JP2000303909A - Gas fuel supply system of vehicle - Google Patents

Gas fuel supply system of vehicle

Info

Publication number
JP2000303909A
JP2000303909A JP11115454A JP11545499A JP2000303909A JP 2000303909 A JP2000303909 A JP 2000303909A JP 11115454 A JP11115454 A JP 11115454A JP 11545499 A JP11545499 A JP 11545499A JP 2000303909 A JP2000303909 A JP 2000303909A
Authority
JP
Japan
Prior art keywords
pressure
gas
valve
cutoff valve
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11115454A
Other languages
Japanese (ja)
Inventor
Eiji Yamazaki
英治 山崎
Naosuke Akasaki
修介 赤崎
Akifumi Otaka
彰文 大高
Hiroyuki Goto
博之 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP11115454A priority Critical patent/JP2000303909A/en
Publication of JP2000303909A publication Critical patent/JP2000303909A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/025Failure diagnosis or prevention; Safety measures; Testing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/026Measuring or estimating parameters related to the fuel supply system
    • F02D19/027Determining the fuel pressure, temperature or volume flow, the fuel tank fill level or a valve position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0221Fuel storage reservoirs, e.g. cryogenic tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/023Valves; Pressure or flow regulators in the fuel supply or return system
    • F02M21/0239Pressure or flow regulators therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/023Valves; Pressure or flow regulators in the fuel supply or return system
    • F02M21/0242Shut-off valves; Check valves; Safety valves; Pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system
    • F02D2041/225Leakage detection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Abstract

PROBLEM TO BE SOLVED: To quickly detect a gas leakage to take a measure to the leakage by providing a control part for determining the gas leakage when a pressure drop rate is larger than a predetermined pressure drop rate threshold. SOLUTION: During the operation of an engine, a first cutoff valve 50 and a second cutoff valve 65 are opened, and according to a command of an injector driver 35, an injector 15 is opened and closed repeatedly. When the first cutoff valve 50 and the second cutoff valve 65 are closed, compressive natural gas is confined in a high pressure pipe 13 and a low pressure pipe 14. When no gas leakage is caused in he pipe, the pressure of the compressive natural gas is substantially constant and little drops. If gas leakage is caused, the pressure drops gradually or suddenly. Accordingly, leakage between the first cutoff valve 50 and the second cutoff valve 65 can be monitored by a first pressure sensor 31 at a control part, and a leakage between the second cutoff valve 65 and an injector 15 can be monitored by a second pressure sensor 33.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は車両用ガス燃料供給
システムにおいてガス漏れを判定する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for determining gas leakage in a vehicle gas fuel supply system.

【0002】[0002]

【従来の技術】近年、ガソリンや軽油の代替燃料の一つ
として天然ガス(NG)が採用されるようになり、この
天然ガスを車両、特に乗用車の燃料とする場合には、車
体に高圧容器(ボンベ)を搭載し、この高圧容器に20
0kg/cm2程度に圧縮した天然ガスを充填し、この
天然ガスを減圧弁にて低圧ガスに直してエンジンの燃焼
室へ供給する。この様に高圧で圧縮した天然ガスを、圧
縮天然ガス(CNG)と呼ぶ。
2. Description of the Related Art In recent years, natural gas (NG) has been adopted as one of alternative fuels for gasoline and light oil, and when this natural gas is used as fuel for vehicles, particularly passenger vehicles, a high-pressure container is installed on the vehicle body. (Cylinder) and 20
Natural gas compressed to about 0 kg / cm 2 is filled, and this natural gas is converted into low-pressure gas by a pressure reducing valve and supplied to the combustion chamber of the engine. Natural gas compressed at such a high pressure is called compressed natural gas (CNG).

【0003】圧縮天然ガスを用いた車両に係る研究は進
んでおり、例えば特開平7−189731号公報「ガス
燃料車両の残燃料表示装置」は、圧縮性流体に起因する
圧力変動や温度変動を補正することにより、燃料の残量
をより正確に表示するという技術を提案するものであ
る。
Research on vehicles using compressed natural gas has been advanced. For example, Japanese Unexamined Patent Publication No. 7-189731 discloses a "remaining fuel display device for a gas-fueled vehicle" which measures pressure fluctuations and temperature fluctuations caused by a compressible fluid. The present invention proposes a technique for displaying the remaining amount of fuel more accurately by making a correction.

【0004】前記公報の図2の符号1はCNGタンク、
2は高圧配管、13は第1電磁遮断弁、14は第2電磁
遮断弁であり、ECUで第1,第2電磁遮断弁13,1
4を閉じることができるというものである。
In the above publication, reference numeral 1 in FIG. 2 denotes a CNG tank,
2 is a high-pressure pipe, 13 is a first solenoid shut-off valve, 14 is a second solenoid shut-off valve.
4 can be closed.

【0005】[0005]

【発明が解決しようとする課題】CNGタンクからエン
ジンまでの圧縮天然ガスラインは、高圧の天然ガスを蓄
え、流すためのものであるから、配管や弁類に漏れがあ
ってはならない。しかし、本発明の目的は万一、車両特
有の振動、加速度、温度変化などの外的影響により車両
用ガス燃料供給システムにガス漏れが発生しても、その
ことを迅速に検知して対策を講じることのできる技術を
提供することにある。
Since the compressed natural gas line from the CNG tank to the engine is for storing and flowing high-pressure natural gas, there must be no leakage in piping and valves. However, an object of the present invention is to detect a gas leak in a gas fuel supply system for a vehicle due to external influences such as vibration, acceleration, temperature change, etc. peculiar to a vehicle, to quickly detect the gas leak and take a countermeasure. To provide techniques that can be taken.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に請求項1は、ガス燃料をガスエンジンに供給する配管
に遮断弁と圧力センサと遮断弁とをこの順に配置する車
両用ガス燃料供給システムにおいて、ガス漏れ診断タイ
マーを備え、開いている前記2つの遮断弁を、燃料カッ
ト信号を条件に発生するガス漏れ診断信号に基づいて閉
弁し、次に圧力センサで圧力下降量を計測し、この圧力
情報と前記診断タイマからの時間情報とで、圧力下降率
を演算し、この圧力下降率が予め定めた圧力下降率しき
い値より大きいときにガス漏れであると判定する制御部
を備えることを特徴とする。
To achieve the above object, a first aspect of the present invention is to provide a gas fuel supply for a vehicle in which a shutoff valve, a pressure sensor, and a shutoff valve are arranged in this order on a pipe for supplying gaseous fuel to a gas engine. The system includes a gas leak diagnosis timer, and closes the two open shut-off valves based on a gas leak diagnosis signal generated on condition of a fuel cut signal, and then measures a pressure drop amount with a pressure sensor. A control unit that calculates a pressure drop rate based on the pressure information and the time information from the diagnosis timer, and determines that there is a gas leak when the pressure drop rate is greater than a predetermined pressure drop rate threshold. It is characterized by having.

【0007】一対の遮断弁と、これらの間に配置した圧
力センサと、制御部とでガス漏れを検知する。この結
果、万一、走行中においても車両用ガス燃料供給システ
ムにガス漏れが発生しても、そのことを迅速に検知して
対策を講じることができる。
[0007] A pair of shut-off valves, a pressure sensor disposed therebetween, and a control unit detect gas leakage. As a result, even if a gas leak occurs in the vehicular gas fuel supply system even during traveling, it is possible to quickly detect the occurrence and take measures.

【0008】[0008]

【発明の実施の形態】本発明の実施の形態を添付図に基
づいて以下に説明する。なお、以下の説明で、第1、第
2・・・若しくは1次、2次・・・はガス燃料の流れに沿って
付す識別呼称である。図1は本発明に係る車両の模式図
であり、この車両10は、車体11の後部にガス燃料と
しての圧縮天然ガスを充填したCNGタンク12を搭載
し、このCNGタンク12内の圧縮天然ガスを高圧配管
13、圧力制御ユニット60、低圧配管14、インジェ
クタ15を介して車体11の前部に搭載したガスエンジ
ン16の燃焼室へ供給するところのガス燃料供給システ
ムを備えていることを示す。その他の符号の説明は後述
する。
Embodiments of the present invention will be described below with reference to the accompanying drawings. In the following description, first, second,... Or primary, secondary,... Are identification names given along the flow of gaseous fuel. FIG. 1 is a schematic view of a vehicle according to the present invention. This vehicle 10 has a CNG tank 12 filled with compressed natural gas as a gas fuel mounted on a rear portion of a vehicle body 11, and a compressed natural gas in the CNG tank 12. Is provided to the combustion chamber of the gas engine 16 mounted on the front of the vehicle body 11 via the high-pressure pipe 13, the pressure control unit 60, the low-pressure pipe 14, and the injector 15. The description of the other symbols will be described later.

【0009】図2は本発明に係るガス燃料供給システム
の原理図であり、このガス燃料供給システム20は、充
填口21、充填管22及び逆止弁40を介して外部から
CNGタンク12に圧縮天然ガスを充填することがで
き、又CNGタンク12に蓄えてある圧縮天然ガスを、
第1遮断弁50、高圧配管13、高圧配管13に介設し
たジョイントボックス23、手動オンオフ弁24、フィ
ルタ25、圧力制御ユニット60、低圧配管14、イン
ジェクタ15を介して吸気ポート26に送ることができ
るシステムである。
FIG. 2 is a diagram showing the principle of a gas fuel supply system according to the present invention. The gas fuel supply system 20 compresses a CNG tank 12 from the outside through a filling port 21, a filling pipe 22, and a check valve 40. Compressed natural gas that can be filled with natural gas and stored in CNG tank 12
The first shutoff valve 50, the high pressure pipe 13, the joint box 23 interposed in the high pressure pipe 13, the manual on / off valve 24, the filter 25, the pressure control unit 60, the low pressure pipe 14, and the low pressure pipe 14 can be sent to the intake port 26 via the injector 15. It is a system that can do it.

【0010】加えて、このシステムには、ジョイントボ
ックス23に第1圧力センサ31及び第1温度センサ3
2を備え、圧力制御ユニット60の出口に第2圧力セン
サ33を備え、インジェクタ15に第2温度センサ34
を備え、インジェクタ15を制御するためのインジェク
タドライバ35を備え、第1遮断弁50及び圧力制御ユ
ニット60に内蔵した第2遮断弁(詳細後述)を開閉制
御する制御部36を備える。
In addition, in this system, the joint box 23 includes a first pressure sensor 31 and a first temperature sensor 3.
2, a second pressure sensor 33 at the outlet of the pressure control unit 60, and a second temperature sensor 34 at the injector 15.
And a control unit 36 for controlling the opening and closing of a first shut-off valve 50 and a second shut-off valve (to be described later in detail) incorporated in the pressure control unit 60.

【0011】即ち、第1圧力センサ31及び第1温度セ
ンサ32で高圧配管13における圧縮天然ガスの圧力P
0、温度T0を計測し、その情報を制御部36にインプッ
トし、第2圧力センサ33及び第2温度センサ34で低
圧配管14における圧縮天然ガスの圧力P2、温度T2を
計測し、その情報を制御部36にインプットし、これら
のインプット情報に基づいて制御部36は第1遮断弁5
0や圧力制御ユニット60に内蔵した第2遮断弁65を
制御する。
That is, the pressure P of the compressed natural gas in the high-pressure pipe 13 is determined by the first pressure sensor 31 and the first temperature sensor 32.
0, the temperature T0 is measured, the information is input to the control unit 36, and the pressure P2 and the temperature T2 of the compressed natural gas in the low-pressure pipe 14 are measured by the second pressure sensor 33 and the second temperature sensor 34, and the information is measured. Input to the control unit 36, and based on the input information, the control unit 36
0 or the second shutoff valve 65 built in the pressure control unit 60 is controlled.

【0012】なお、圧縮天然ガスは気体であって圧縮性
流体であるから、ボイルシャルルの法則(PV/T=一
定。P:絶対圧力、V:体積又は容積、T:絶対温度)
に準拠する。ここで流路の容積が一定であるからVは変
わらず、温度が上下すれば圧力も比例して上下し、圧力
は絶えず変化する可能性があって、制御の障害となる。
そこで、前記温度T0で圧力P0を温度補正する。同様
に、前記温度T2で圧力P2を温度補正する。温度補正す
ればどの圧力も0℃を基準とした圧力となり、相対的に
比較することが可能となる。
Since compressed natural gas is a gas and a compressible fluid, Boyle-Charles' law (PV / T = constant. P: absolute pressure, V: volume or volume, T: absolute temperature)
Compliant. Here, since the volume of the flow path is constant, V does not change, and if the temperature rises and falls, the pressure rises and falls in proportion, and the pressure may constantly change, which hinders control.
Therefore, the temperature of the pressure P0 is corrected at the temperature T0. Similarly, the pressure P2 is corrected by the temperature T2. If the temperature is corrected, any pressure becomes a pressure based on 0 ° C., and it is possible to make a relative comparison.

【0013】図3は図2の3部拡大断面図であり、逆止
弁40及び第1遮断弁50を共通の弁箱41に組込み、
この弁箱41をCNGタンク12の開口にねじ結合した
ことを特徴とし、特に第1遮断弁50については要部が
CNGタンク12内にあることからインタンク遮断弁と
呼ぶ。逆止弁40及び第1遮断弁50の構造を順に説明
する。
FIG. 3 is an enlarged sectional view of a part 3 of FIG. 2, in which the check valve 40 and the first shutoff valve 50 are assembled in a common valve box 41,
This valve box 41 is characterized by being screwed to the opening of the CNG tank 12, and in particular, the first shut-off valve 50 is called an in-tank shut-off valve because a main part is in the CNG tank 12. The structures of the check valve 40 and the first shutoff valve 50 will be described in order.

【0014】逆止弁40は弁箱41にスリーブ42を捩
じ込み、このスリーブ42の下部開口に弁体43を当
て、この弁体43をスプリング44で弁閉側へ押し、こ
のスプリング44を別のスリーブ45及びロッド46で
支え、且つこのロッド46に流路47及び絞り部48を
形成した構造の弁である。この逆止弁40の作動は図4
(a)で説明する。なお、49は止め栓であり、図では
開放状態にあるが、六角レンチなどで廻すことにより上
部開口41aを塞ぐことができる。充填管22を保守点
検するときなどに使用する。
In the check valve 40, a sleeve 42 is screwed into the valve box 41, a valve body 43 is brought into contact with a lower opening of the sleeve 42, and the valve body 43 is pushed toward the valve closing side by a spring 44. This valve has a structure in which it is supported by another sleeve 45 and a rod 46, and a flow path 47 and a throttle portion 48 are formed in the rod 46. The operation of the check valve 40 is shown in FIG.
This will be described in (a). Reference numeral 49 denotes a stopper, which is open in the figure, but can be turned over with a hexagon wrench or the like to close the upper opening 41a. This is used when the filling tube 22 is to be inspected for maintenance.

【0015】第1遮断弁50は弁箱41にソレノイド5
1を支える円筒状のソレノイドホルダ52を捩じ込み、
このソレノイドホルダ52にロッド53を通し、このロ
ッド53の先端にピン54を介して弁体55を止め、こ
の弁体55を弁箱41側の弁座に対向させ、ソレノイド
51に通電したときにソレノイド51の吸引作用でロッ
ド53を後退させて弁開状態にし、ソレノイド51への
通電を止めたときに吸引作用が消失し且つスプリング5
6の押し作用で弁閉状態にするソレノイド式遮断弁であ
る。57はソレノイドホルダ52に開けたポートであ
る。この第1遮断弁50の作動は図4(b)で説明す
る。なお、58も止め栓であり、図では開放状態にある
が、六角レンチなどで廻すことにより上部開口41bを
塞ぐことができる。
The first shut-off valve 50 has a solenoid 5
Screw the cylindrical solenoid holder 52 that supports 1
A rod 53 is passed through the solenoid holder 52, a valve element 55 is stopped at a tip of the rod 53 via a pin 54, and the valve element 55 is opposed to a valve seat on the valve box 41 side, and when the solenoid 51 is energized. The rod 53 is retracted by the suction action of the solenoid 51 to open the valve, and when the power supply to the solenoid 51 is stopped, the suction action is lost and the spring 5
6 is a solenoid type shut-off valve which is brought into a valve closed state by the pushing action. 57 is a port opened in the solenoid holder 52. The operation of the first shut-off valve 50 will be described with reference to FIG. Reference numeral 58 denotes a stopper plug, which is open in the figure. However, the upper opening 41b can be closed by turning it with a hexagon wrench or the like.

【0016】図4(a),(b)は本発明における逆止
弁及び第1遮断弁の作用図である。(a)において、白
抜き矢印の通りに高圧の圧縮天然ガスを供給するとその
圧力で弁体43は弁開側へ移動する。この結果、圧縮天
然ガスは矢印の通りに絞り部48を介してCNGタン
ク12に至る。圧縮天然ガスの供給を停止すると、スプ
リング45の作用で、弁体43が戻り、逆流を防止す
る。(b)において、ソレノイド51に通電すると、弁
体55が後退して、弁開状態となり、ポート57を通じ
て矢印の通りにCNGタンク12内部の圧縮天然ガス
が流れる。ソレノイド51の通電を停止すれば、スプリ
ング56の作用で弁閉となる。
FIGS. 4A and 4B are operational diagrams of the check valve and the first shut-off valve according to the present invention. In (a), when high-pressure compressed natural gas is supplied as indicated by a white arrow, the valve element 43 moves to the valve opening side by the pressure. As a result, the compressed natural gas reaches the CNG tank 12 via the throttle section 48 as shown by the arrow. When the supply of the compressed natural gas is stopped, the valve body 43 returns by the action of the spring 45 to prevent backflow. In (b), when the solenoid 51 is energized, the valve element 55 is retracted to open the valve, and the compressed natural gas inside the CNG tank 12 flows through the port 57 as shown by the arrow. When the energization of the solenoid 51 is stopped, the valve is closed by the action of the spring 56.

【0017】図5は図2の5部拡大断面図であり、作用
は図7で説明するので、構造の概要を説明する。圧力制
御ユニット60は、第2遮断弁65と、1次減圧弁70
と、安全弁77と、2次減圧弁80とを一まとめにした
ものであり、詳細な構造説明は省くが、第2遮断弁65
はソレノイド66を駆動源としたソレノイド式遮断弁で
あり、1次減圧弁70はダイヤフラム71、調圧スプリ
ング72、背圧室73、背圧取入れ口74、圧力調節ね
じ75を備えたプレッシャレギュレータであり、安全弁
77は弁体78及びスプリング79を備えた弁であり、
2次減圧弁80はダイヤフラム81、調圧スプリング8
2、背圧室83、背圧取入れ口84、圧力調節ねじ85
を備えたプレッシャレギュレータである。
FIG. 5 is an enlarged sectional view of a portion 5 in FIG. 2. The operation will be described with reference to FIG. 7, so that the outline of the structure will be described. The pressure control unit 60 includes a second shutoff valve 65 and a primary pressure reducing valve 70.
, The safety valve 77 and the secondary pressure reducing valve 80 are grouped together, and detailed description of the structure is omitted.
Is a solenoid type shut-off valve driven by a solenoid 66, and a primary pressure reducing valve 70 is a pressure regulator having a diaphragm 71, a pressure adjusting spring 72, a back pressure chamber 73, a back pressure inlet 74, and a pressure adjusting screw 75. The safety valve 77 is a valve including a valve body 78 and a spring 79,
The secondary pressure reducing valve 80 includes a diaphragm 81 and a pressure adjusting spring 8.
2. Back pressure chamber 83, back pressure inlet 84, pressure adjusting screw 85
It is a pressure regulator provided with.

【0018】図6は図5の圧力制御ユニットの底面図で
あり、矢印の通りに圧力制御ユニット60に入った圧
縮天然ガスは、インナーフィルタ86及び第2遮断弁6
5を経由して矢印の通り流れる。図5に戻って、矢印
の流れは1次減圧弁70を通り、矢印の通りに上に
向い、2次減圧弁80に至る。
FIG. 6 is a bottom view of the pressure control unit shown in FIG. 5. The compressed natural gas entering the pressure control unit 60 as shown by the arrow is supplied to the inner filter 86 and the second shut-off valve 6.
It flows as indicated by the arrow via 5. Returning to FIG. 5, the flow indicated by the arrow passes through the primary pressure reducing valve 70, and moves upward as indicated by the arrow to reach the secondary pressure reducing valve 80.

【0019】図7は本発明で採用した圧力制御ユニット
の作動原理図であり、1次減圧弁70は圧力P0を圧力
P1に減圧するものである。詳しくは、ダイヤフラム7
1の図面上面に圧力P0が作用し、ダイヤフラム71の
図面下面に圧力P1が作用すると共にスプリング72の
押力が作用し、これら3つの作用力のバランスで弁開度
が決まって天然ガスが流れるが、仮に圧力P1が設定圧
より上昇すると、背圧室73の圧力が高まり、ダイヤフ
ラム71を押上げて弁を絞り、結果として圧力P1を下
げる。圧力P1が設定圧より低いと逆に弁開度が増加し
て圧力P1を高める。この様にして1次減圧弁70は圧
力P1を所定の設定圧に保つことができる。本実施例で
は圧力P0は10〜260kg/cm2、圧力P1は6k
g/cm2であり、圧力P0が大幅に変化しても一定の圧
力P1を得ることができる。
FIG. 7 is a diagram showing the principle of operation of the pressure control unit employed in the present invention. The primary pressure reducing valve 70 reduces the pressure P0 to the pressure P1. For details, see Diaphragm 7
1, the pressure P0 acts on the upper surface of the drawing, the pressure P1 acts on the lower surface of the diaphragm 71, and the pressing force of the spring 72 acts. Natural gas flows with the balance of these three acting forces and the valve opening determined. However, if the pressure P1 rises above the set pressure, the pressure in the back pressure chamber 73 rises, pushing up the diaphragm 71 to narrow the valve, and as a result, the pressure P1 decreases. If the pressure P1 is lower than the set pressure, the valve opening increases to increase the pressure P1. In this way, the primary pressure reducing valve 70 can maintain the pressure P1 at a predetermined set pressure. In this embodiment, the pressure P0 is 10 to 260 kg / cm 2 , and the pressure P1 is 6 k
g / cm 2 , and a constant pressure P1 can be obtained even if the pressure P0 changes significantly.

【0020】2次減圧弁80は圧力P1を圧力P2に減圧
するものであり、基本作動は上記1次減圧弁70と同一
であるから省略する。圧力P1は6kg/cm2、圧力P
2は2.6kg/cm2であるが、圧力P1が変動したと
しても、圧力P2を所定の設定圧に保つことができるこ
とは言うまでもない。圧力P2は第2圧力センサ33で
検出する。以上に述べた圧力数値は一例を示したに過ぎ
ず、本発明はこれらの数値に限定されるものではない。
The secondary pressure reducing valve 80 reduces the pressure P1 to the pressure P2, and its basic operation is the same as that of the primary pressure reducing valve 70, and will not be described. Pressure P1 is 6 kg / cm 2 , pressure P
2 is 2.6 kg / cm 2 , but it goes without saying that even if the pressure P1 fluctuates, the pressure P2 can be kept at a predetermined set pressure. The pressure P2 is detected by the second pressure sensor 33. The pressure values described above are merely examples, and the present invention is not limited to these values.

【0021】第2遮断弁65はソレノイド66に通電す
ると弁開となって天然ガスを矢印の通りに流し、通電
を停止するとスプリング67の作用で弁閉となる。安全
弁77は1次減圧弁70にトラブルが発生して圧力P1
が著しく上昇したときに備え、そのときに開いて2次減
圧弁80を含む低圧配管14を保護する。
When the solenoid 66 is energized, the second shut-off valve 65 is opened and natural gas flows as indicated by the arrow. When the energization is stopped, the spring 67 closes the valve. The safety valve 77 has a pressure P1 due to a trouble occurring in the primary pressure reducing valve 70.
Is opened to protect the low-pressure pipe 14 including the secondary pressure reducing valve 80 at the time when the pressure rises significantly.

【0022】以上に述べた本発明のガス燃料供給システ
ムにおけるガス漏れ検知技術を次に説明する。図8は本
発明の故障判定技術を説明するためのガス燃料供給シス
テム図であり、以下に述べる制御フローを補足するた
め、図2の要部を抜粋した図面に始動スイッチ90を画
き加えたものである。始動スイッチ90はACC−OF
F接点91、ACC−ON接点92、IG−ON接点9
3及びST−ON接点94を備え、ACC−OFF接点
91を選択すればアクセサリOFF状態になり、ACC
−ON接点92を選択すればアクセサリON状態にな
り、IG−ON接点93を選択すればイグニッションO
N状態になり、ST−ON接点94でスタータ回転が開
始される。
Next, a gas leak detection technique in the gas fuel supply system of the present invention described above will be described. FIG. 8 is a diagram showing a gas fuel supply system for explaining the failure determination technique of the present invention. In order to supplement the control flow described below, a start switch 90 is added to a drawing that is an essential part of FIG. It is. Start switch 90 is ACC-OF
F contact 91, ACC-ON contact 92, IG-ON contact 9
3 and the ST-ON contact 94, and if the ACC-OFF contact 91 is selected, the accessory is turned off and the ACC
If the ON contact 92 is selected, the accessory is turned on, and if the IG-ON contact 93 is selected, the ignition O is turned on.
The state becomes N, and starter rotation is started at the ST-ON contact 94.

【0023】その他の各符号は説明済みであるから重複
説明はしないが、「第1遮断弁50と第1圧力センサ3
1と第2遮断弁65」とが、ガス漏れ検知の第1グルー
プであり、また、第2遮断弁65と第2圧力センサ33
とインジェクタ15」とが、ガス漏れ検知の第2グルー
プとなる。インジェクタ15は燃料カット信号を受けた
ときに遮断弁の機能を発揮するからである。
Since the other reference numerals have already been described, they will not be described again.
1 and the second shut-off valve 65 "are a first group for gas leak detection, and the second shut-off valve 65 and the second pressure sensor 33
And the injector 15 "form a second group of gas leak detection. This is because the injector 15 exhibits the function of the shut-off valve when receiving the fuel cut signal.

【0024】図9は本発明に係るガス漏れ検知技術のタ
イムチャートである。(a)は燃料カット信号がオンで
ある時間帯を示す。このオン信号がガス漏れ診断の要件
となる。(b)にてガス漏れ診断信号が、検出される。
(c),(d)にて第1遮断弁及び第2遮断弁を閉じ
る。(e)にてガス漏れ診断信号に基づいて診断タイマ
をリセットし、カウントをスタートする。この診断タイ
マの設定時間はt0である。以上は、診断タイマのタイ
ムアップをもって診断を完了することにしたケースであ
る。上記に加えて本発明では、図9で破線で示した通
り、診断タイマのタイムアップ前(時間tf(n))に燃
料カット信号の(OFF)信号が検出された場合には、
この信号に基づいて診断を完了することが可能となる。
詳細は図10以降で説明する。
FIG. 9 is a time chart of the gas leak detection technology according to the present invention. (A) shows a time zone in which the fuel cut signal is on. This ON signal is a requirement for gas leak diagnosis. At (b), a gas leak diagnosis signal is detected.
In (c) and (d), the first shutoff valve and the second shutoff valve are closed. In (e), the diagnosis timer is reset based on the gas leak diagnosis signal, and the counting is started. The set time of this diagnostic timer is t0. The above is the case where the diagnosis is completed when the diagnosis timer expires. In addition to the above, according to the present invention, as indicated by the broken line in FIG.
The diagnosis can be completed based on this signal.
Details will be described later with reference to FIG.

【0025】図8に戻って、エンジンの運転中には、第
1遮断弁50及び第2遮断弁65が開いており、インジ
ェクタドライバ35の指令に基づいてインジェクタ15
は開閉を繰り返している。燃料カット信号を受けたとき
にはインジェクタ15は閉じるので、高圧配管13にC
NGタンク12の供給圧が作用する。そこで、第1遮断
弁50及び第2遮断弁65を閉じると、高圧配管13及
び低圧配管14に圧縮天然ガスが封じ込められる。配管
などのガス漏れがなければ、封じ込めた圧縮天然ガスの
圧力はほぼ一定、すなわち殆ど下降しないはずである。
もし、ガス漏れがあれば、圧力は徐々又は急激に下降す
る。従って、第1圧力センサ31で第1遮断弁50と第
2遮断弁65との間の漏れを監視することができ、第2
圧力センサ33で第2遮断弁65とインジェクタ15と
の間の漏れを監視することができる。
Returning to FIG. 8, during operation of the engine, the first shut-off valve 50 and the second shut-off valve 65 are open, and the injector 15 is controlled based on a command from the injector driver 35.
Is opening and closing repeatedly. When the fuel cut signal is received, the injector 15 closes.
The supply pressure of the NG tank 12 acts. Therefore, when the first shutoff valve 50 and the second shutoff valve 65 are closed, the compressed natural gas is confined in the high-pressure pipe 13 and the low-pressure pipe 14. If there is no gas leakage from the pipes, the pressure of the compressed natural gas contained should be almost constant, that is, hardly drop.
If there is a gas leak, the pressure will drop slowly or sharply. Therefore, the first pressure sensor 31 can monitor the leak between the first shutoff valve 50 and the second shutoff valve 65, and the second
The leak between the second shut-off valve 65 and the injector 15 can be monitored by the pressure sensor 33.

【0026】この様子を図9(f)に示した。すなわ
ち、横軸を時間、縦軸を第1圧力センサの出力とし、ガ
ス漏れがなければ、時間t0経過後も殆ど圧力が下がら
ず、太実線の様になる。もし、ガス漏れがあれば、破線
の様に圧力が下がる。そこで、現実のエンジン及びガス
燃料供給システムを用いて実測し、得られたデータから
判定時間t0経過後の圧力下降率しきい値ΔP0を予め定
めればよい。このことを圧力下降率しきい値ΔP0を予
め定めたと言う。判定時間t0と第1圧力センサ31の
出力とから求めた圧力下降率が圧力下降率しきい値ΔP
0より小さければ正常(ガス漏れなし)、圧力下降率が
圧力下降率しきい値ΔP0より大きければ、第1遮断弁
50−第2遮断弁65間に、ガス漏れありと判断でき
る。
FIG. 9F shows this state. That is, the horizontal axis represents time, and the vertical axis represents the output of the first pressure sensor. If there is no gas leakage, the pressure hardly drops even after the lapse of time t0, and the solid line shows. If there is a gas leak, the pressure drops as indicated by the broken line. Therefore, the pressure drop rate threshold value ΔP0 after the lapse of the determination time t0 may be determined in advance by actually measuring using an actual engine and a gas fuel supply system, and obtaining the data. This is called that the pressure decrease rate threshold value ΔP0 is predetermined. The pressure drop rate obtained from the determination time t0 and the output of the first pressure sensor 31 is equal to the pressure drop rate threshold ΔP
If it is smaller than 0, it is normal (no gas leakage), and if the pressure decrease rate is greater than the pressure decrease rate threshold value ΔP0, it can be determined that there is gas leakage between the first shutoff valve 50 and the second shutoff valve 65.

【0027】同様に圧力下降率しきい値ΔP2を予め定
めておき、図9(g)に示すとおり、判定時間t0と第
2圧力センサ33の出力とから求めた圧力下降率が圧力
下降率しきい値ΔP2(このしきい値も予め制御部に記
憶しておく。)より小さければ正常(ガス漏れなし)、
圧力下降率が圧力下降率しきい値ΔP2より大きけれ
ば、第2遮断弁65−インジェクタ15間に、ガス漏れ
ありと判断できる。
Similarly, the pressure drop rate threshold value ΔP2 is determined in advance, and as shown in FIG. 9 (g), the pressure drop rate obtained from the determination time t0 and the output of the second pressure sensor 33 becomes the pressure drop rate. If it is smaller than the threshold value ΔP2 (this threshold value is also stored in the control unit in advance), it is normal (no gas leakage),
If the pressure decrease rate is greater than the pressure decrease rate threshold value ΔP2, it can be determined that there is gas leakage between the second shut-off valve 65 and the injector 15.

【0028】上記タイムチャートに準拠した制御フロー
の例を次に説明する。図10は本発明に係るガス漏れ検
知フロー図(その1)であり、ST××はステップ番号
を示す。 ST01:先ず、燃料カット信号がON状態、すなわち
検出されるか否かを調べる。Noなら別図の(C)へ飛
び、Yesなら次のST02に進む。なお、車両では例
えば減速モードで比較的な長時間、燃料カット信号をO
Nさせることができる。 ST02:燃料カット信号がON状態であることに対応
するフラグFL・FCに「1」を与える。 ST03:第1・第2遮断弁を共に閉弁する。 ST04:第1圧力センサから圧力情報を取込み、記憶
する。この圧力情報は圧力P0の初期値であり、圧力P0
(1)と呼称する。同様に、第2圧力センサから圧力情報
を取込み、記憶する。この圧力情報は圧力P2の初期値
であり、圧力P2(1)と呼称する。
An example of a control flow based on the above time chart will be described below. FIG. 10 is a flowchart (part 1) of the gas leak detection according to the present invention, where STxx indicates a step number. ST01: First, it is checked whether the fuel cut signal is in the ON state, that is, whether or not the fuel cut signal is detected. If No, the process jumps to (C) in another figure, and if Yes, the process proceeds to the next ST02. In the vehicle, for example, the fuel cut signal is output for a relatively long time in the deceleration mode.
N. ST02: "1" is given to the flag FL / FC corresponding to the ON state of the fuel cut signal. ST03: The first and second shut-off valves are both closed. ST04: Take in pressure information from the first pressure sensor and store it. This pressure information is the initial value of the pressure P0,
Called (1). Similarly, pressure information is taken from the second pressure sensor and stored. This pressure information is an initial value of the pressure P2 and is referred to as a pressure P2 (1).

【0029】ST05:圧力P0は高圧配管の内圧、圧
力P2は低圧配管の内圧であるから、P0≦P2であれ
ば、第1・第2圧力センサに何らかの異常があると考え
られる。FL・PSは圧力センサフラグであり、異常で
あれば「1」を与え、正常であれば「0」を与えること
にする。 ST06:そこで、ST05でYesならPL・PS=
1とする。 ST07:また、ST05でNoならPL・PS=0と
する。(A)は次のステップに進むことを示す。
ST05: Since the pressure P0 is the internal pressure of the high-pressure pipe and the pressure P2 is the internal pressure of the low-pressure pipe, if P0 ≦ P2, it is considered that there is some abnormality in the first and second pressure sensors. FL · PS is a pressure sensor flag, and gives “1” if abnormal, and gives “0” if normal. ST06: Then, if ST05 is Yes, PL · PS =
Let it be 1. ST07: If No in ST05, PL · PS = 0. (A) indicates that the process proceeds to the next step.

【0030】図11は本発明に係るガス漏れ検知フロー
図(その2)であり、前図の(A)に続くフローである
が、便宜上ステップ番号はST11から始める。。 ST11:PL・PS=1であるか否かを調べる。 ST12:ST11でYesなら、圧力センサ異常表示
を警報表示部(アナウンシエータパネル、インストルメ
ントパネル)にランプなどで表示する。この表示が出た
ときには、運転者は速かに車両を修理工場などへ搬入
し、故障を解消する処置を講じればよい。
FIG. 11 is a flowchart (part 2) of the gas leak detection according to the present invention, which is a flow following (A) in the previous figure. For convenience, the step numbers start from ST11. . ST11: Check whether PL · PS = 1. ST12: If Yes in ST11, a pressure sensor abnormality display is displayed on a warning display section (announcer panel, instrument panel) by a lamp or the like. When this display appears, the driver may quickly bring the vehicle into a repair shop or the like and take measures to resolve the failure.

【0031】ST13:ST11でNoすなわち異常が
無ければ、診断タイマをオンして、カウントを開始す
る。 ST14:圧力P0(n)及び圧力P2(n)を取込む。(n)は
n番目を意味し、その時点での圧力情報を読取ることを
意味する。 ST15:tf(n)≧t0で診断タイマのタイムアップを
待つ。すなわち、診断タイマの積算時間tf(n)が、予
め定めておいた判定時間(判断に必要な経過時間)t0
に等しくなるか若しくは超えるまで、圧力P0(n),P2
(n)のサンプリングを続ける。繰り返すたびに圧力P0
(n),P2(n)は新しい値となる。tf(n)≧t0を満足し
たら次に進む。前記判断時間t0の決め方は後述する。 ST16:ST15でYesになったら、tf(n)=t0
とし、次のステップに進む。 ST17:最終値としての圧力P0(n),P2(n)を取込
む。(B)は次のステップに進むことを示す。
ST13: If No in ST11, that is, if there is no abnormality, the diagnostic timer is turned on and counting is started. ST14: Take in pressure P0 (n) and pressure P2 (n). (n) means the nth, which means that pressure information at that time is read. ST15: Wait for the diagnosis timer to expire at tf (n) ≧ t0. That is, the accumulated time tf (n) of the diagnostic timer is equal to the predetermined determination time (elapsed time required for the determination) t0.
Pressure P0 (n), P2 until equal to or exceeds
Continue sampling in (n). Pressure P0 every time
(n) and P2 (n) have new values. When tf (n) ≧ t0 is satisfied, the process proceeds to the next step. How to determine the determination time t0 will be described later. ST16: If Yes in ST15, tf (n) = t0
And proceed to the next step. ST17: Take in pressures P0 (n) and P2 (n) as final values. (B) indicates that the process proceeds to the next step.

【0032】図12は本発明に係るガス漏れ検知フロー
図(その3)であり、前図の(B)に続くフローであ
る。なお、ステップ番号は便宜上21から振る。 ST21:圧力P0の初期値P0(1)からtf(n)時点での
圧力P0(n)を差引き、得られた圧力下降量(P0(1)−P
0(n))を、診断時間tf(n)で割ったものがこのときの
圧力下降率になる。この圧力下降率を圧力下降率しきい
値ΔP0と比較する。 ST22:ST21でYes、すなわちP0(n)が小さく
なったことを意味し、このことから高圧配管に漏れがあ
ると看做せるので、高圧配管のリークを示すFL・le
ak0に1(1は漏れあり)を与える。 ST23:ST21でNoであれば、FL・leak0
に0(0は漏れあり)を与える。
FIG. 12 is a flowchart (part 3) of the gas leak detection according to the present invention, which is a flow following (B) in the preceding figure. The step numbers are assigned from 21 for convenience. ST21: The pressure P0 (n) at the point of time tf (n) is subtracted from the initial value P0 (1) of the pressure P0, and the obtained pressure drop amount (P0 (1) -P
0 (n)) divided by the diagnosis time tf (n) is the pressure decrease rate at this time. This pressure decrease rate is compared with a pressure decrease rate threshold value ΔP0. ST22: Yes in ST21, meaning that P0 (n) has decreased, and it can be considered that there is a leak in the high-pressure pipe.
Give 1 to ak0 (1 is leaky). ST23: If No in ST21, FL·leak0
To 0 (0 is leaking).

【0033】ST24:圧力P2の初期値P2(1)からt
f(n)時点での圧力P2(n)を差引き、得られた圧力下降
量(P2(1)−P2(n))を、診断時間tf(n)で割ったも
のがこのときの圧力下降率になる。この圧力下降率を圧
力下降率しきい値ΔP2と比較する。 ST25:ST24でYes、すなわちP2(n)が小さく
なったことを意味し、このことから低圧配管に漏れがあ
ると看做せるので、低圧配管のリークを示すFL・le
ak2に1(1は漏れあり)を与える。 ST26:ST24でNoであれば、FL・leak2
に0(0は漏れあり)を与える。
ST24: From initial value P2 (1) of pressure P2 to t
The pressure P2 (n) at the time of f (n) is subtracted, and the obtained pressure drop amount (P2 (1) -P2 (n)) is divided by the diagnosis time tf (n). It becomes a falling rate. This pressure drop rate is compared with a pressure drop rate threshold value ΔP2. ST25: Yes in ST24, that is, P2 (n) has decreased, and it can be considered that there is a leak in the low-pressure pipe, and thus FL·le indicating a leak in the low-pressure pipe.
ak2 is given 1 (1 is leaky). ST26: If No in ST24, FLleak2
To 0 (0 is leaking).

【0034】ST27:FL・leak0=0で且つF
L・leak2=0であるか否かを判定する。Yesで
あれば、高圧配管と低圧配管の何れにもガス漏れはない
ので、フローを終了する。 ST28:ST27でNoであれば、ガス漏れ状態にあ
ると看做せるので、ガス漏れ表示を警報表示部(アナウ
ンシエータパネル、インストルメントパネル)にランプ
などで表示する。この表示が出たときには、運転者は速
かに車両を修理工場などへ搬入し、故障を解消する処置
を講じればよい。
ST27: FL·leak0 = 0 and F
It is determined whether or not L·leak2 = 0. If Yes, there is no gas leak in either the high-pressure pipe or the low-pressure pipe, so the flow ends. ST28: If No in ST27, it can be considered that the gas is in a gas leak state, so that the gas leak is displayed on a warning display section (announcer panel, instrument panel) with a lamp or the like. When this display appears, the driver may quickly bring the vehicle into a repair shop or the like and take measures to resolve the failure.

【0035】図13は本発明に係るガス漏れ検知フロー
図(その4)であり、図10の(C)からのフローであ
る。なお、ステップ番号は便宜上31から振る。図9
(a)において、t0より前に燃料カット信号が(OF
F)になったときには図13のフローを進むことにな
る。 ST31:図10に示したST01でNoであれば、フ
ラグFL・FCに「0」を与える。FL・FC=0は、
燃料カット信号がOFFであることを意味する。 ST32:そこで、前回のFL・FCが「1」であった
か否かを調べる。前回とは(n−1)番目に相当する。
Noであれば前回も燃料カット信号がONでは無かった
ことになるので、診断は行わない。
FIG. 13 is a flowchart (part 4) of the gas leak detection according to the present invention, which is a flow from FIG. 10 (C). The step numbers are assigned from 31 for convenience. FIG.
In (a), before the time t0, the fuel cut signal becomes (OF).
When F) is reached, the flow of FIG. 13 proceeds. ST31: If No in ST01 shown in FIG. 10, "0" is given to the flag FL / FC. FL / FC = 0
This means that the fuel cut signal is OFF. ST32: Then, it is checked whether or not the previous FL / FC was “1”. The last time corresponds to the (n-1) th.
If No, the diagnosis is not performed because the fuel cut signal was not ON last time.

【0036】ST33〜ST40:ST32でYesで
あれば、図12のST21〜ST28の(n)を(n-1)に置
き換えした内容のST33〜ST40を実行して、ガス
漏れ状態と認識したときにはST40でガス漏れ表示を
行う。ST39でYesならガス漏れ状態ではないので
次のST41に進む。 ST41:第1・第2遮断弁をともに開弁する。 ST42:診断タイマをオフにし、リセットをかけ、次
の診断に備えさせる。 以上のST31〜ST42を実行可能にしたので、診断
タイマのタイムアップ前であっても、燃料カット信号の
(OFF)に基づいて、配管漏れ診断が可能となった。
ST33 to ST40: If Yes in ST32, ST33 to ST40 in which (n) of ST21 to ST28 in FIG. 12 is replaced with (n-1) are executed, and when it is recognized that the gas is leaking, In ST40, a gas leak is displayed. If “Yes” in ST39, it is not in the gas leakage state, so the flow proceeds to next ST41. ST41: Open both the first and second shut-off valves. ST42: The diagnostic timer is turned off and reset to prepare for the next diagnosis. Since the steps ST31 to ST42 can be executed, a pipe leak diagnosis can be made based on the fuel cut signal (OFF) even before the expiration of the diagnosis timer.

【0037】尚、請求項1に記載したガス燃料は、圧縮
天然ガス、水素ガス、石炭ガスなどの気体燃料であれば
種類は限定しない。また、遮断弁及び圧力センサの数は
実施例に限定するものではない。
The type of the gas fuel described in claim 1 is not limited as long as it is a gas fuel such as compressed natural gas, hydrogen gas, and coal gas. Further, the numbers of the shutoff valves and the pressure sensors are not limited to the embodiment.

【0038】[0038]

【発明の効果】本発明は上記構成により次の効果を発揮
する。請求項1によれば、一対の遮断弁と、これらの間
に配置した圧力センサと、制御部とでガス漏れを検知す
る。この結果、万一走行中においても車両用ガス燃料供
給システムにガス漏れが発生しても、そのことを迅速に
検知して対策を講じることができる。
According to the present invention, the following effects are exhibited by the above configuration. According to the first aspect, gas leakage is detected by the pair of shut-off valves, the pressure sensor disposed therebetween, and the control unit. As a result, even if a gas leak occurs in the vehicular gas fuel supply system even during traveling, it is possible to quickly detect the gas leak and take a countermeasure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る車両の模式図FIG. 1 is a schematic view of a vehicle according to the present invention.

【図2】本発明に係るガス燃料供給システムの原理図FIG. 2 is a principle diagram of a gas fuel supply system according to the present invention.

【図3】図2の3部拡大断面図FIG. 3 is an enlarged sectional view of a part 3 in FIG. 2;

【図4】本発明における逆止弁及び第1遮断弁の作用図FIG. 4 is an operation diagram of a check valve and a first shut-off valve according to the present invention.

【図5】図2の5部拡大断面図FIG. 5 is an enlarged sectional view of a part 5 in FIG. 2;

【図6】図5の圧力制御ユニットの底面図FIG. 6 is a bottom view of the pressure control unit of FIG. 5;

【図7】本発明で採用した圧力制御ユニットの作動原理
FIG. 7 is an operation principle diagram of a pressure control unit employed in the present invention.

【図8】本発明のガス漏れ検知技術を説明するためのガ
ス燃料供給システム図
FIG. 8 is a diagram of a gas fuel supply system for explaining a gas leak detection technique of the present invention.

【図9】本発明に係るガス漏れ診断のタイムチャートFIG. 9 is a time chart of a gas leak diagnosis according to the present invention.

【図10】本発明に係るガス漏れ検知フロー図(その
1)
FIG. 10 is a flowchart (part 1) of gas leak detection according to the present invention.

【図11】本発明に係るガス漏れ検知フロー図(その
2)
FIG. 11 is a flowchart (part 2) of gas leak detection according to the present invention.

【図12】本発明に係るガス漏れ検知フロー図(その
3)
FIG. 12 is a flowchart (part 3) of gas leak detection according to the present invention.

【図13】本発明に係るガス漏れ検知フロー図(その
4)
FIG. 13 is a flowchart of gas leak detection according to the present invention (part 4).

【符号の説明】[Explanation of symbols]

10…車両、13…配管(高圧配管)、14…配管(低
圧配管)、16…ガスエンジン、20…ガス燃供給シス
テム、31…圧力センサ(第1圧力センサ)、36…制
御部。
10: vehicle, 13: pipe (high pressure pipe), 14: pipe (low pressure pipe), 16: gas engine, 20: gas fuel supply system, 31: pressure sensor (first pressure sensor), 36: control unit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大高 彰文 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 後藤 博之 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 Fターム(参考) 2G067 AA14 BB11 CC04 DD02  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Akifumi Otaka 1-4-1 Chuo, Wako-shi, Saitama Pref. Honda Technical Research Institute, Inc. (72) Inventor Hiroyuki Goto 1-4-1 Chuo, Wako-shi, Saitama No. F-term in Honda R & D Co., Ltd. (reference) 2G067 AA14 BB11 CC04 DD02

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ガス燃料をガスエンジンに供給する配管
に遮断弁と圧力センサと遮断弁とをこの順に配置する車
両用ガス燃料供給システムにおいて、 ガス漏れ診断タイマーを備え、 開いている前記2つの遮断弁を、燃料カット信号を条件
に発生するガス漏れ診断信号に基づいて閉弁し、次に圧
力センサで圧力下降量を計測し、この圧力情報と前記診
断タイマからの時間情報とで、圧力下降率を演算し、こ
の圧力下降率が予め定めた圧力下降率しきい値より大き
いときにガス漏れであると判定する制御部を備えること
を特徴とする車両用ガス燃料供給システム。
1. A vehicle gas fuel supply system in which a shutoff valve, a pressure sensor, and a shutoff valve are arranged in this order in a pipe for supplying gaseous fuel to a gas engine, comprising: a gas leak diagnosis timer; The shut-off valve is closed based on a gas leak diagnosis signal generated under the condition of a fuel cut signal, and then a pressure sensor measures the amount of pressure drop, and the pressure information and time information from the diagnosis timer are used to determine the pressure. A gas fuel supply system for a vehicle, comprising: a control unit that calculates a descending rate and determines that there is a gas leak when the pressure decreasing rate is greater than a predetermined pressure decreasing rate threshold value.
JP11115454A 1999-04-22 1999-04-22 Gas fuel supply system of vehicle Pending JP2000303909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11115454A JP2000303909A (en) 1999-04-22 1999-04-22 Gas fuel supply system of vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11115454A JP2000303909A (en) 1999-04-22 1999-04-22 Gas fuel supply system of vehicle

Publications (1)

Publication Number Publication Date
JP2000303909A true JP2000303909A (en) 2000-10-31

Family

ID=14662961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11115454A Pending JP2000303909A (en) 1999-04-22 1999-04-22 Gas fuel supply system of vehicle

Country Status (1)

Country Link
JP (1) JP2000303909A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1243772A3 (en) * 2001-03-23 2003-06-04 C.R.F. Società Consortile per Azioni Diagnostics system for tracing leaks from a gas-supply system and for checking operation of the valves forming part of said system
FR2840025A1 (en) * 2002-05-27 2003-11-28 Johnson Contr Automotive Elect Method of detection of leakage in supply circuit for gas-fueled engine
KR100490664B1 (en) * 2002-04-29 2005-05-19 주식회사 이원 Device and method for gas leakage detection of lpg automobile
KR100645309B1 (en) 2004-10-19 2006-11-15 씨멘스 오토모티브 주식회사 Installation for detecting leakage fuel of gas car
WO2007042388A1 (en) * 2005-10-07 2007-04-19 Robert Bosch Gmbh Method for diagnosing a shut-off valve
JP2014199147A (en) * 2013-03-29 2014-10-23 三菱重工業株式会社 Device and method for checking gas leakage of gas internal combustion engine
DE102014106878A1 (en) 2013-05-16 2014-11-20 Aisan Kogyo Kabushiki Kaisha Vehicle control device and vehicle control method
EP3133272A1 (en) * 2015-08-13 2017-02-22 Continental Automotive GmbH Method for operating a device for controlling the supply of fuel, device for supplying fuel and computer program product
CN106768701A (en) * 2016-12-18 2017-05-31 武汉钢铁股份有限公司 Hot scarfing machine leak detection method
EP3386792A4 (en) * 2015-12-08 2019-08-21 Scania CV AB A method and a system for determining time data relating to a non-combustion outlet process of a fuel gas from a gas tank at a vehicle
CN110714847A (en) * 2019-09-29 2020-01-21 潍柴西港新能源动力有限公司 Leakage detection method for gas supply system of natural gas engine
JP2021175660A (en) * 2020-04-27 2021-11-04 株式会社備後研究所 Vehicle and ship
US11739716B2 (en) 2021-09-01 2023-08-29 American CNG, LLC Supplemental fuel system for compression-ignition engine

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1243772A3 (en) * 2001-03-23 2003-06-04 C.R.F. Società Consortile per Azioni Diagnostics system for tracing leaks from a gas-supply system and for checking operation of the valves forming part of said system
US6830026B2 (en) 2001-03-23 2004-12-14 C.R.F. Società Consortile Per Azioni Diagnostics system for tracing leaks from a gas-supply system and for checking operation of the valves forming part of said system
KR100490664B1 (en) * 2002-04-29 2005-05-19 주식회사 이원 Device and method for gas leakage detection of lpg automobile
FR2840025A1 (en) * 2002-05-27 2003-11-28 Johnson Contr Automotive Elect Method of detection of leakage in supply circuit for gas-fueled engine
KR100645309B1 (en) 2004-10-19 2006-11-15 씨멘스 오토모티브 주식회사 Installation for detecting leakage fuel of gas car
WO2007042388A1 (en) * 2005-10-07 2007-04-19 Robert Bosch Gmbh Method for diagnosing a shut-off valve
JP2014199147A (en) * 2013-03-29 2014-10-23 三菱重工業株式会社 Device and method for checking gas leakage of gas internal combustion engine
US9816891B2 (en) 2013-03-29 2017-11-14 Mitsubishi Heavy Industries, Ltd. Gas internal combustion engine gas leak checking device and method for same
DE102014106878A1 (en) 2013-05-16 2014-11-20 Aisan Kogyo Kabushiki Kaisha Vehicle control device and vehicle control method
CN104165098A (en) * 2013-05-16 2014-11-26 爱三工业株式会社 Vehicle control apparatus and vehicle control method
US9745902B2 (en) 2013-05-16 2017-08-29 Aisan Kogyo Kabushiki Kaisha Vehicle control apparatus and vehicle control method
DE102014106878B4 (en) 2013-05-16 2018-08-16 Aisan Kogyo Kabushiki Kaisha Vehicle control device and vehicle control method
EP3133272A1 (en) * 2015-08-13 2017-02-22 Continental Automotive GmbH Method for operating a device for controlling the supply of fuel, device for supplying fuel and computer program product
EP3386792A4 (en) * 2015-12-08 2019-08-21 Scania CV AB A method and a system for determining time data relating to a non-combustion outlet process of a fuel gas from a gas tank at a vehicle
CN106768701A (en) * 2016-12-18 2017-05-31 武汉钢铁股份有限公司 Hot scarfing machine leak detection method
CN110714847A (en) * 2019-09-29 2020-01-21 潍柴西港新能源动力有限公司 Leakage detection method for gas supply system of natural gas engine
JP2021175660A (en) * 2020-04-27 2021-11-04 株式会社備後研究所 Vehicle and ship
JP7343541B2 (en) 2020-04-27 2023-09-12 ジャパンハイドロ株式会社 Vehicles and ships
US11739716B2 (en) 2021-09-01 2023-08-29 American CNG, LLC Supplemental fuel system for compression-ignition engine
US11767811B2 (en) 2021-09-01 2023-09-26 American CNG, LLC Supplemental fuel system for compression-ignition engine
US20230304450A1 (en) * 2021-09-01 2023-09-28 American CNG, LLC Supplemental fuel system for compression-ignition engine
US11808221B2 (en) * 2021-09-01 2023-11-07 American CNG, LLC Supplemental fuel system for compression-ignition engine
US11835016B2 (en) 2021-09-01 2023-12-05 American CNG, LLC Supplemental fuel system for compression-ignition engine

Similar Documents

Publication Publication Date Title
US6401698B1 (en) Vehicle fuel gas supply system
US6390075B1 (en) Vehicle fuel gas supply system
JP3949348B2 (en) Gas fuel supply device
JP2000303909A (en) Gas fuel supply system of vehicle
US6467466B1 (en) Gas leakage detection and fail-safe control method for gas-fueled internal combustion engine and apparatus for implementing the same
US5355863A (en) Evaporative fuel-processing system for internal combustion engines
JPH06258170A (en) Apparatus for detecting gas leakage
US20050236213A1 (en) Fuel supply control apparatus for vehicle engine and method thereof
US20070051423A1 (en) Pressure Differential System for Controlling High Pressure Refill Gas Flow Into On Board Vehicle Fuel Tanks
EP0942161A2 (en) Gas fuel supply mechanism for gas combustion engine
EP2660448B1 (en) Error detection device for internal combustion engine
US5398662A (en) Evaporative fuel-processing system for internal combustion engines for vehicles
WO2021250171A3 (en) Valve device, intank valve and gas pressure accumulator system, in particular for fuel cell systems, and method for detecting a leakage
EP2291627B1 (en) Method and system for diagnosis of gas leakage in a gas-powered vehicle
RU2666498C2 (en) Method for indicating of degradation of the vehicle fuel system operation (variants)
KR101120007B1 (en) Regulator for compressed natural gas vehicle having leakage fuel gas detecting and collecting functions
WO2014066995A1 (en) Method and system for detecting and diagnosing a gaseous fuel leak in a dual fuel internal combustion engine system
JP5573467B2 (en) Fuel supply system leak detection method and fuel supply system leak diagnosis device
KR20070041286A (en) Apparatus for supplying gas fuel
JP2007146806A (en) Fuel system for liquefied gas fuel engine
JP2015090076A (en) Abnormality diagnosis device for fuel supply system
JP2014169662A (en) Fuel supply control device of internal combustion engine
CN114361531A (en) Leakage detection system and method for vehicle-mounted fuel cell hydrogen system
JP3904078B2 (en) Gas filling device
JPH0718384B2 (en) Safety device for gas fuel regulator