素化処理中にチオフェ
ン型有機硫黄化合物が核水素化されて生成されたもの、
あるいは新たに添加されもののいずれでもよい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
First, terms used in the present specification will be described. [Sulfide-type sulfur (Sf)]: The following general formula (4)
Or it is the total amount of sulfur constituting the organic sulfur compounds represented by the general formulas (5a) to (5e). That is, those originally contained in mineral oil, those generated by nuclear hydrogenation of thiophene-type organic sulfur compounds during hydrotreating,
Alternatively, any of those newly added may be used.

【0009】R1−S−R2 (4) (式中、R1、R2は炭素数10〜15のアルキル基又は
芳香族炭化水素基を表す。)
R 1 -SR 2 (4) (wherein R 1 and R 2 represent an alkyl group having 10 to 15 carbon atoms or an aromatic hydrocarbon group)

【化7】 (式中、R3、R4は水素原子又はアルキル基を表す。)Embedded image (In the formula, R 3 and R 4 represent a hydrogen atom or an alkyl group.)

【0010】スルフィド型硫黄分は、以下に説明する方
法により分離・定量される値である。通常使用される薄
層クロマトグラフィー用の薄層板(例えば、ガラス板に
0.25mm程度の厚さにシリカゲルを塗布したもの)に
塩化パラジウム0.5wt%の塩酸酸性アセトン−水混合
液を噴霧し、風乾後に試料油の2〜4μlをスポット点
着し、四塩化炭素液により点着位置より約10cm展開さ
せた後、クロロホルム/メタノール(容積比9/1)混
合液でさらに約5cm展開する。この操作によりスルフィ
ド型硫黄化合物は炭化水素及び他の有機硫黄化合物と分
離し黄色の発色スポットを示す。該発色スポット部にデ
ンシトメータ(例えば、島津製作所製、2波長クロマト
スキャナーCS-910型)で380nmの可視光をあて吸光度
を求める。試料油を測定する際にスルフィド型硫黄化合
物の濃度が既知の試料を同時に展開し、同様の測定を行
う。これにより試料中に含有されるスルフィド型硫黄分
(Sf)が定量される。
The sulfide-type sulfur content is a value that is separated and quantified by the method described below. Spraying 0.5 wt% palladium chloride hydrochloric acid-acetone-acetone-water mixture onto a thin-layer plate for thin-layer chromatography (eg, a glass plate coated with silica gel to a thickness of about 0.25 mm) After air-drying, 2 to 4 μl of the sample oil is spot-dried, developed about 10 cm from the spotting position with a carbon tetrachloride solution, and further developed about 5 cm with a chloroform / methanol (volume ratio of 9/1) mixed solution. . By this operation, the sulfide-type sulfur compound is separated from hydrocarbons and other organic sulfur compounds, and shows a yellow colored spot. Visible light of 380 nm is applied to the colored spot portion with a densitometer (for example, a two-wavelength chromatoscanner CS-910 manufactured by Shimadzu Corporation) to determine the absorbance. When measuring the sample oil, a sample having a known sulfide-type sulfur compound concentration is simultaneously developed and the same measurement is performed. Thereby, the sulfide-type sulfur content (Sf) contained in the sample is determined.

【0011】〔全硫黄分(St)〕:油中に存在する有
機硫黄化合物を構成する硫黄分の総量である。かかる有
機硫黄化合物には、上記のスルフィド型硫黄分(Sf)
の他、チオフェン類等が包含される。Stは、JIS K 25
41に規定する方法で測定される。
[Total Sulfur Content (St)]: The total sulfur content of the organic sulfur compound present in the oil. Such organic sulfur compounds include the above-mentioned sulfide-type sulfur (Sf).
And thiophenes and the like. St is JIS K 25
It is measured by the method specified in 41.

【0012】〔全窒素分(Nt)〕:JIS K 2609 (198
0)「原油及び石油製品窒素分試験法」に規定する方法で
測定される値であり、有機窒素化合物として油中に含有
される窒素分の総量をいう。
[Total nitrogen content (Nt)]: JIS K 2609 (198
0) It is a value measured by the method specified in "Normal test method for crude oil and petroleum products", and refers to the total amount of nitrogen contained in oil as an organic nitrogen compound.

【0013】〔塩基性窒素分(Nb)〕:米国UOP社
試験法(UOP Method)No. 313〜70「Nitrogen Bases in
Distillates by Indicator Titration」で規定する方
法で測定される値である。この測定法は、試料油を氷酢
酸に溶解し、内部指示薬としてクリスタルバイオレット
を用い、氷酢酸中で過塩素酸によって滴定する方法であ
る。
[Basic nitrogen content (Nb)]: UOP Method, U.S.A., No. 313-70, "Nitrogen Bases in
Distillates by Indicator Titration ”. In this measurement method, a sample oil is dissolved in glacial acetic acid, and crystal violet is used as an internal indicator, and titration is performed with perchloric acid in glacial acetic acid.

【0014】次に、本発明の電気絶縁油について説明す
る。本発明の電気絶縁油の基油としては、40℃におけ
る動粘度4〜13cStを有する鉱油、長鎖アルキルベン
ゼン、アルキレン重合物などの合成油、又はそれらの混
合物を用いることができる。鉱油としては、原油から蒸
留分離した沸点範囲250〜500℃の鉱油留分を水素
化精製触媒を用いて、温度250〜500℃の範囲で水
素化処理した基油を用いることが好ましい。また、長鎖
アルキルベンゼンは、電気絶縁油としては公知のもので
あり、具体的には炭素数9〜36の直鎖又は分岐アルキ
ル基の置換基を有するアルキルベンゼンが好ましい。特
には、鉱油又は鉱油と長鎖アルキルベンゼンの混合油が
好ましく、鉱油中に含まれるスルフィド型硫黄化合物を
有効に利用することができる。
Next, the electric insulating oil of the present invention will be described. As the base oil of the electric insulating oil of the present invention, a mineral oil having a kinematic viscosity at 40 ° C. of 4 to 13 cSt, a synthetic oil such as a long-chain alkylbenzene, an alkylene polymer, or a mixture thereof can be used. As the mineral oil, it is preferable to use a base oil obtained by subjecting a mineral oil fraction having a boiling point of 250 to 500 ° C., which has been distilled and separated from crude oil, to hydrogenation at a temperature of 250 to 500 ° C. using a hydrorefining catalyst. The long-chain alkylbenzene is known as an electric insulating oil, and specifically, an alkylbenzene having a substituent of a linear or branched alkyl group having 9 to 36 carbon atoms is preferable. In particular, a mineral oil or a mixed oil of a mineral oil and a long-chain alkylbenzene is preferable, and a sulfide-type sulfur compound contained in the mineral oil can be effectively used.

【0015】本発明の電気絶縁油は、前記の基油中に、
スルフィド型硫黄分Sfを特定量含有するものである。
Sfは、酸化安定性の向上のためには、50重量ppm
以上、好ましくは100重量ppm以上となるようにす
る。一方、過剰に存在すると酸化安定性が低下するた
め、Sfは、1000重量ppm以下、好ましくは50
0重量ppm以下とする。Sfは、原料である原油から
分離された鉱油留分にもともと含有されるものを有効に
利用することができる。
[0015] The electric insulating oil of the present invention comprises:
It contains sulfide-type sulfur Sf in a specific amount.
Sf is 50 ppm by weight to improve oxidation stability.
, Preferably at least 100 ppm by weight. On the other hand, if present in excess, the oxidation stability is reduced, so Sf is 1000 ppm by weight or less, preferably 50 ppm by weight.
0 ppm by weight or less. As Sf, what is originally contained in a mineral oil fraction separated from crude oil as a raw material can be effectively used.

【0016】なお、酸化安定性の面で、酸価が0.6m
gKOH/g以下(JIS K 2320に規定する品質)、好ま
しくは0.3mgKOH/g以下を満足するような酸化
安定性を向上した電気絶縁油を得るために、塩基性窒素
分Nbは1重量ppm未満、また全窒素分Ntは1重量
ppm以下とすることが好ましい。さらに、電気絶縁油
に耐コロナ性、すなわち水素ガス吸収性を十分に付与す
るために、芳香族炭化水素が適当量含まれていることが
好ましい。具体的には、芳香族炭化水素の含有量は、1
5重量%以上、より好ましくは20重量%以上である。
しかし、芳香族炭化水素の含有量が多くなると、光安定
性能の減退を招くおそれがあるため、この含有量は40
重量%以下であることが好ましい。
In terms of oxidation stability, the acid value is 0.6 m
In order to obtain an electrical insulating oil having improved oxidation stability satisfying gKOH / g or less (quality specified in JIS K 2320), preferably 0.3 mgKOH / g or less, the basic nitrogen content Nb is 1 wt ppm. And the total nitrogen content Nt is preferably 1 ppm by weight or less. Further, it is preferable that an appropriate amount of aromatic hydrocarbon is contained in the electric insulating oil in order to sufficiently impart corona resistance, that is, hydrogen gas absorption. Specifically, the content of the aromatic hydrocarbon is 1
It is at least 5% by weight, more preferably at least 20% by weight.
However, when the content of the aromatic hydrocarbon is increased, the light stability performance may be reduced.
It is preferable that the content be not more than weight%.

【0017】〔フェノール系化合物〕:本発明におい
て、酸化防止剤として添加するフェノール系化合物は、
下記の一般式(1)〜(3)に示す各フェノール系化合
物が好ましく、中でも一般式(1)で表される化合物が
好ましい。
[Phenol compound]: In the present invention, the phenol compound added as an antioxidant is
Each phenolic compound represented by the following general formulas (1) to (3) is preferable, and among them, a compound represented by the general formula (1) is preferable.

【0018】[0018]

【化8】 一般式(1)において、R11、R13は炭素数3〜12の
分岐鎖アルキル基を表し、R12はメチル基、エチル基を
表す。この好適例としては、2,6−ジ−ターシャリー
ブチルパラクレゾール、2,4−ジ−メチル−5−ター
シャリーブチルフェノール、2,6−ジ−ターシャリー
ブチル−4−エチルフェノールなどが挙げられる。
Embedded image In the general formula (1), R 11 and R 13 represent a branched alkyl group having 3 to 12 carbon atoms, and R 12 represents a methyl group or an ethyl group. Preferred examples thereof include 2,6-di-tert-butylparacresol, 2,4-di-methyl-5-tert-butylphenol, and 2,6-di-tert-butyl-4-ethylphenol. .

【0019】[0019]

【化9】 一般式(2)において、R15は炭素数3〜12の分岐鎖
アルキル基を表し、R16はメチル基、エチル基を表し、
17は炭素数1〜4のアルキレン基又はアルキリデン基
(好ましくはメチレン基)を表す。この好適例として、
2,2’−メチレンビス(6−ターシャリーブチル―4
―メチルフェノール)、2,2’−メチレンビス(6−
ターシャリーブチル―4―エチルフェノール)などを例
示できる。
Embedded image In the general formula (2), R 15 represents a branched alkyl group having 3 to 12 carbon atoms, R 16 represents a methyl group or an ethyl group,
R 17 represents an alkylene group having 1 to 4 carbon atoms or an alkylidene group (preferably a methylene group). As a preferred example of this,
2,2'-methylenebis (6-tert-butyl-4
-Methylphenol), 2,2'-methylenebis (6-
Tert-butyl-4-ethylphenol) and the like.

【0020】[0020]

【化10】 一般式(3)において、R18は炭素数3〜12の分岐鎖
アルキル基を表し、R19は水素又は炭素数1〜12のア
ルキル基を表し、R20は、R19が水素の場合は、メチル
基を表し、R19が炭素数1〜12のアルキル基の場合
は、水素を表し、R 21は直接結合、メチレン基又は炭素
数1〜4のアルキレン基又はアルキリデン基(好ましく
はメチレン基)を表す。この好適例として、4,4’−
メチレンビス(2,6−ジ−ターシャリーブチルフェノ
ール)を例示できる。
Embedded imageIn the general formula (3), R18Is a branched chain having 3 to 12 carbon atoms
Represents an alkyl group;19Is hydrogen or an atom having 1 to 12 carbon atoms.
Represents a alkyl group;20Is R19If is hydrogen, methyl
R represents a group19Is an alkyl group having 1 to 12 carbon atoms
Represents hydrogen, and R twenty oneIs a direct bond, methylene group or carbon
An alkylene group or an alkylidene group of Formulas 1 to 4 (preferably
Represents a methylene group). A preferred example of this is 4,4'-
Methylene bis (2,6-di-tert-butylpheno)
Can be exemplified.

【0021】これらのフェノール系化合物の中でも、一
般式(1)の化合物が好ましく、2,6−ジ−ターシャ
リーブチルパラクレゾールがより好ましい。フェノール
系化合物の添加量は、電気絶縁油の全重量に対して、1
0〜300ppmとする。これが、10ppm未満であ
ると、tan δ maxの抑制効果が小さく、一方、300p
pmを超えてもる添加量の増量に見合うtan δ maxの抑
制効果を得られない。
Among these phenolic compounds, compounds of the general formula (1) are preferred, and 2,6-di-tert-butylparacresol is more preferred. The amount of the phenolic compound added is 1 to the total weight of the electric insulating oil.
0 to 300 ppm. If this is less than 10 ppm, the effect of suppressing tan δ max is small, while 300 p
However, the effect of suppressing tan δ max corresponding to the increase in the amount of addition exceeding pm cannot be obtained.

【0022】その他の添加剤:本発明による電気絶縁油
には、金属不活性化剤となるベンゾトリアゾールやその
誘導体、流動点降下剤となるポリアルキルメタクリレー
ト、エチレンプロピレン共重合体、アルキル化ナフタレ
ン共縮合体などを添加することもできる。
Other additives: The electrical insulating oil according to the present invention contains benzotriazole or its derivative as a metal deactivator, polyalkyl methacrylate as a pour point depressant, ethylene propylene copolymer, or alkylated naphthalene. Condensates and the like can also be added.

【0023】本発明の電気絶縁油は、周知の種々の石油
乃至潤滑油の精製工程を適宜用いて、すなわち、各工程
における処理条件を調整して、さらに種々の工程を適宜
組み合わせて製造することできる。例えば、()常圧蒸
留さらには減圧蒸留で原油から沸点250〜500℃の
潤滑油留分を分離する。()該潤滑油留分を、水素化精
製触媒を用いて、反応温度300〜400℃の範囲で水
素化処理する。()前記水素化処理後に、芳香族炭化水
素を選択的に抽出する溶剤により、ラフィネート収率6
0〜90容量%の条件で溶剤抽出精製を行う。()前記
水素化処理の前又は後に脱ロウ処理を行う。この脱ロウ
処理は溶剤脱ロウでも水素化脱ロウでもよい。()活性
白土などを用いて固体吸着剤処理を行う。()長鎖アル
キルベンゼン等の基材、及び酸化防止剤などの添加剤を
混合する。これらの工程は全て必要なわけではなく、要
は、上記の物性を満足する基油乃至電気絶縁油が得られ
ればよいので、場合によってはある処理工程を省略する
こともできるし、処理工程の順序を変えたり、ある処理
工程を複数回行う(場合によっては処理条件を変えて)
こともできる。さらに、上記諸工程で生成される中間的
な基材を適宜組み合わせて満足される物性の電気絶縁油
を得てもよい。
The electric insulating oil of the present invention is produced by appropriately using various known oil or lubricating oil refining steps, that is, by adjusting the processing conditions in each step and appropriately combining various steps. it can. For example, a lubricating oil fraction having a boiling point of 250 to 500 ° C. is separated from crude oil by atmospheric distillation and then vacuum distillation. (2) Hydrotreating the lubricating oil fraction using a hydrorefining catalyst at a reaction temperature of 300 to 400 ° C. (4) After the hydrogenation treatment, a raffinate yield of 6 was obtained using a solvent for selectively extracting aromatic hydrocarbons.
Solvent extraction purification is performed under the condition of 0 to 90% by volume. () A dewaxing process is performed before or after the hydrogenation process. This dewaxing treatment may be solvent dewaxing or hydrodewaxing. () Perform solid adsorbent treatment using activated clay or the like. () A base material such as long-chain alkylbenzene and an additive such as an antioxidant are mixed. Not all of these steps are necessary, and the point is that it is only necessary to obtain a base oil or an electrical insulating oil that satisfies the above physical properties, and in some cases, some processing steps can be omitted, and Change the order or perform a certain processing step multiple times (in some cases, change the processing conditions)
You can also. Further, an electrical insulating oil having satisfactory physical properties may be obtained by appropriately combining intermediate base materials generated in the above-described steps.

【0024】[0024]

【実施例】以下、実施例に基づき本発明の内容をさらに
詳細に説明する。なお、本発明はこれらの実施例によっ
て何ら制限されるものではない。 (実施例1) 〔鉱油留分〕原油から常法によって、常圧蒸留と減圧蒸
留によって潤滑油留分を分離し、原料基材(40℃にお
ける動粘度7.96cSt、全硫黄分2.2重量%、全窒
素分230重量ppm)とした。
Hereinafter, the contents of the present invention will be described in more detail with reference to examples. Note that the present invention is not limited by these examples. (Example 1) [Mineral oil fraction] A lubricating oil fraction was separated from a crude oil by a normal method under normal pressure distillation and reduced pressure distillation, and a raw material base material (kinematic viscosity at 40 ° C: 7.96 cSt, total sulfur content: 2.2) Wt%, total nitrogen content 230 wtppm).

【0025】〔第1の精製鉱油の製造〕前記原料基材を
シリカアルミナ担体にニッケル1.0重量%、モリブデ
ン12.0重量%を担持した触媒を用い、水素分圧8.
9×106Pa、温度350℃、液空間速度(LHS
V)0.6 hr-1の条件下に水素化精製処理して第1の
水素化精製鉱油を得た。このとき、脱硫率及び脱窒素率
は共に99%であった。表1に示す第1の精製鉱油を得
た。
[Production of First Refined Mineral Oil] Using a catalyst in which the above-mentioned raw material base material supported nickel alumina and molybdenum 12.0 weight% on a silica alumina carrier, hydrogen partial pressure was 8.
9 × 10 6 Pa, temperature 350 ° C., liquid hourly space velocity (LHS
V) Hydrotreating treatment under the condition of 0.6 hr -1 to obtain a first hydrorefined mineral oil. At this time, both the desulfurization rate and the denitrification rate were 99%. The first refined mineral oil shown in Table 1 was obtained.

【0026】〔第2の精製鉱油の製造〕上記原料基油を
回転円板式抽出機で原料基油100容量部当たりフルフ
ラール250容量部を70℃で接触させ、ラフィネート
収率70容量%で抽出して、第2の精製鉱油(ラフィネ
ート)を得た。
[Production of Second Refined Mineral Oil] The above-mentioned base oil was extracted at a raffinate yield of 70% by volume by contacting 250 parts by volume of furfural per 100 parts by volume of the base oil with a rotary disc extractor at 70 ° C. Thus, a second refined mineral oil (raffinate) was obtained.

【0027】〔電気絶縁油の製造〕上記の方法で得られ
た第1の精製鉱油と第2の精製鉱油を96:4(重量
比)の割合で混合して混合油を作成して、メチルエチル
ケトン/トルエン混合溶媒(容量比1/1)を、混合油
に対して、2.5倍添加して、−32.5℃に冷却した
後、流動点が−30℃の脱ロウ油を得た。さらに脱ロウ
油100重量部に対して活性白土を1.5重量部添加
し、60℃で20分間攪拌した後、濾別して絶縁油基材
1を得た。該絶縁油基材1に2,6−ジ−ターシャリー
ブチルパラクレゾール(DBPC)を重量割合で50p
pmとなるように添加し、電気絶縁油Aを得た。
[Production of Electric Insulating Oil] The first refined mineral oil and the second refined mineral oil obtained by the above method were mixed at a ratio of 96: 4 (weight ratio) to prepare a mixed oil, and methyl ethyl ketone was prepared. / Toluene mixed solvent (volume ratio 1/1) was added 2.5 times with respect to the mixed oil, and after cooling to -32.5 ° C, a dewaxed oil having a pour point of -30 ° C was obtained. . Further, 1.5 parts by weight of activated clay was added to 100 parts by weight of dewaxed oil, and the mixture was stirred at 60 ° C. for 20 minutes, and then filtered to obtain an insulating oil base material 1. 2,6-di-tert-butylparacresol (DBPC) was added to the insulating oil base material 1 at a weight ratio of 50 p.
pm so as to obtain an electric insulating oil A.

【0028】(比較例1)実施例1と同じ絶縁油基材1
それ自体(すなわち、DBPCを添加しないもの)を電
気絶縁油Bとした。
Comparative Example 1 Same insulating oil base material 1 as in Example 1.
The substance itself (that is, one to which DBPC was not added) was used as the electric insulating oil B.

【0029】(比較例2)スルフィド型硫黄分が20p
pmと少ない第1の精製鉱油を基油とし、これにDBP
Cが50ppmとなるように添加して電気絶縁油Cとし
た。
(Comparative Example 2) Sulfide type sulfur content is 20 p
pm as the base oil and the DBP
The electric insulating oil C was added by adding C so as to be 50 ppm.

【0030】(比較例3、4)フェノール系酸化防止剤
の含まれていない市販の電気絶縁油を市販油A、Bとし
た。市販油Bは全硫黄分、スルフィド型硫黄分ともに多
量に含有しているものである。このようにして調製した
電気絶縁油A〜C及び調達した市販油A及びBのそれぞ
れについて、誘電正接、体積抵抗率、流動帯電、tan δ
max、酸化安定性の評価試験を実施した。
(Comparative Examples 3 and 4) Commercially available electric insulating oils containing no phenolic antioxidant were used as commercial oils A and B. Commercial oil B contains a large amount of both total sulfur and sulfide-type sulfur. For each of the thus prepared electric insulating oils A to C and the procured commercial oils A and B, the dielectric loss tangent, volume resistivity, flow electrification, tan δ
An evaluation test for max and oxidation stability was performed.

【0031】なお、これらの評価で用いた測定試験方法
は次のとおりである。「芳香族炭化水素含有量」は、超
臨界流体クロマトグラフィーにより測定した。「誘電正
接」及び「体積抵抗率」は、JIS C 2101に準拠して測定
した。
The measurement test methods used in these evaluations are as follows. "Aromatic hydrocarbon content" was measured by supercritical fluid chromatography. “Dielectric loss tangent” and “volume resistivity” were measured in accordance with JIS C 2101.

【0032】「流動帯電max」は、トランス油の実用性
能を測定するために実際の使用状況を想定した特定の条
件下に測定した加速試験における流動帯電の最大値であ
る。その具体的な測定方法は、本願出願人が先に出願し
た特願平10−300709に記してあるので、詳しく
はそれを参照されたい。その概要は、簡単に説明する
と、供試油が強制的に循環される系に濾紙を装填したセ
ルを設け、循環中に油に帯電する帯電量を前記セルに設
けられた流動帯電測定電極端子とアースとの間に接続し
た電流計で測定する方法である。このとき、前記循環系
に設けられた供試油容器にガスの吹込管及び排出管を設
ているので、窒素ガスを吹き込むことによって供試油を
無酸素下の雰囲気に置くことができ、空気を吹き込むこ
とによって有酸素下の雰囲気に置くことができる。ま
た、供試油の温度は前記容器を包むヒーターによってを
制御できるようになっている。
The "fluid charge max" is the maximum value of the fluid charge in an accelerated test measured under specific conditions assuming actual use conditions in order to measure the practical performance of the transformer oil. The specific measuring method is described in Japanese Patent Application No. 10-300709 previously filed by the applicant of the present invention, so please refer to it for details. The outline is briefly described below: a cell in which a test oil is forcibly circulated is provided with a cell loaded with filter paper, and a charge amount for charging the oil during circulation is measured by a flow charge measurement electrode terminal provided on the cell. This is a method of measuring with an ammeter connected between the ground and the ground. At this time, since the gas injection pipe and the discharge pipe are provided in the test oil container provided in the circulation system, the test oil can be placed in an oxygen-free atmosphere by blowing nitrogen gas, and air Can be placed in an aerobic atmosphere. The temperature of the test oil can be controlled by a heater surrounding the container.

【0033】図1及び図2は、電気絶縁油A(実施例
1)及び電気絶縁油B(比較例1)について実際に流動
帯電を測定したチャートをそれぞれ示している。両図
は、横軸に時間、縦軸に左から誘電正接(tanδ)、流
動帯電及び温度を示す。また、図中、鎖線は温度、実線
は流動帯電及び点線は誘電正接の変化を示す。同図の左
半分は温度依存性、すなわち窒素ガスを吹き込み無酸素
下で供試油の温度を室温から昇温して95℃に保った
(0〜600分)後、室温まで降温高温した(600分
以降)条件下における誘電正接及び流動帯電の変化を示
している。また、右半分は酸化劣化による影響、すなわ
ち窒素ガス吹込下(無酸素下)に昇温して95℃に保ち
(−130〜0分)、温度一定のまま窒素ガスを空気に
切り替えて有酸素下における誘電正接及び流動帯電の変
化を示している。この図から無酸素下及び有酸素下にお
ける流動帯電を求めることができ、さらに誘電正接の最
大値(tan δ max)も求めることができる。例えば、図
2から電気絶縁油B(比較例1)の無酸素下における流
動帯電maxは図2の左側図から横軸600分のときに最
高値をとり、その値は400pA(ピコアンペア)を示
し、また有酸素下における流動帯電maxは図2の右側図
から横軸約35分のときに最高値をとり、その値は46
00pA(ピコアンペア)を示している。
FIGS. 1 and 2 show charts of actual measurement of the flow electrification of the electric insulating oil A (Example 1) and the electric insulating oil B (Comparative Example 1). In both figures, the horizontal axis indicates time, and the vertical axis indicates the dielectric loss tangent (tan δ), flow electrification, and temperature from the left. Also, in the figure, the chain line indicates the temperature, the solid line indicates the flow electrification, and the dotted line indicates the change in the dielectric loss tangent. The left half of the figure is temperature-dependent, that is, the temperature of the test oil is raised from room temperature and kept at 95 ° C. under anoxic condition by blowing nitrogen gas (0 to 600 minutes), and then the temperature is lowered to room temperature and increased ( (After 600 minutes) shows changes in dielectric loss tangent and flow electrification under the conditions. The right half is affected by oxidative degradation, that is, the temperature is raised to 95 ° C. (-130 to 0 minutes) while blowing nitrogen gas (under no oxygen), and the nitrogen gas is switched to air while maintaining the temperature at a constant level. Shown below are the changes in dielectric loss tangent and flow charge. From this figure, the flow electrification under anoxic and aerobic conditions can be determined, and the maximum value of the dielectric loss tangent (tan δ max) can also be determined. For example, from FIG. 2, the flowing electrification max of the electric insulating oil B (Comparative Example 1) under anoxic condition takes the highest value at 600 minutes on the horizontal axis from the left side diagram of FIG. 2, and the value shows 400 pA (picoamps). In addition, the flow charging max under aerobic conditions takes the highest value at about 35 minutes on the horizontal axis from the right side of FIG.
00pA (picoamps) is shown.

【0034】「酸化安定性」は、JIS C 2101に準拠し、
供試油を120℃で75時間保って劣化させ、その劣化
油の全酸価、スラッジの量を測定した。なお、「スルフ
ィド型硫黄分」、「全硫黄分」、「全窒素分」及び「塩
基性窒素分」の測定は、本文中に記した方法に準拠して
測定した。
"Oxidation stability" conforms to JIS C 2101,
The test oil was kept at 120 ° C. for 75 hours for deterioration, and the total acid value and the amount of sludge of the deteriorated oil were measured. The “sulfide-type sulfur content”, “total sulfur content”, “total nitrogen content” and “basic nitrogen content” were measured according to the method described in the text.

【0035】このようににして行った試験結果をまとめ
て表1に示す。
The results of the tests performed in this way are summarized in Table 1.

【表1】 表1から、実施例として示す本発明の電気絶縁油Aは、
酸化安定性及び諸電気特性にバランスよく優れているこ
とがわかる。一方、DBPCを添加しない電気絶縁油B
(比較例1)及び市販油A(比較例3)はtan δ maxに
劣り、スルフィド型硫黄分の含有量が少ない電気絶縁油
C(比較例2)は酸化安定性(全酸価)に劣り、DBP
Cを添加せず、かつスルフィド型硫黄分の含有量が多い
市販油B(比較例4)は酸化安定性及び殆どの電気特性
において劣っていることがわかる。
[Table 1] From Table 1, the electric insulating oil A of the present invention shown as an example,
It can be seen that the oxidation stability and various electrical properties are excellent in a well-balanced manner. On the other hand, the electric insulating oil B to which DBPC is not added
(Comparative Example 1) and Commercial Oil A (Comparative Example 3) are inferior in tan δ max, and Electrical Insulating Oil C (Comparative Example 2) having a low sulfide type sulfur content is inferior in oxidation stability (total acid value). , DBP
It can be seen that the commercial oil B (Comparative Example 4) to which C was not added and which had a high sulfide-type sulfur content was inferior in oxidation stability and almost all electric properties.

【0036】[0036]

【発明の効果】本発明による電気絶縁油は、特定量のス
ルフィド型硫黄分を含有し、かつフェノール系化合物を
特定量含有するものであることから、流動帯電max、tan
δ max等の電気特性並びに酸化安定性など、実用性能
に優れるものであるので、長期間の使用で劣化しされに
くいことが期待される。したがって、本発明によれば、
実用性能に優れた電気絶縁油を提供できる。
The electrical insulating oil according to the present invention contains a specific amount of sulfide-type sulfur and a specific amount of a phenolic compound.
Since it is excellent in practical performance such as electrical characteristics such as δ max and oxidation stability, it is expected that it will not be easily deteriorated by long-term use. Thus, according to the present invention,
It can provide an electric insulating oil having excellent practical performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電気絶縁油A(実施例1)の無酸素下及び有酸
素下における流動帯電及び誘電正接の変化を示すチャー
トである。
FIG. 1 is a chart showing changes in flow electrification and dielectric loss tangent of an electrical insulating oil A (Example 1) under oxygen-free and oxygen-free conditions.

【図2】電気絶縁油B(比較例1)の無酸素下及び有酸
素下における流動帯電及び誘電正接の変化を示すチャー
トである。
FIG. 2 is a chart showing changes in flow electrification and dielectric loss tangent of an electrical insulating oil B (Comparative Example 1) under oxygen-free and oxygen-containing conditions.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年1月14日(2000.1.1
4)
[Submission Date] January 14, 2000 (2000.1.1)
4)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0023[Correction target item name] 0023

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0023】本発明の電気絶縁油は、周知の種々の石油
乃至潤滑油の精製工程を適宜用いて、すなわち、各工程
における処理条件を調整して、さらに種々の工程を適宜
組み合わせて製造することできる。例えば、(i) 常圧蒸
留さらには減圧蒸留で原油から沸点250〜500℃の
潤滑油留分を分離する。(ii)該潤滑油留分を、水素化精
製触媒を用いて、反応温度300〜400℃の範囲で水
素化処理する。(iii)前記水素化処理後に、芳香族炭化
水素を選択的に抽出する溶剤により、ラフィネート収率
60〜90容量%の条件で溶剤抽出精製を行う。(iv)前
記水素化処理の前又は後に脱ロウ処理を行う。この脱ロ
ウ処理は溶剤脱ロウでも水素化脱ロウでもよい。(v) 活
性白土などを用いて固体吸着剤処理を行う。(vi)長鎖ア
ルキルベンゼン等の基材、及び酸化防止剤などの添加剤
を混合する。これらの工程は全て必要なわけではなく、
要は、上記の物性を満足する基油乃至電気絶縁油が得ら
れればよいので、場合によってはある処理工程を省略す
ることもできるし、処理工程の順序を変えたり、ある処
理工程を複数回行う(場合によっては処理条件を変え
て)こともできる。さらに、上記諸工程で生成される中
間的な基材を適宜組み合わせて満足される物性の電気絶
縁油を得てもよい。 ─────────────────────────────────────────────────────
The electric insulating oil of the present invention is produced by appropriately using various known oil or lubricating oil refining steps, that is, by adjusting the processing conditions in each step and appropriately combining various steps. it can. For example, ( i ) a lubricating oil fraction having a boiling point of 250-500 ° C. is separated from crude oil by atmospheric distillation and then vacuum distillation. ( ii ) hydrotreating the lubricating oil fraction using a hydrorefining catalyst at a reaction temperature of 300 to 400 ° C. ( iii ) After the hydrogenation treatment, solvent extraction and purification are carried out with a solvent that selectively extracts aromatic hydrocarbons at a raffinate yield of 60 to 90% by volume. ( iv ) Dewaxing treatment is performed before or after the hydrogenation treatment. This dewaxing treatment may be solvent dewaxing or hydrodewaxing. ( v ) Perform solid adsorbent treatment using activated clay. ( vi ) A base material such as long-chain alkylbenzene is mixed with an additive such as an antioxidant. Not all of these steps are necessary,
The point is that it is only necessary to obtain a base oil or an electrical insulating oil that satisfies the above physical properties, and in some cases, a certain processing step can be omitted, the order of the processing steps can be changed, or a certain processing step can be performed several times. Can be performed (in some cases, by changing the processing conditions). Further, an electrical insulating oil having satisfactory physical properties may be obtained by appropriately combining intermediate base materials generated in the above-described steps. ────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年7月10日(2000.7.1
0)
[Submission date] July 10, 2000 (2007.1.
0)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【化1】 (式中、R11、R13は炭素数3〜12の分岐鎖アルキル
基を表し、R12はメチル基、エチルを表す。)
Embedded image (In the formula, R 11 and R 13 represent a branched alkyl group having 3 to 12 carbon atoms, and R 12 represents a methyl group or ethyl.)

【化2】 (式中、R15は炭素数3〜12の分岐鎖アルキル基を表
し、R16はメチル基、エチル基を表し、R17は炭素数1
〜4のアルキレン基又はアルキリデン基を表す。)
Embedded image (In the formula, R 15 represents a branched alkyl group having 3 to 12 carbon atoms, R 16 represents a methyl group or an ethyl group, and R 17 represents 1 carbon atom.
Represents an alkylene group or an alkylidene group. )

【化3】 (式中、R18は炭素数3〜12の分岐鎖アルキル基を表
し、R19は水素又は炭素数1〜12のアルキル基を表
し、R20は、R19が水素の場合は、メチル基を表し、R
19が炭素数1〜12のアルキル基の場合は、水素を表
し、R21は直接結合、炭素数1〜4のアルキレン基又は
アルキリデン基を表す。)
Embedded image (Wherein, R 18 represents a branched alkyl group having 3 to 12 carbon atoms, R 19 represents hydrogen or an alkyl group having 1 to 12 carbon atoms, and R 20 represents a methyl group when R 19 is hydrogen. And R
When 19 is an alkyl group having 1 to 12 carbon atoms, it represents hydrogen, and R 21 represents a direct bond, an alkylene group having 1 to 4 carbon atoms or an alkylidene group. )

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記の課
題を解決するために鋭意検討を行った結果、本発明に至
ったものである。すなわち、本発明は、鉱油及び/又は
合成油を主成分とし、スルフィド型硫黄分50重量p
pmを超えて1000重量ppm以下及びフェノール系
化合物10重量ppm以上300重量ppm未満含有
する電気絶縁油であり、好ましくは、前記フェノール系
化合物が次の一般式(1)〜(3)から選択される1種
又は2種以上である電気絶縁油である。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, have reached the present invention. That is, the present invention comprises a mineral oil and / or a synthetic oil as a main component, and a sulfide-type sulfur content of 50% by weight.
Beyond pm an electrical insulating oil of the following and phenolic compounds 1000 ppm by weight containing less than 10 ppm by weight to 300 ppm by weight, preferably selected, the phenolic compound is of the following general formula (1) to (3) Or two or more types of electrical insulating oils.

【化4】 (式中、R11、R13は炭素数3〜12の分岐鎖アルキル
基を表し、R12はメチル基、エチルを表す。)
Embedded image (In the formula, R 11 and R 13 represent a branched alkyl group having 3 to 12 carbon atoms, and R 12 represents a methyl group or ethyl.)

【化5】 (式中、R15は炭素数3〜12の分岐鎖アルキル基を表
し、R16はメチル基、エチル基を表し、R17は炭素数1
〜4のアルキレン基又はアルキリデン基を表す。)
Embedded image (In the formula, R 15 represents a branched alkyl group having 3 to 12 carbon atoms, R 16 represents a methyl group or an ethyl group, and R 17 represents 1 carbon atom.
Represents an alkylene group or an alkylidene group. )

【化6】 (式中、R18は炭素数3〜12の分岐鎖アルキル基を表
し、R19は水素又は炭素数1〜12のアルキル基を表
し、R20は、R19が水素の場合は、メチル基を表し、R
19が炭素数1〜12のアルキル基の場合は、水素を表
し、R21は直接結合、炭素数1〜4のアルキレン基又は
アルキリデン基を表す。)
Embedded image (Wherein, R 18 represents a branched alkyl group having 3 to 12 carbon atoms, R 19 represents hydrogen or an alkyl group having 1 to 12 carbon atoms, and R 20 represents a methyl group when R 19 is hydrogen. And R
When 19 is an alkyl group having 1 to 12 carbon atoms, it represents hydrogen, and R 21 represents a direct bond, an alkylene group having 1 to 4 carbon atoms or an alkylidene group. )

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Correction target item name] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0015】本発明の電気絶縁油は、前記の基油中に、
スルフィド型硫黄分Sfを特定量含有するものである。
Sfは、酸化安定性の向上のためには、50重量ppm
を超えて含有されるようにし、好ましくは100重量p
pm以上となるようにする。一方、過剰に存在すると酸
化安定性が低下するため、Sfは、1000重量ppm
以下、好ましくは500重量ppm以下とする。Sf
は、原料である原油から分離された鉱油留分にもともと
含有されるものを有効に利用することができる。
[0015] The electric insulating oil of the present invention comprises:
It contains sulfide-type sulfur Sf in a specific amount.
Sf is 50 ppm by weight to improve oxidation stability.
More than 100% by weight
pm or more. On the other hand, if present in excess, the oxidation stability decreases, so Sf is 1000 ppm by weight.
Or less, preferably 500 ppm by weight or less. Sf
Can effectively utilize what is originally contained in a mineral oil fraction separated from crude oil as a raw material.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0020】[0020]

【化10】 一般式(3)において、R18は炭素数3〜12の分岐鎖
アルキル基を表し、R19は水素又は炭素数1〜12のア
ルキル基を表し、R20は、R19が水素の場合は、メチル
基を表し、R19が炭素数1〜12のアルキル基の場合
は、水素を表し、R 21は直接結合、メチレン基又は炭素
数1〜4のアルキレン基又はアルキリデン基(好ましく
はメチレン基)を表す。この好適例として、4,4’−
メチレンビス(2,6−ジ−ターシャリーブチルフェノ
ール)を例示できる。
Embedded imageIn the general formula (3), R18Is a branched chain having 3 to 12 carbon atoms
Represents an alkyl group;19Is hydrogen or an atom having 1 to 12 carbon atoms.
Represents a alkyl group;20Is R19If is hydrogen, methyl
R represents a group19Is an alkyl group having 1 to 12 carbon atoms
Represents hydrogen, and R twenty oneIs a direct bond, methylene group or carbon
An alkylene group or an alkylidene group of Formulas 1 to 4 (preferably
Represents a methylene group). A preferred example of this is 4,4'-
Methylene bis (2,6-di-tert-butylpheno)
Can be exemplified.

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0021】これらのフェノール系化合物の中でも、一
般式(1)の化合物が好ましく、2,6−ジ−ターシャ
リーブチルパラクレゾールがより好ましい。フェノール
系化合物の添加量は、電気絶縁油の全重量に対して、
0ppm以上300ppm未満とする。これが、10p
pm未満であると、tan δ maxの抑制効果が小さく、一
方、300ppm以上添加しても添加量の増量に見合う
tanδ maxの抑制効果を得られない。
Among these phenolic compounds, compounds of the general formula (1) are preferred, and 2,6-di-tert-butylparacresol is more preferred. The amount of the phenolic compound added is 1 to the total weight of the electric insulating oil.
0 ppm or more and less than 300 ppm. This is 10p
If it is less than pm, the effect of suppressing tan δ max is small, but even if it is added at 300 ppm or more, it is commensurate with the increase in the amount added.
The effect of suppressing tan δ max cannot be obtained.

【手続補正6】[Procedure amendment 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0033[Correction target item name] 0033

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0033】図1及び図2は、電気絶縁油A(実施例
1)及び電気絶縁油B(比較例1)について実際に流動
帯電を測定したチャートをそれぞれ示している。両図
は、横軸に時間、縦軸に左から誘電正接(tanδ)、流
動帯電及び温度を示す。また、図中、鎖線は温度、実線
は流動帯電及び点線は誘電正接の変化を示す。同図の左
半分は温度依存性、すなわち窒素ガスを吹き込み無酸素
下で供試油の温度を室温から昇温して95℃に保った
(0〜600分)後、室温まで降温した(600分以
降)条件下における誘電正接及び流動帯電の変化を示し
ている。また、右半分は酸化劣化による影響、すなわち
窒素ガス吹込下(無酸素下)に昇温して95℃に保ち
(−130〜0分)、温度一定のまま窒素ガスを空気に
切り替えて有酸素下における誘電正接及び流動帯電の変
化を示している。この図から無酸素下及び有酸素下にお
ける流動帯電を求めることができ、さらに誘電正接の最
大値(tan δmax)も求めることができる。例えば、図
2から電気絶縁油B(比較例1)の無酸素下における流
動帯電maxは図2の左側図から横軸600分のときに最
高値をとり、その値は400pA(ピコアンペア)を示
し、また有酸素下における流動帯電maxは図2の右側図
から横軸約35分のときに最高値をとり、その値は46
00pA(ピコアンペア)を示している。
FIGS. 1 and 2 show charts of actual measurement of the flow electrification of the electric insulating oil A (Example 1) and the electric insulating oil B (Comparative Example 1). In both figures, the horizontal axis indicates time, and the vertical axis indicates the dielectric loss tangent (tan δ), flow electrification, and temperature from the left. Also, in the figure, the chain line indicates the temperature, the solid line indicates the flow electrification, and the dotted line indicates the change in the dielectric loss tangent. The left half of the figure is temperature-dependent, that is, the temperature of the test oil is raised from room temperature and maintained at 95 ° C. (0 to 600 minutes) under oxygen-free and oxygen-free conditions, and then lowered to room temperature (600). Min) and changes in the dielectric loss tangent and the flow electrification under the following conditions. The right half is affected by oxidative degradation, that is, the temperature is raised to 95 ° C. (-130 to 0 minutes) while blowing nitrogen gas (under no oxygen), and the nitrogen gas is switched to air while maintaining the temperature at a constant level. Shown below are the changes in dielectric loss tangent and flow charge. From this figure, the flow electrification under anoxic and aerobic conditions can be determined, and the maximum value of the dielectric loss tangent (tan δmax) can also be determined. For example, from FIG. 2, the flowing electrification max of the electric insulating oil B (Comparative Example 1) under anoxic condition takes the highest value at 600 minutes on the horizontal axis from the left side diagram of FIG. 2, and the value shows 400 pA (picoamps). In addition, the flow charging max under aerobic conditions takes the highest value at about 35 minutes on the horizontal axis from the right side of FIG.
00pA (picoamps) is shown.

フロントページの続き Fターム(参考) 4H104 BB05C BG12C BG15C BG17C BG18C DA02A EB02 LA05 LA14 LA20 PA12 5G305 AA03 AA05 AA12 AB01 AB24 AB27 AB40 BA04 CB01 CB04 CB11 CB25 CD09 Continued on the front page F term (reference) 4H104 BB05C BG12C BG15C BG17C BG18C DA02A EB02 LA05 LA14 LA20 PA12 5G305 AA03 AA05 AA12 AB01 AB24 AB27 AB40 BA04 CB01 CB04 CB11 CB25 CD09

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鉱油及び/又は合成油を主成分とし、ス
ルフィド型硫黄分50〜1000重量ppm及びフェノ
ール系化合物10〜300重量ppmを含有することを
特徴とする電気絶縁油。
1. An electric insulating oil comprising a mineral oil and / or a synthetic oil as a main component, and containing 50 to 1000 ppm by weight of a sulfide-type sulfur and 10 to 300 ppm by weight of a phenolic compound.
【請求項2】 前記フェノール系化合物が次の一般式
(1)〜(3)から選択される1種又は2種以上である
請求項1に記載の電気絶縁油。 【化1】 (式中、R11、R13は炭素数3〜12の分岐鎖アルキル
基を表し、R12はメチル基、エチルを表す。) 【化2】 (式中、R15は炭素数3〜12の分岐鎖アルキル基を表
し、R16はメチル基、エチル基を表し、R17は炭素数1
〜4のアルキレン基又はアルキリデン基を表す。) 【化3】 (式中、R18は炭素数3〜12の分岐鎖アルキル基を表
し、R19は水素又は炭素数1〜12のアルキル基を表
し、R20は、R19が水素の場合は、メチル基を表し、R
19が炭素数1〜12のアルキル基の場合は、水素を表
し、R21は直接結合、炭素数1〜4のアルキレン基又は
アルキリデン基を表す。)
2. The electric insulating oil according to claim 1, wherein the phenolic compound is one or more selected from the following general formulas (1) to (3). Embedded image (Wherein, R 11 and R 13 represent a branched alkyl group having 3 to 12 carbon atoms, and R 12 represents a methyl group or ethyl.) (In the formula, R 15 represents a branched alkyl group having 3 to 12 carbon atoms, R 16 represents a methyl group or an ethyl group, and R 17 represents 1 carbon atom.
Represents an alkylene group or an alkylidene group. ) (Wherein, R 18 represents a branched alkyl group having 3 to 12 carbon atoms, R 19 represents hydrogen or an alkyl group having 1 to 12 carbon atoms, and R 20 represents a methyl group when R 19 is hydrogen. And R
When 19 is an alkyl group having 1 to 12 carbon atoms, it represents hydrogen, and R 21 represents a direct bond, an alkylene group having 1 to 4 carbon atoms or an alkylidene group. )
【請求項3】 前記フェノール系化合物が2,6−ジ−
ターシャリーブチルパラクレゾールである請求項1に記
載の電気絶縁油。
3. The method according to claim 2, wherein the phenolic compound is 2,6-di-
The electrical insulating oil according to claim 1, which is tertiary butyl paracresol.
JP11488199A 1999-04-22 1999-04-22 Electrical insulating oil Expired - Fee Related JP3255890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11488199A JP3255890B2 (en) 1999-04-22 1999-04-22 Electrical insulating oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11488199A JP3255890B2 (en) 1999-04-22 1999-04-22 Electrical insulating oil

Publications (2)

Publication Number Publication Date
JP2000306430A true JP2000306430A (en) 2000-11-02
JP3255890B2 JP3255890B2 (en) 2002-02-12

Family

ID=14649024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11488199A Expired - Fee Related JP3255890B2 (en) 1999-04-22 1999-04-22 Electrical insulating oil

Country Status (1)

Country Link
JP (1) JP3255890B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011246674A (en) * 2010-05-31 2011-12-08 Mitsubishi Electric Corp Electrical insulation oil and oil-filled electric device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011246674A (en) * 2010-05-31 2011-12-08 Mitsubishi Electric Corp Electrical insulation oil and oil-filled electric device

Also Published As

Publication number Publication date
JP3255890B2 (en) 2002-02-12

Similar Documents

Publication Publication Date Title
EP3006545B1 (en) Electrical oil formulation
US7682499B2 (en) Mineral insulating oil, a process for preparing a mineral insulating oil, and a process for using a mineral insulating oil
JP5165307B2 (en) Electrical insulating oil and method for producing the same
US20090082235A1 (en) Oxidative Stable Oil Formulation
JP6298446B2 (en) Electrical insulating oil composition
EP1952409B1 (en) Uninhibited electrical insulating oil
JP2007220468A (en) Electric insulating oil
AU2005248992B2 (en) High performance dielectric oil and the use thereof in high voltage electrical equipment
JP3255890B2 (en) Electrical insulating oil
JP3679272B2 (en) Electrical insulation oil
JP3270677B2 (en) Electrical insulating oil and method for producing the same
EP1023733B1 (en) Food grade dielectric fluid
JP3690649B2 (en) Electric insulating oil and base oil for electric insulating oil
JP3261040B2 (en) Method for producing electrical insulating oil
JP5363336B2 (en) Method for producing electrical insulating oil
JP2649474B2 (en) Electrical insulating oil and method for producing the same
JPH0350366B2 (en)
JP6097062B2 (en) Light oil composition
JPS6123601B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071130

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091130

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091130

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees