JP2000303181A - Treating device - Google Patents

Treating device

Info

Publication number
JP2000303181A
JP2000303181A JP11110239A JP11023999A JP2000303181A JP 2000303181 A JP2000303181 A JP 2000303181A JP 11110239 A JP11110239 A JP 11110239A JP 11023999 A JP11023999 A JP 11023999A JP 2000303181 A JP2000303181 A JP 2000303181A
Authority
JP
Japan
Prior art keywords
exhaust
chemical reaction
film
fine powder
plasma cvd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11110239A
Other languages
Japanese (ja)
Inventor
Yukito Aota
幸人 青田
Atsushi Koike
淳 小池
Yasuyoshi Takai
康好 高井
Shotaro Okabe
正太郎 岡部
Yuzo Koda
勇蔵 幸田
Sunao Yoshisato
直 芳里
Masahiro Kanai
正博 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP11110239A priority Critical patent/JP2000303181A/en
Priority to US09/294,367 priority patent/US20030164225A1/en
Publication of JP2000303181A publication Critical patent/JP2000303181A/en
Priority to US10/776,173 priority patent/US20040161533A1/en
Priority to US11/776,265 priority patent/US20080014345A1/en
Priority to US12/326,238 priority patent/US20090084500A1/en
Priority to US12/327,428 priority patent/US20090095420A1/en
Priority to US12/327,403 priority patent/US20090114155A1/en
Priority to US12/327,223 priority patent/US20090145555A1/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent a malfunction of a plasma chemical vapor deposition(CVD) device and quality deterioration of a deposited product film by depositing fine powder of by-products in an exhausting means for the plasma CVD device. SOLUTION: A filament 6 of high melting point metal such as tungsten is set up in an exhaust duct 4 being an exhaust route between a plasma CVD chamber 3 and a vacuum pump 13 being an evacuating means leaving an interval of 5 cm from the inner wall surface of the duct 4. The fine powder of by-products from the plasma CVD chamber 3 is subjected to chemical reaction by the heated filament 6 and the reaction products thus obtained are collected on the inner wall surface of the duct 4 so that the by-products are deposited as a hardened film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体素子等の製
造プロセスにおいて、膜形成に用いるプラズマCVD装
置、熱CVD装置、光CVD装置、スパッタ装置等の基
体処理装置、または、膜処理に用いるドライエッチング
装置等の膜処理装置といった処理装置に関し、特に、そ
の排気処理手段に特徴を有する処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate processing apparatus such as a plasma CVD apparatus, a thermal CVD apparatus, an optical CVD apparatus, and a sputtering apparatus used for forming a film in a process of manufacturing a semiconductor element or the like, or a dry processing apparatus used for film processing. The present invention relates to a processing apparatus such as a film processing apparatus such as an etching apparatus, and more particularly, to a processing apparatus characterized by its exhaust processing means.

【0002】[0002]

【従来の技術】従来、堆積膜形成装置をはじめとする基
体処理装置等の処理装置において、その排気ガス中の未
反応ガスや副生成物の排気手段への付着による、被処理
物(基体、膜)の品質低下や装置の劣化が問題となって
いた。そのため、上記未反応ガスや副生成物を、フッ素
系或いは塩素系等のガスを用いたエッチングや排気配管
の加熱などにより処理する技術が開発されている。
2. Description of the Related Art Conventionally, in a processing apparatus such as a substrate processing apparatus including a deposited film forming apparatus, an object to be processed (substrate, substrate, etc.) is caused by the adhesion of unreacted gas and by-products in the exhaust gas to exhaust means. The quality of the film) and the deterioration of the apparatus have been problems. Therefore, a technique has been developed in which the unreacted gas and by-products are treated by etching using a fluorine-based or chlorine-based gas or by heating an exhaust pipe.

【0003】例えば、プラズマCVD法を用いた堆積膜
形成装置では、真空容器内に供給した原料ガスをプラズ
マ発生手段によりプラズマ化することにより、該真空容
器内に設置した基板上に堆積膜を形成するが、原料ガス
は真空容器内で堆積膜形成に寄与した後、排気経路を経
てガス排気手段(排気配管、バルブ、真空ポンプ)によ
り排出される。
For example, in a deposited film forming apparatus using a plasma CVD method, a source gas supplied into a vacuum vessel is turned into plasma by a plasma generating means to form a deposited film on a substrate installed in the vacuum vessel. However, after the source gas contributes to the formation of a deposited film in the vacuum vessel, it is exhausted by gas exhaust means (exhaust pipe, valve, vacuum pump) through an exhaust path.

【0004】シリコン系の非晶質(アモルファス)薄膜
または微結晶(マイクロクリスタル)薄膜を上記プラズ
マCVD法で形成する場合には、一般にSiH4やSi2
6等のSiを含有する原料ガスを供給し、一定圧力に
保ちながら高周波放電によってプラズマ状態に分解し、
プラズマ中に置かれた基板上に上記薄膜を形成する。
When a silicon-based amorphous (amorphous) thin film or microcrystalline (microcrystalline) thin film is formed by the above-mentioned plasma CVD method, SiH 4 or Si 2 is generally used.
A raw material gas containing Si such as H 6 is supplied and decomposed into a plasma state by high-frequency discharge while maintaining a constant pressure.
The thin film is formed on a substrate placed in a plasma.

【0005】しかしながら、従来のプラズマCVD装置
においては、堆積膜の形成中に副生成物として微粉体が
発生し、排気手段の圧力調整バルブ及び排気配管、ゲー
トバルブに付着堆積し、さらに真空ポンプ内にも堆積す
るという現象があった。
However, in the conventional plasma CVD apparatus, fine powder is generated as a by-product during the formation of the deposited film, and adheres and deposits on the pressure control valve and the exhaust pipe of the exhaust means and the gate valve. There was a phenomenon that also deposited.

【0006】このため、堆積した微粉体により排気口が
塞がり、成膜時の圧力変動を生じたり、微粉体の逆流等
のため堆積膜の特性低下を生じ、製品の品質が低下する
という問題が発生した。さらに、排気配管、圧力調整バ
ルブ、ゲートバルブ、真空ポンプといった排気手段に付
着した微粉体により装置の異常を生じるため装置のメン
テナンスに時間を要し、装置の稼働率を低下させる問題
を招いていた。
For this reason, the exhaust port is blocked by the deposited fine powder, causing pressure fluctuations during film formation, and the characteristics of the deposited film being reduced due to the backflow of the fine powder, resulting in a problem that the quality of the product is reduced. Occurred. Furthermore, the fine powder adhering to the exhaust means such as the exhaust pipe, the pressure regulating valve, the gate valve, and the vacuum pump causes an abnormality in the apparatus, so that it takes time to maintain the apparatus and lowers the operation rate of the apparatus. .

【0007】一方、シリコン系非晶質半導体デバイスの
連続製造装置として、米国特許第4,400,409号
明細書等に、ロール・ツー・ロール(Roll−to−
Roll)方式を採用した連続プラズマCVD装置が開
示されている。
On the other hand, as a continuous production apparatus for silicon-based amorphous semiconductor devices, US Pat. No. 4,400,409 discloses a roll-to-roll method.
A continuous plasma CVD apparatus adopting the (Roll) method is disclosed.

【0008】この装置によれば、複数のプラズマCVD
室を設け、前記各プラズマCVD室において必要とされ
る導電型の半導体を堆積形成しつつ、基板をその長手方
向に連続的に移動させることによって、半導体結合を有
する大面積のデバイスを連続的に形成することができ
る。
According to this apparatus, a plurality of plasma CVD
Chambers, and while continuously depositing and forming a semiconductor of a conductivity type required in each of the plasma CVD chambers, the substrate is continuously moved in the longitudinal direction thereof, so that a large-area device having a semiconductor bond can be continuously formed. Can be formed.

【0009】このように、ロール・ツー・ロール方式の
連続プラズマCVD装置を用いれば、製造装置を止める
ことなく長時間連続してデバイスを製造することができ
るので、高い生産性を得ることができる。
As described above, if a roll-to-roll type continuous plasma CVD apparatus is used, devices can be manufactured continuously for a long time without stopping the manufacturing apparatus, so that high productivity can be obtained. .

【0010】しかしながら、上記ロール・ツー・ロール
方式の装置においても、排気手段中に副生成物としての
微粉体が発生する条件では、排気手段に微粉体が付着
し、連続製造時間が長くなるに従って、排気手段に付着
した微粉体が蓄積し、プラズマCVD室内部にも逆流し
た微粉体が蓄積されることになり、前述のように製造さ
れるデバイスに欠陥が発生し易くなると共に、プラズマ
CVD室を排気する排気手段に微粉体のつまりによる故
障が発生し、装置の稼働率を低下させるという問題があ
った。
However, even in the roll-to-roll type apparatus described above, under the condition that fine powder as a by-product is generated in the exhaust means, the fine powder adheres to the exhaust means and the continuous manufacturing time becomes longer. The fine powder adhering to the evacuation means accumulates, and the fine powder flowing backward also accumulates inside the plasma CVD chamber, so that the device manufactured as described above is liable to generate defects, and the plasma CVD chamber There is a problem in that a failure due to the clogging of the fine powder occurs in the exhaust means for exhausting the gas, which lowers the operation rate of the apparatus.

【0011】そのため、従来、このような副生成物の微
粉体の排気系への付着を制御する方法として、特開昭6
0−114570号公報、特開平1−312833号公
報、特開平4−136175号公報、特開平8−133
889号公報、特開平8−299784号公報等に種々
の技術が開示されている。
Therefore, conventionally, as a method for controlling the adhesion of the fine powder of such a by-product to the exhaust system, Japanese Patent Application Laid-Open No.
JP-A-114570, JP-A-1-313833, JP-A-4-136175, JP-A-8-133
Various technologies are disclosed in, for example, JP-A-889-89 and JP-A-8-299784.

【0012】例えば、特開昭60−114570号公報
には、排気配管や微粉体トラップを加熱することで微粉
体を低密度の柔らかい微粉体ではなく、処理の容易な高
密度の硬い微粉体として捕集する方法が開示されてい
る。
For example, Japanese Patent Application Laid-Open No. 60-114570 discloses that by heating an exhaust pipe and a fine powder trap, the fine powder is not a low-density soft fine powder but a high-density hard fine powder which can be easily processed. A method of collecting is disclosed.

【0013】また、特開平1−312833号公報に
は、気密容器と排気システムとの間に第2の反応室及び
加熱手段を設けることによって、反応部で熱分解されな
かった未反応ガスを完全に分解する技術が開示されてい
る。
Japanese Patent Application Laid-Open No. 1-312833 discloses that a second reaction chamber and a heating means are provided between an airtight container and an exhaust system to completely remove unreacted gas not thermally decomposed in a reaction section. A technique for disassembling is disclosed.

【0014】特開平4−136175号公報には、排気
ガス中の未反応ガスを反応させて膜形成を行う反応室を
設けることにより排気管中の未処理ガスを減らし、微粉
体或いは膜片といったダストの発生を防ぎ、真空ポンプ
及び有毒ガス処理装置の劣化のない薄膜形成装置が開示
されている。
Japanese Unexamined Patent Publication (Kokai) No. 4-136175 discloses that an unreacted gas in an exhaust gas is reacted to form a film so as to reduce the amount of untreated gas in an exhaust pipe, thereby reducing fine particles or film fragments. A thin film forming apparatus that prevents generation of dust and does not deteriorate a vacuum pump and a toxic gas processing apparatus is disclosed.

【0015】特開平8−133889号公報には、基板
ヒーター内部に排気管を貫通させ、排気管を加熱しなが
ら膜の堆積を行う方法が開示されている。
Japanese Patent Application Laid-Open No. 8-133889 discloses a method in which an exhaust pipe is penetrated inside a substrate heater and a film is deposited while heating the exhaust pipe.

【0016】特開平8−299784号公報には、排気
通路の途中に介設されるトラップ用通路容器内に邪魔板
よりなる加熱トラップ手段を設けることにより、排気ガ
ス中の未反応ガスを熱分解してほぼ完全にトラップする
技術が開示されている。
Japanese Unexamined Patent Publication No. Hei 8-299784 discloses that an unreacted gas in exhaust gas is thermally decomposed by providing a heating trap means comprising a baffle plate in a trap passage container provided in the middle of the exhaust passage. An almost completely trapping technique is disclosed.

【0017】このような技術により、排気配管内の未反
応ガス、或いは未反応ガスに由来して生成する微粉体を
捕集、或いは処理することが可能となり、これらに起因
する問題は減少してきている。
With such a technique, it is possible to collect or treat unreacted gas in the exhaust pipe or fine powder generated from the unreacted gas, and the problems caused by these are reduced. I have.

【0018】[0018]

【発明が解決しようとする課題】しかしながら、上記し
た排気ガスの処理方法では、副生成物の処理方法は十分
とはいえず、特に、プラズマCVD法を用いて堆積膜を
形成する際には、成膜速度を高めるためにSiH4やS
26等の原料ガス流量及びRFパワーを増加すると、
上記のような排気ガス処理方法では、加熱トラップの前
段の排気手段に微粉体が付着蓄積する、または、その後
方に付着蓄積するという問題が解決されていない。従っ
て、ロール・ツー・ロール法のような手法によって長時
間連続して堆積膜形成を行う場合には、排気配管やバル
ブに蓄積した微粉体により排気口がふさがれて成膜圧力
の変動を生じたり、蓄積した微粉体が堆積膜形成容器内
に逆流して堆積膜の膜質を低下させる原因になってい
る。さらに、装置の排気手段であるバルブ、排気配管、
真空ポンプに異常が生じ、かかる異常回避のためのメン
テナンスに時間を要し、装置の稼働率を低下させてしま
う。
However, in the exhaust gas processing method described above, the processing method of by-products cannot be said to be sufficient. In particular, when a deposited film is formed by a plasma CVD method, SiH 4 or S to increase the deposition rate
When the flow rate of the source gas such as i 2 H 6 and the RF power are increased,
The exhaust gas processing method as described above does not solve the problem that the fine powder adheres and accumulates in the exhaust means at the stage preceding the heating trap or adheres and accumulates behind the fine powder. Therefore, when a deposited film is formed continuously for a long time by a method such as a roll-to-roll method, the exhaust port is blocked by fine powder accumulated in an exhaust pipe or a valve, thereby causing a change in a film forming pressure. In addition, the accumulated fine powder flows back into the deposited film forming container, causing a deterioration in the film quality of the deposited film. Furthermore, valves, exhaust piping, which are exhaust means of the device,
An abnormality occurs in the vacuum pump, and time is required for maintenance for avoiding the abnormality, and the operation rate of the apparatus is reduced.

【0019】本発明が解決しようとする課題は、上記し
たように、長時間にわたる処理において被処理物(基
体、堆積膜)に欠陥を発生させることなく、良好な処理
を行うことができる処理装置を提供することにある、具
体的には、プラズマCVD法やスパッタリング法、エッ
チング法などにより基体や膜の処理を行う処理装置にお
いて、後段の排気手段であるバルブ、排気配管、真空ポ
ンプへの未反応ガスや副生成物の微粉体の付着、堆積を
防止し、排気手段に該微粉体の詰まりによる故障が発生
することなく、長時間連続して処理が可能な処理装置を
提供することにある。
The problem to be solved by the present invention is, as described above, a processing apparatus capable of performing a good process without causing defects in an object to be processed (substrate, deposited film) in a long-time process. Specifically, in a processing apparatus for processing a substrate or a film by a plasma CVD method, a sputtering method, an etching method, or the like, a valve, an exhaust pipe, and a vacuum pump which are exhaust means at a subsequent stage are not provided. It is an object of the present invention to provide a processing apparatus capable of preventing the adhesion and deposition of a fine powder of a reaction gas or a by-product and preventing a trouble due to clogging of the fine powder in an exhaust means and capable of performing a continuous processing for a long time. .

【0020】[0020]

【課題を解決するための手段】本発明は、上記課題を解
決するために、以下のように構成したことを特徴とす
る。
Means for Solving the Problems The present invention is characterized by the following constitution in order to solve the above problems.

【0021】本発明の処理装置は、基体または膜を処理
するための処理室と該処理室を排気するための排気手段
とを有する処理装置であって、前記処理室と前記排気手
段とを連絡する排気経路中に、処理時の未反応性ガス及
び副生成物の少なくとも一方に化学反応を起こさせるた
めの化学反応生起手段を有し、該化学反応生起手段から
の距離が5cm以内の領域に、該化学反応生起手段によ
り生成した化学反応生成物の回収手段を有することを特
徴とする。
A processing apparatus according to the present invention is a processing apparatus having a processing chamber for processing a substrate or a film and an exhaust means for exhausting the processing chamber, wherein the processing chamber is connected to the exhaust means. A chemical reaction generating means for causing a chemical reaction to at least one of the unreacted gas and by-products during the processing in the exhaust path, and a distance from the chemical reaction generating means to a region within 5 cm. And a means for recovering a chemical reaction product generated by the chemical reaction generating means.

【0022】本発明においては、上記化学反応生起手段
により生成した化学反応生成物の回収手段が、前記排気
経路の壁面を兼ねることが好ましく、ルーバー等で構成
しても良い。
In the present invention, it is preferable that the means for recovering the chemical reaction product generated by the chemical reaction generating means also serves as a wall surface of the exhaust path, and may be constituted by a louver or the like.

【0023】また、本発明にかかる前記化学反応生起手
段としては、例えば高融点金属フィラメントが好ましく
用いられる。また、該高融点金属フィラメントは、タン
グステン、モリブデン、レニウムのうちの少なくとも一
つを含有することが好ましい。
As the chemical reaction generating means according to the present invention, for example, a high melting point metal filament is preferably used. Further, it is preferable that the high melting point metal filament contains at least one of tungsten, molybdenum, and rhenium.

【0024】本発明においては、前記処理室から排気さ
れる排気ガスに含まれる未反応ガスや副生成物の微粉体
を、化学反応生起手段を持つ排気経路に導入して化学反
応を生じせしめ、その生成物を硬質な膜として回収手段
に堆積させて捕集するものである。
In the present invention, fine particles of unreacted gas and by-products contained in the exhaust gas exhausted from the processing chamber are introduced into an exhaust path having a chemical reaction generating means to cause a chemical reaction. The product is deposited as a hard film on a collecting means and collected.

【0025】[0025]

【発明の実施の形態】図1に本発明の処理装置である堆
積膜形成装置の一実施形態の模式的な断面図を示す。図
1の装置においては、真空容器1中に処理室であるプラ
ズマCVD室3を有し、原料ガスをプラズマCVD室3
の一方に設けられたガス供給手段2から供給し、プラズ
マCVD室3で高周波グロー放電による堆積膜形成処理
を行う。さらに、堆積膜形成後の未反応ガスや副生成物
から生じた微粉体は、プラズマCVD室3の他方に設け
られた排気経路である排気ダクト4及び排気配管5を経
由して排気手段である真空ポンプ13へと排出される。
そして、プラズマCVD室3と真空ポンプ13の間に設
けられた排気ダクト4内に化学反応生起手段として高融
点金属フィラメント6が設置されている。本例では、排
気ダクト4の内壁面が化学反応生成物の回収手段を兼ね
ている。
FIG. 1 is a schematic sectional view of an embodiment of a deposited film forming apparatus which is a processing apparatus of the present invention. The apparatus shown in FIG. 1 has a plasma CVD chamber 3 as a processing chamber in a vacuum vessel 1, and a raw material gas is supplied to the plasma CVD chamber 3.
The gas is supplied from the gas supply means 2 provided on one side, and a deposited film forming process is performed in the plasma CVD chamber 3 by high-frequency glow discharge. Further, fine powder generated from unreacted gas or by-products after the formation of the deposited film is exhausted through an exhaust duct 4 and an exhaust pipe 5 which are exhaust paths provided in the other side of the plasma CVD chamber 3. It is discharged to the vacuum pump 13.
A high-melting metal filament 6 is provided as a chemical reaction generating means in an exhaust duct 4 provided between the plasma CVD chamber 3 and the vacuum pump 13. In this example, the inner wall surface of the exhaust duct 4 also serves as a means for recovering a chemical reaction product.

【0026】図2に排気ダクト4の部分拡大断面図を示
す。本発明においては、化学反応生起手段から5cm以
内に化学反応生成物回収手段を設ける。従って、本例で
は、2に示されるように、排気ダクト4の壁面15a,
15bと高融点金属フィラメント6の距離をL1、L2
すると、L1及びL2は5cm以内となるように、高融点
金属フィラメント6が設置される。
FIG. 2 shows a partially enlarged cross-sectional view of the exhaust duct 4. In the present invention, a chemical reaction product collecting means is provided within 5 cm from the chemical reaction generating means. Therefore, in this example, as shown in 2, the wall surfaces 15a, 15a,
When the 15b and the distance of the refractory metal filaments 6 and L 1, L 2, L 1 and L 2 so that within 5 cm, refractory metal filaments 6 are installed.

【0027】プラズマCVD室3内のプラズマ領域と高
融点金属フィラメント6の間は、ガスの流れに淀みが生
じないように凹凸のない構造を形成している。また、排
気配管5中には圧力調整バルブ11、ゲートバルブ12
が設けられている。
Between the plasma region in the plasma CVD chamber 3 and the high melting point metal filament 6, a structure having no irregularities is formed so as to prevent stagnation in the gas flow. In the exhaust pipe 5, a pressure regulating valve 11, a gate valve 12
Is provided.

【0028】プラズマCVD室3内の基板ホルダー10
上に被処理物である基板(不図示)を設置し、プラズマ
CVD室3内に原料ガスや希釈ガスを供給し、上記基板
上に膜を堆積させる。その際、プラズマCVD室3は加
熱ヒーター8で加熱され、基板は加熱ヒーター7で加熱
される。また、RF電源9からRF電力が供給される。
The substrate holder 10 in the plasma CVD chamber 3
A substrate (not shown), which is an object to be processed, is placed thereon, and a source gas or a diluent gas is supplied into the plasma CVD chamber 3 to deposit a film on the substrate. At that time, the plasma CVD chamber 3 is heated by the heater 8 and the substrate is heated by the heater 7. Further, RF power is supplied from the RF power supply 9.

【0029】プラズマCVD室3から排気された未反応
ガス及び副生成物は、排気ダクト4内に導入される。排
気ダクト4内に設置された高融点金属フィラメント6
は、電力コントローラー14よる電力供給により加熱さ
れ、導入された未反応ガスや副生成物の化学反応を生起
し、該化学反応によって生成した化学反応生成物は該高
融点金属フィラメント6の近傍に位置する排気ダクト4
の壁面15a,15bに付着捕集される。
The unreacted gas and by-product exhausted from the plasma CVD chamber 3 are introduced into an exhaust duct 4. Refractory metal filament 6 installed in exhaust duct 4
Is heated by the power supply by the power controller 14 to cause a chemical reaction of the introduced unreacted gas and by-products, and a chemical reaction product generated by the chemical reaction is located near the refractory metal filament 6. Exhaust duct 4
Are adhered and collected on the wall surfaces 15a and 15b.

【0030】本発明においては、未反応ガスや副生成物
に化学反応を起こさせた上、化学反応生起手段の近傍に
回収手段が配置されているため、効率良く生成物を回収
することができ、排気ダクト後方の排気手段である排気
配管5及びバルブ11,12内での微粉体の付着や堆積
を大幅に低減することができ、また、副生成物の微粉体
も硬質の膜として回収手段に堆積するため、排気ダクト
4内に堆積した微粉体の逆拡散も防止され、処理室内へ
の微粉体の逆流による堆積膜の劣化が防止される。
In the present invention, since the unreacted gas and by-products undergo a chemical reaction, and the recovery means is disposed near the chemical reaction inducing means, the products can be efficiently recovered. It is possible to greatly reduce the adhesion and accumulation of fine powder in the exhaust pipe 5 and the valves 11 and 12, which are exhaust means behind the exhaust duct, and to recover the fine powder of by-products as a hard film. Therefore, the back diffusion of the fine powder deposited in the exhaust duct 4 is also prevented, and the deterioration of the deposited film due to the back flow of the fine powder into the processing chamber is prevented.

【0031】本発明において用いられる高融点金属フィ
ラメントは、タングステン、モリブデン、レニウムのう
ちの少なくとも一つを含有することが好ましい。例えば
これらの金属単体または合金、添加物を含有する改質金
属または改質合金のいずれかで形成されるものを用いる
ことができる。
The refractory metal filament used in the present invention preferably contains at least one of tungsten, molybdenum and rhenium. For example, those formed of any of these metals or alloys, and modified metals or modified alloys containing additives can be used.

【0032】また、化学反応生成物回収手段としては、
上記した排気ダクト4の壁面を兼ねる構成以外にも、板
状のもの、トレー(受皿)状のもの、網状のもの、棒状
のもの、化学反応生起手段を兼ねるものが挙げられる。
The chemical reaction product recovery means includes:
In addition to the above-mentioned structure which also serves as the wall surface of the exhaust duct 4, a plate-like thing, a tray (pan) -like thing, a mesh-like thing, a stick-like thing, and a thing which also serves as a chemical reaction generating means can be given.

【0033】[0033]

【実施例】(実施例1)本例では、図1に示した構成の
プラズマCVD装置を用いて、ガラス基板上に非晶質シ
リコンの堆積膜を形成した。プラズマCVD室3は、幅
(図1の紙面奥行き方向)500mm、長さ850m
m、高さ40mmとした。このプラズマCVD室3の排
気側に、排気ダクト4を設け、高融点金属フィラメント
6としては、図3に示すように、タングステンワイヤ3
1をピッチ3mmでアルミナセラミックスからなる支持
体32に螺旋状に巻いたフィラメントを用いた。該フィ
ラメント6と排気ダクト4の壁面との距離L1、L2は1
cmとなるように設置した。
(Example 1) In this example, a deposited film of amorphous silicon was formed on a glass substrate using a plasma CVD apparatus having the structure shown in FIG. The plasma CVD chamber 3 has a width of 500 mm (in the depth direction in FIG. 1) and a length of 850 m.
m and a height of 40 mm. An exhaust duct 4 is provided on the exhaust side of the plasma CVD chamber 3, and as a high melting point metal filament 6, as shown in FIG.
A filament wound spirally around a support 32 made of alumina ceramics at a pitch of 3 mm was used. The distances L 1 and L 2 between the filament 6 and the wall surface of the exhaust duct 4 are 1
cm.

【0034】成膜処理は以下の手順で進めた。先ず、真
空容器1内を真空ポンプ13により1Pa以下に真空排
気した。引き続き、アルゴンガスを133sccm導入
し、排気配管5の内部の圧力調整バルブ11の開度を調
整することによりプラズマCVD室3の内圧を133P
aに維持した。
The film forming process proceeded according to the following procedure. First, the inside of the vacuum vessel 1 was evacuated to 1 Pa or less by the vacuum pump 13. Subsequently, 133 sccm of argon gas was introduced, and the internal pressure of the plasma CVD chamber 3 was adjusted to 133 P by adjusting the opening of the pressure adjusting valve 11 inside the exhaust pipe 5.
a.

【0035】次に、真空容器1内の基板加熱ヒーター7
及びプラズマCVD室加熱ヒーター8を所定の温度にな
るように加熱制御した。この状態で2時間放置し、プラ
ズマCVD室3の温度が安定した後、アルゴンガスを止
め、ガス供給手段2よりSiH4の原料ガス80scc
mと希釈H2ガス1600sccmを流した。
Next, the substrate heater 7 in the vacuum vessel 1
The heating of the plasma CVD chamber heater 8 was controlled to a predetermined temperature. Left at this state for 2 hours, after the temperature of the plasma CVD chamber 3 is stabilized, stopping the argon gas, the raw material gas 80scc of SiH 4 from the gas supply means 2
m and a diluted H 2 gas of 1600 sccm.

【0036】次に、電力コントローラー14をオンし、
フィラメント6に3000Wの電力を印加した。10分
経過後、RF電力(120W)を投入してプラズマCV
D室3にプラズマを生起し、非晶質シリコン膜をガラス
基板上に堆積させた。
Next, the power controller 14 is turned on,
3000 W of electric power was applied to the filament 6. After a lapse of 10 minutes, RF power (120 W) is applied and plasma CV
Plasma was generated in the D chamber 3 to deposit an amorphous silicon film on a glass substrate.

【0037】6時間経過後、RF電力の供給を停止し、
次にフィラメント6への電力供給を停止、原料及び希釈
ガス、ヒーター電力の供給を停止した。次いで、真空容
器1内、真空ポンプ13をパージし、装置内をN2ガス
で大気圧にした。
After a lapse of 6 hours, the supply of the RF power is stopped,
Next, the power supply to the filament 6 was stopped, and the supply of the raw material, the dilution gas, and the heater power was stopped. Next, the vacuum pump 13 in the vacuum vessel 1 was purged, and the inside of the apparatus was brought to atmospheric pressure with N 2 gas.

【0038】さらに、上記の工程を再度繰り返し、合計
で12時間の堆積膜形成後、大気開放した。
Further, the above steps were repeated again, and after forming a deposited film for a total of 12 hours, the film was opened to the atmosphere.

【0039】その後、堆積した非晶質シリコン膜の状態
を観察したが、副生成物の微粉体の付着もなく、良好な
膜ができているのが確認された。また、従来は成膜中に
排気弁に付着する微粉体により圧力変動が生じていた
が、その現象が見られなかった。さらに、排気ダクト壁
面に膜化した堆積物が付着した。また、フィラメント6
後方(ガスの流れの下流方向)の排気配管及び圧力調整
バルブ内面には、微粉体の付着が認められず、これらか
ら回収された微粉体の量はほぼ0gであった。
Thereafter, the state of the deposited amorphous silicon film was observed, and it was confirmed that a fine film was formed without adhering fine powder of by-products. Conventionally, pressure fluctuations were caused by fine powder adhering to the exhaust valve during film formation, but this phenomenon was not observed. Further, film-formed deposits adhered to the exhaust duct wall surface. In addition, filament 6
No fine powder adhered to the exhaust pipe and the inner surface of the pressure regulating valve at the rear (downstream direction of the gas flow), and the amount of the fine powder recovered from these was almost 0 g.

【0040】(実施例2)実施例1の条件で成膜時間を
30分として堆積膜を形成した。その後、堆積した非晶
質シリコン膜にアルミニウム電極を蒸着して、光暗導電
率比を測定し、膜特性評価を行った。膜質は、SN比
(σp/σd:光導電率を暗導電率で割った値)が2×1
5以上の良好な膜であることが確認された。
Example 2 A deposited film was formed under the same conditions as in Example 1 except that the film formation time was 30 minutes. Thereafter, an aluminum electrode was deposited on the deposited amorphous silicon film, the light-dark conductivity ratio was measured, and the film characteristics were evaluated. The film quality has an SN ratio (σ p / σ d : value obtained by dividing photoconductivity by dark conductivity) of 2 × 1.
It is 0 5 or more good film was confirmed.

【0041】(実施例3)フィラメント6と排気ダクト
4の壁面15a,15bとの間隔L1、L2をそれぞれ1
〜6cmの範囲で変化させて、プラズマCVD室3から
排気される未反応ガス及び副生成物の化学反応生成物の
堆積状態を確認した。装置構成は、上記L1、L2を可変
とし、成膜時間を3時間とする以外は実施例1と同様に
して堆積膜を形成した。結果を表1に示す。表中の◎○
△×の内容を以下に示す。副生成物の化学反応状況は目
視で判断した。
(Embodiment 3) The distances L 1 and L 2 between the filament 6 and the wall surfaces 15 a and 15 b of the exhaust duct 4 are each set to 1
The deposition state of the unreacted gas exhausted from the plasma CVD chamber 3 and the chemical reaction product of by-products was confirmed by changing the thickness in the range of about 6 cm. The deposited film was formed in the same manner as in Example 1 except that L 1 and L 2 were made variable and the film forming time was set to 3 hours. Table 1 shows the results. ◎ ○ in the table
The content of Δ × is shown below. The state of the chemical reaction of the by-product was visually determined.

【0042】[0042]

【表1】 [Table 1]

【0043】 ×:膜化なし、微粉体の付着、堆積あり △:膜化あり、微粉体の付着あり ○:膜化あり、微粉体の付着微量 ◎:膜化あり、微粉体の付着なし×: No film formation, fine powder adhesion and deposition △: Film formation, fine powder adhesion ○: Film formation, minute amount of fine powder adhesion ◎: Film formation, no fine powder adhesion

【0044】(実施例4)本発明における化学反応生成
物回収手段の位置による本発明の効果のレベルを確認す
るために、通常では用いない苛酷な条件で成膜を行っ
た。具体的には、SiH4ガス240sccm、希釈H2
ガス4800sccmの流量でRF電力350Wを投入
し、その他は実施例3と同様な条件で成膜を行った。そ
の結果を表2に示す。
(Example 4) In order to confirm the level of the effect of the present invention depending on the position of the chemical reaction product recovery means in the present invention, a film was formed under severe conditions which are not usually used. Specifically, 240 sccm of SiH 4 gas, diluted H 2 gas
A film was formed under the same conditions as in Example 3 except that RF power of 350 W was supplied at a flow rate of gas of 4800 sccm. Table 2 shows the results.

【0045】[0045]

【表2】 [Table 2]

【0046】表1,2の結果から見て、フィラメントを
用いた化学反応生起手段により排気ガス中の未反応ガス
及び副生成物を化学反応させ、その生成物を膜として堆
積捕集するためには、フィラメントと排気ダクト壁面の
距離を5cm以下にする必要があり、好ましくは3cm
以下、より好ましくは1cm以下であることがわかっ
た。
From the results shown in Tables 1 and 2, unreacted gas and by-products in the exhaust gas are chemically reacted by the chemical reaction generating means using the filament, and the products are deposited and collected as a film. Requires that the distance between the filament and the exhaust duct wall be 5 cm or less, preferably 3 cm
Below, it was found that it was more preferably 1 cm or less.

【0047】[0047]

【発明の効果】本発明によれば、処理室から排気された
未反応ガス及び副生成物の微粉体、特に排気手段内部に
堆積する微粉体を、処理室直後の排気経路内に設けた化
学反応生起手段と化学反応生成物回収手段との間を5c
m以下に構成して、膜及び高密度の固形物として捕集す
る。従って、本発明の処理装置においては、排気手段で
ある排気配管、バルブ、真空ポンプなどへの上記微粉体
の付着、堆積が防止され、排気コンダクタンスの低下や
コンダクタンスバルブ、真空ポンプの動作不良を改善す
ることができる。
According to the present invention, a fine powder of unreacted gas and by-products exhausted from the processing chamber, particularly a fine powder deposited inside the exhaust means, is provided in the exhaust path immediately after the processing chamber. 5c between the reaction generating means and the chemical reaction product collecting means
m and collected as a membrane and high-density solids. Therefore, in the processing apparatus of the present invention, the fine powder is prevented from adhering and accumulating to the exhaust pipes, valves, vacuum pumps, and the like serving as the exhaust means, thereby reducing the exhaust conductance and improving the operation failure of the conductance valve and the vacuum pump. can do.

【0048】また、従来の処理装置における問題点であ
った、排気手段に発生付着していた副生成物の微粉体の
処理室内への逆拡散も防止され、長時間にわたって最適
な処理条件を維持できるため、高品質な基体処理及び膜
処理を行うことができる。
In addition, the back-diffusion of fine powder of by-products generated and attached to the exhaust means into the processing chamber, which is a problem in the conventional processing apparatus, is also prevented, and the optimum processing conditions are maintained for a long time. Therefore, high-quality substrate processing and film processing can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の処理装置であるプラズマCVD装置の
一実施形態の模式的断面図である。
FIG. 1 is a schematic cross-sectional view of one embodiment of a plasma CVD apparatus which is a processing apparatus of the present invention.

【図2】図1の排気ダクトの部分拡大断面図である。FIG. 2 is a partially enlarged cross-sectional view of the exhaust duct of FIG.

【図3】本発明の実施例で用いた高融点金属フィラメン
トの形態を示す図である。
FIG. 3 is a view showing a form of a high melting point metal filament used in an example of the present invention.

【符号の説明】[Explanation of symbols]

1 真空容器 2 ガス供給手段 3 プラズマCVD室 4 排気ダクト 5 排気配管 6 高融点金属フィラメント 7 基板加熱ヒーター 8 プラズマCVD室加熱ヒーター 9 RF電源 10 基板ホルダー 11 圧力調整バルブ 12 ゲートバルブ 13 真空ポンプ 14 電力コントローラー 15a、15b 排気ダクト壁面 31 高融点金属フィラメント 32 支持体 DESCRIPTION OF SYMBOLS 1 Vacuum container 2 Gas supply means 3 Plasma CVD chamber 4 Exhaust duct 5 Exhaust pipe 6 High melting point metal filament 7 Substrate heater 8 Plasma CVD chamber heater 9 RF power supply 10 Substrate holder 11 Pressure control valve 12 Gate valve 13 Vacuum pump 14 Electric power Controller 15a, 15b Exhaust duct wall surface 31 High melting point metal filament 32 Support

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/31 H05H 1/46 A H05H 1/46 H01L 21/302 B (72)発明者 高井 康好 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 岡部 正太郎 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 幸田 勇蔵 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 芳里 直 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 金井 正博 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 Fターム(参考) 4K030 BA30 CA06 EA12 FA01 KA46 KA49 4K057 DA19 DA20 DD01 DM38 DM40 5F004 AA16 BD03 BD04 BD05 5F045 AA08 BB20 EG07 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 21/31 H05H 1/46 A H05H 1/46 H01L 21/302 B (72) Inventor Yasuyoshi Takai Tokyo 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Shotaro Okabe 3-30-2 Shimomaruko, Ota-ku, Tokyo Inside Canon Inc. (72) Yuzo Koda Shimomaruko, Ota-ku, Tokyo 3-30-2 Canon Inc. (72) Inventor Naoshi Yoshizato 3-30-2 Shimomaruko, Ota-ku, Tokyo Incorporated Canon Inc. (72) Inventor Masahiro Kanai 3-30 Shimomaruko, Ota-ku, Tokyo No. 2 Canon Inc. F term (reference) 4K030 BA30 CA06 EA12 FA01 KA46 KA49 4K057 DA19 DA20 DD01 DM38 DM40 5F004 AA16 BD03 BD04 BD05 5F045 AA08 BB20 EG07

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基体または膜を処理するための処理室と
該処理室を排気するための排気手段とを有する処理装置
であって、前記処理室と前記排気手段とを連絡する排気
経路中に、処理時の未反応性ガス及び副生成物の少なく
とも一方に化学反応を起こさせるための化学反応生起手
段を有し、該化学反応生起手段からの距離が5cm以内
の領域に、該化学反応生起手段により生成した化学反応
生成物の回収手段を有することを特徴とする処理装置。
1. A processing apparatus comprising: a processing chamber for processing a substrate or a film; and an exhaust unit for exhausting the processing chamber, wherein the exhaust unit communicates with the processing chamber and the exhaust unit. A chemical reaction generating means for causing a chemical reaction to at least one of the unreacted gas and the by-product at the time of the treatment, wherein the chemical reaction generating means is disposed in a region within a distance of 5 cm from the chemical reaction generating means. A processing apparatus comprising means for recovering a chemical reaction product generated by the means.
【請求項2】 前記回収手段が前記排気経路の壁面を兼
ねる請求項1記載の請求項1記載の処理装置。
2. The processing apparatus according to claim 1, wherein said collection means also serves as a wall surface of said exhaust path.
【請求項3】 前記処理装置がプラズマCVD法により
基体上に堆積膜を形成する装置である請求項1記載の処
理装置。
3. The processing apparatus according to claim 1, wherein said processing apparatus is an apparatus for forming a deposited film on a substrate by a plasma CVD method.
【請求項4】 前記化学反応生起手段が、少なくとも高
融点金属フィラメントを有する請求項1乃至3に記載の
処理装置。
4. The processing apparatus according to claim 1, wherein said chemical reaction generating means has at least a high melting point metal filament.
【請求項5】 前記高融点金属フィラメントが、タング
ステン、モリブデン、レニウムのうちの少なくとも一つ
を含有する請求項1乃至4に記載の処理装置。
5. The processing apparatus according to claim 1, wherein the high melting point metal filament contains at least one of tungsten, molybdenum, and rhenium.
JP11110239A 1998-04-20 1999-04-19 Treating device Pending JP2000303181A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP11110239A JP2000303181A (en) 1999-04-19 1999-04-19 Treating device
US09/294,367 US20030164225A1 (en) 1998-04-20 1999-04-20 Processing apparatus, exhaust processing process and plasma processing
US10/776,173 US20040161533A1 (en) 1998-04-20 2004-02-12 Processing apparatus, exhaust processing process and plasma processing process
US11/776,265 US20080014345A1 (en) 1998-04-20 2007-07-11 Processing apparatus, exhaust processing process and plasma processing process
US12/326,238 US20090084500A1 (en) 1998-04-20 2008-12-02 Processing apparatus, exhaust processing process and plasma processing process
US12/327,428 US20090095420A1 (en) 1998-04-20 2008-12-03 Processing apparatus, exhaust processing process and plasma processing process
US12/327,403 US20090114155A1 (en) 1998-04-20 2008-12-03 Processing apparatus, exhaust processing process and plasma processing process
US12/327,223 US20090145555A1 (en) 1998-04-20 2008-12-03 Processing apparatus, exhaust processing process and plasma processing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11110239A JP2000303181A (en) 1999-04-19 1999-04-19 Treating device

Publications (1)

Publication Number Publication Date
JP2000303181A true JP2000303181A (en) 2000-10-31

Family

ID=14530645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11110239A Pending JP2000303181A (en) 1998-04-20 1999-04-19 Treating device

Country Status (1)

Country Link
JP (1) JP2000303181A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100702760B1 (en) * 1999-12-24 2007-04-03 주식회사 하이닉스반도체 Apparatus for metal deposition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100702760B1 (en) * 1999-12-24 2007-04-03 주식회사 하이닉스반도체 Apparatus for metal deposition

Similar Documents

Publication Publication Date Title
KR100272146B1 (en) Method of manafacturing semiconductor device, apparatus of manufacturing the same, and method of cleaning the same
KR0132375B1 (en) Thin film forming method
EP1071834B1 (en) Method of passivating a cvd chamber
TWI399809B (en) Method of manufacturing semiconductor device,cleaning method, and substrate processing apparatus
EP0134645B1 (en) Method of forming thin film
US6305390B1 (en) Method for cleaning inside of chamber using RF plasma
JP2002518601A (en) Substrate support device having purge gas channel and pump system
KR100606398B1 (en) Film formation method for semiconductor processing
EP0666339A1 (en) Method and apparatus for cleaning a throttle valve
US11557464B2 (en) Semiconductor chamber coatings and processes
WO2006088562A2 (en) A method and system for improved delivery of a precursor vapor to a processing zone
WO2004021415A1 (en) Treating apparatus and method of treating
JP4126219B2 (en) Deposition method
JPH08124866A (en) Vacuum treating apparatus and method thereof
JPH11150073A (en) Thin-film forming equipment
EP1154036A1 (en) Gas reactions to eliminate contaminates in a CVD chamber
US9530627B2 (en) Method for cleaning titanium alloy deposition
JP2000303181A (en) Treating device
JP2000303177A (en) Treatment of exhaust gas
US6606802B2 (en) Cleaning efficiency improvement in a high density plasma process chamber using thermally hot gas
JP2008121054A (en) Method for cleaning vacuum treatment apparatus, and vacuum treatment apparatus
JP2010147201A (en) Substrate processing device
KR100743276B1 (en) Low-pressure apparatus and pressure control valve
US7972961B2 (en) Purge step-controlled sequence of processing semiconductor wafers
JP3279459B2 (en) Single wafer processing apparatus and gas supply control method for single wafer processing apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050412