JP2000302800A - Sugar chain calcitonin derivative - Google Patents

Sugar chain calcitonin derivative

Info

Publication number
JP2000302800A
JP2000302800A JP11115369A JP11536999A JP2000302800A JP 2000302800 A JP2000302800 A JP 2000302800A JP 11115369 A JP11115369 A JP 11115369A JP 11536999 A JP11536999 A JP 11536999A JP 2000302800 A JP2000302800 A JP 2000302800A
Authority
JP
Japan
Prior art keywords
sugar chain
glcnac
man
derivative
calcitonin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11115369A
Other languages
Japanese (ja)
Inventor
Katsuji Haneda
羽田勝二
Eiichi Yoshino
吉野栄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noguchi Institute
Original Assignee
Noguchi Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noguchi Institute filed Critical Noguchi Institute
Priority to JP11115369A priority Critical patent/JP2000302800A/en
Publication of JP2000302800A publication Critical patent/JP2000302800A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain the subject new compound useful as a medicine by replacing 26-position aspartic acid to an N-bond type sugar chain-containing asparagine residue. SOLUTION: This calcitonin derivative is obtained by replacing 26-position aspartic acid to an N-bond type sugar chain-containing asparagine residue. The derivative is preferably an eel calcitonin derivative, more preferably an eel calcitonin derivative obtained by replacing an 26-position aspartic acid of the formula I [R is (NeuAc-Gal-GlcNAc-Man)2-Man-G1cNAc, (Gal-GlcNac- Man)2-Man-GlcNac or Man6-GlcNac (NeuAc is sialic acid); Gal is D-galactose; GlcNAc is N-acetyl-D-glucosamine; and Man is D-mannose] to an N-bond type sugar chain-containing asparagine residue. The derivative can be synthesized by subjecting a saccharide-eel calcitonin derivative of formula II to sugar chain transfer reaction of enzyme endoglycosidase.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は糖鎖を有する新規カ
ルシトニン誘導体とその製法に関する。本発明は医薬に
応用される。
[0001] The present invention relates to a novel calcitonin derivative having a sugar chain and a method for producing the same. The present invention is applied to medicine.

【0002】[0002]

【従来の技術】32残基のアミノ酸から成るペプチドホル
モンのカルシトニン(CTと略)は哺乳動物のカルシウム
調節ホルモンとして機能し、骨吸収を抑制することか
ら、ヒト、ブタ、サケ、ウナギ等のカルシトニンもしく
はその誘導体が骨粗鬆症等の治療薬として用いられてい
る。
2. Description of the Related Art Peptide hormone calcitonin (abbreviated as CT) consisting of 32 amino acids functions as a calcium-regulating hormone in mammals and suppresses bone resorption, so that calcitonin in humans, pigs, salmon, eels, etc. Alternatively, a derivative thereof has been used as a therapeutic agent for osteoporosis and the like.

【0003】生理活性ペプチドを医薬として用いる場
合、体液中の分解酵素による分解等によりその有効性が
著しく損なわれることが多く、また途中で吸収されて標
的臓器に到達しない場合があり、これらの問題点の克服
が重要な課題となる。
[0003] When a physiologically active peptide is used as a drug, its effectiveness is often significantly impaired due to decomposition by a decomposing enzyme in a body fluid, and it is sometimes absorbed halfway and does not reach a target organ. Overcoming the points is an important issue.

【0004】複合糖質は糖タンパク質や糖脂質の形で細
胞や体液中に存在し、糖鎖が細胞の基質認識や細胞−細
胞間の認識等に深く関っている。また、糖鎖は生体内に
おける生理活性ペプチドやタンパク質の吸収分解や安定
性等に関係している。
[0004] Glycoconjugates exist in cells and body fluids in the form of glycoproteins and glycolipids, and sugar chains are deeply involved in cell substrate recognition and cell-cell recognition. In addition, sugar chains are involved in the absorption and decomposition and stability of physiologically active peptides and proteins in vivo.

【0005】ペプチドホルモン等の生理活性ペプチド中
にはヒト絨毛性性線刺激ホルモンhCGのように糖鎖を持
つものが知られ、生理機能の調節や安定性にその役割を
果たしている。
[0005] Among physiologically active peptides such as peptide hormones, those having sugar chains such as human chorionic stimulating hormone hCG are known, and play a role in regulation and stability of physiological functions.

【0006】一方、カルシトニンのように糖鎖を持たな
い生理活性ペプチドに糖鎖を付加することにより生理機
能の改善や安定性の強化に役立つことが期待される。
On the other hand, adding a sugar chain to a physiologically active peptide having no sugar chain such as calcitonin is expected to be useful for improving physiological functions and enhancing stability.

【0007】元々糖鎖を持たない生理活性ペプチドに糖
鎖を付加することは生物学的には不可能である。しかし
ながら、羽田ら[カーボハイドレート リサーチ(Carb
ohydr. Res.)、第292巻、第61〜70頁(1996)]は先
に、糖ペプチドの化学合成と酵素エンドグリコシダーゼ
の糖鎖転移反応に基づく複合糖ペプチドの化学−酵素的
合成法を報告した。
[0007] It is not biologically possible to add a sugar chain to a physiologically active peptide originally having no sugar chain. However, Haneda et al. [Carbohydrate Research (Carb
Res.), Vol. 292, pp. 61-70 (1996)] previously described a method for the chemical-enzymatic synthesis of complex glycopeptides based on the glycosylation of glycopeptides and the transglycosylation reaction of the enzyme endoglycosidase. reported.

【0008】ペプチドのL-アスパラギン(Asn)残基にN
-アセチル-D-グルコサミン(GlcNAc)を付加した糖ペプ
チドは、例えば、稲津ら[ペプチドケミストリー1995
(Peptide Chemistry 1995)、第61〜64頁(1996)]の
報告したように糖水酸基無保護のまま固相法により合成
される。一方、この糖ペプチドのGlcNAc残基に、例えば
ムコール ヒエマリス由来のエンド-β-N-アセチルグコ
サミニダーゼ(エンド-M)酵素の糖鎖転移反応により天
然糖鎖を付加させて複合糖ペプチドを合成出来る。
[0008] The L-asparagine (Asn) residue of the peptide has N
Glycopeptides to which -acetyl-D-glucosamine (GlcNAc) has been added are described in, for example, Inazu et al. [Peptide Chemistry 1995
(Peptide Chemistry 1995), pp. 61-64 (1996)], and synthesized by a solid phase method without protection of sugar hydroxyl groups. On the other hand, a natural sugar chain is added to the GlcNAc residue of this glycopeptide by a sugar chain transfer reaction of, for example, an endo-β-N-acetylglucosaminidase (endo-M) enzyme derived from Mucor hemisalis to form a complex glycopeptide. Can be synthesized.

【0009】この手法を用いて、糖鎖を持たないカルシ
トニン例えばウナギカルシトニンの3位Asn残基に水野
ら[テトラヘドロン レター(Tetrahedron Lett.)、
第39巻、第55〜58頁(1998)]はGlcNAcを導入し、次い
で羽田ら[バイオオーガニックメディシナル ケミスト
リー レター(Bioorg. Med. Chem. Lett.)、第8巻、
第1303〜1306頁(1998)]はN-結合型糖鎖を導入したウ
ナギカルシトニン誘導体を合成した。
By using this technique, Mizuno et al. [Tetrahedron Lett., Et al.] Added a 3 position Asn residue of calcitonin having no sugar chain such as eel calcitonin.
39, pp. 55-58 (1998)] introduces GlcNAc, followed by Haneda et al. [Bioorganic Medicinal Chemistry Letter (Bioorg. Med. Chem. Lett.), Vol.
1303-1306 (1998)] synthesized an eel calcitonin derivative into which an N-linked sugar chain was introduced.

【0010】これら糖および糖鎖を付加したウナギカル
シトニンは生体内に於けるホルモン(カルシウム代謝調
節)活性がカルシトニンそのものと同等かより強化され
ることが認められている。
[0010] It has been recognized that eel calcitonin to which these sugars and sugar chains are added has a hormone (calcium metabolism regulation) activity in a living body that is equal to or stronger than calcitonin itself.

【0011】[0011]

【発明が解決しようとする課題】ウナギカルシトニンの
26位のアミノ酸はL-アスパラギン酸(Asp)である。し
かし、サケのカルシトニンの26位のアミノ酸はAsnであ
ることから、ウナギカルシトニンの26位アミノ酸をAsn
に換えても活性に大きな変化のないことが予想される。
SUMMARY OF THE INVENTION The eel calcitonin
The amino acid at position 26 is L-aspartic acid (Asp). However, since the amino acid at position 26 of salmon calcitonin is Asn, the amino acid at position 26 of eel calcitonin is changed to Asn.
It is expected that there will be no significant change in activity even if it is changed to.

【0012】26位AspをAsnに代えた誘導体は通常のペプ
チドの固相合成法により合成され、ウナギカルシトニン
の26位AspをAsnに代えてもホルモン活性には大きな変化
がないことが判った。
A derivative in which Asp at position 26 was replaced by Asn was synthesized by a conventional solid phase synthesis method of a peptide, and it was found that there was no significant change in hormonal activity even when Asp at position 26 in eel calcitonin was replaced with Asn.

【0013】26位AspをAsnに代えることにより、先に述
べた化学−酵素法を用いてこの26位Asn残基への糖およ
び糖鎖の導入が可能となる。これら糖および糖鎖を導入
したカルシトニン誘導体は活性の強化や体内動態の変化
が期待される。
By replacing Asp at position 26 with Asn, sugars and sugar chains can be introduced into the Asn residue at position 26 using the above-described chemo-enzymatic method. The calcitonin derivative into which these sugars and sugar chains are introduced is expected to have enhanced activity and change in pharmacokinetics.

【0014】本発明の目的はカルシトニンの26位Asp残
基をN-結合型糖鎖を有するAsn残基に置換した新規な糖
鎖−カルシトニン誘導体を提供するものである。
An object of the present invention is to provide a novel sugar chain-calcitonin derivative in which the Asp residue at position 26 of calcitonin is substituted by an Asn residue having an N-linked sugar chain.

【0015】[0015]

【課題を解決するための手段】26位Asp残基をN-結合型
糖鎖を有するAsn残基に置換した新規なカルシトニン誘
導体、例えば(化1)に示すウナギカルシトニン誘導体
は、26位Asp残基をN-アセチル-D-グルコサミニルアスパ
ラギン [Asn(GlcNAc)] 残基で置換した式(化2)に示
す糖−ウナギカルシトニン誘導体に、酵素エンドグリコ
シダーゼの糖鎖転移反応により天然由来のN-結合型糖鎖
を付加させることにより合成される。
SUMMARY OF THE INVENTION A novel calcitonin derivative in which the Asp residue at position 26 is substituted with an Asn residue having an N-linked sugar chain, for example, an eel calcitonin derivative shown in (Chemical Formula 1), A sugar-eel calcitonin derivative represented by the formula (Formula 2) in which the group is substituted with an N-acetyl-D-glucosaminyl asparagine [Asn (GlcNAc)] residue is converted into a naturally occurring N by a sugar chain transfer reaction of an enzyme endoglycosidase. -It is synthesized by adding a linked sugar chain.

【化2】 Embedded image

【0016】[0016]

【発明の実施の形態】ウナギカルシトニンの26位アスパ
ラギン酸をAsn(GlcNAc)に置換した誘導体の合成はいか
なる方法によってもよい。例えば稲津ら[特開平10-147
598 (1998)]がウナギカルシトニンの3位AsnにGlcNAc
を導入した誘導体の合成に用いた方法に準じた方法を用
いることも出来るし、豊島ら[ペプチドケミストリー 1
996(Peptide Chemistry 1996)、第25〜28頁(1997)]
の開発した方法に準じて合成することも出来る。
BEST MODE FOR CARRYING OUT THE INVENTION The synthesis of a derivative of eel calcitonin obtained by substituting aspartic acid at position 26 with Asn (GlcNAc) may be carried out by any method. For example, Inazu et al.
598 (1998)] found that GlcNAc was added to Asn at position 3 of eel calcitonin.
Can be used according to the method used for the synthesis of the derivative into which is introduced. Toshima et al. [Peptide chemistry 1
996 (Peptide Chemistry 1996), pp. 25-28 (1997)]
It can also be synthesized according to the method developed by Suzuki.

【0017】このGlcNAc残基を有する糖ペプチドを受容
体として、糖鎖供与体からのエンドグリコシダーゼによ
る糖鎖転移付加反応を次の手順で行う。
Using the glycopeptide having a GlcNAc residue as an acceptor, a sugar chain transfer addition reaction with an endoglycosidase from a sugar chain donor is performed in the following procedure.

【0018】本発明に用いるエンドグリコシダーゼとし
ては、エンド-β-N-アセチルグルコサミニダーゼ(EC
3.2.1.96)であり、例えばムコール ヒエマリス(Muco
r hiemalis)由来のエンド-M等が用いられる。該酵素は
天然糖タンパク質のタンパク質分解酵素処理により調製
される[R-GlcNAc-Asn]で示される糖鎖供与体のアセチル
キトビオース(GlcNAc-GlcNAc)の間で切られたRで示さ
れる糖鎖部分を、例えば(化2)で示されるウナギカル
シトニンの糖誘導体を受容体としてそのGlcNAc部分に転
移させて、(化1)に示される糖鎖を有するカルシトニ
ン誘導体が合成される。
The endoglycosidase used in the present invention includes endo-β-N-acetylglucosaminidase (EC
3.2.1.96), for example, Mucourt Himaris (Muco
r hiemalis) is used. The enzyme is a sugar represented by R cut between acetylchitobiose (GlcNAc-GlcNAc) of a sugar chain donor represented by [R-GlcNAc-Asn] prepared by treating a natural glycoprotein with a protease. The chain portion is transferred to the GlcNAc portion using, for example, a sugar derivative of eel calcitonin represented by (Chem. 2) as an acceptor, and a calcitonin derivative having a sugar chain represented by (Chem. 1) is synthesized.

【0019】[R-GlcNAc-Asn]で示される糖鎖供与体とし
ては、複合型糖鎖、高マンノース型糖鎖、あるいは混成
型糖鎖を用いることにより、各々に対応する目的物(化
1)が得られる。
As the sugar chain donor represented by [R-GlcNAc-Asn], a complex type sugar chain, a high mannose type sugar chain, or a mixed type sugar chain is used, so that the corresponding target compound (Chem. 1) ) Is obtained.

【0020】複合型糖鎖としては、例えば、Rが(NeuAc-
Gal-GlcNAc-Man)2-Man-GlcNAcであるシアル酸を有する
複合型糖鎖はヒトトランスフェリンあるいは卵黄から調
製される。酵素シアリダーゼによりシアル酸を外すとR
が (Gal-GlcNAc-Man)2-Man-GlcNAc であるアシアロ複
合型糖鎖が調製される。RがMan6-GlcNAcで示されるマン
ノース6個からなる高マンノース型糖鎖は卵白アルブミ
ンから調製される。酵素的あるいは化学的に修飾された
糖鎖や化学合成された糖鎖も用いることが出来る。
As a complex type sugar chain, for example, when R is (NeuAc-
The complex type sugar chain having sialic acid which is (Gal-GlcNAc-Man) 2 -Man-GlcNAc is prepared from human transferrin or egg yolk. When sialic acid is removed by the enzyme sialidase, R
(Gal-GlcNAc-Man) 2 -Man-GlcNAc is prepared asialo complex type sugar chain. A high-mannose type sugar chain consisting of six mannoses whose R is represented by Man 6 -GlcNAc is prepared from ovalbumin. Enzymatically or chemically modified sugar chains or chemically synthesized sugar chains can also be used.

【0021】本発明の反応は、糖鎖供与体、糖鎖受容体
である糖カルシトニン誘導体および酵素エンドグリコシ
ダーゼを緩衝液中で混合することにより行われる。反応
液組成の一例を示すと、糖鎖供与体 25mM、糖鎖受容体
10mM、酵素エンド-M 30mU/ml、pH 6.25, 60mMリン酸緩
衝液であり、37℃、1乃至2時間反応が行われる。
The reaction of the present invention is carried out by mixing a sugar chain donor, a sugar calcitonin derivative which is a sugar chain acceptor, and an enzyme endoglycosidase in a buffer. An example of the composition of the reaction solution is as follows: sugar chain donor 25 mM, sugar chain acceptor
10 mM, enzyme endo-M, 30 mU / ml, pH 6.25, 60 mM phosphate buffer, and the reaction is performed at 37 ° C. for 1 to 2 hours.

【0022】酵素反応液中の反応精製物の分析はC18の
逆相系(ODS)カラムを用い、0.1%トリフルオロ酢酸(T
FA)を含む水−アセトニトリル系溶液を展開溶媒とする
高速液体クロマトグラフィー(HPLC)により210 nmの紫
外末端吸収測定により行われる。
The reaction product in the enzyme reaction solution was analyzed using a C18 reverse phase system (ODS) column and 0.1% trifluoroacetic acid (TDS).
This is carried out by high-performance liquid chromatography (HPLC) using a water-acetonitrile solution containing FA) as a developing solvent by measuring the ultraviolet terminal absorption at 210 nm.

【0023】生成した糖鎖カルシトニンは、通常、ODS
カラムを用いたHPLCにより分離した後、凍結乾燥するこ
とにより単離される。
The sugar chain calcitonin produced is usually ODS
It is isolated by lyophilization after separation by HPLC using a column.

【0024】[0024]

【実施例】以下に実施例をあげて本発明を具体的に説明
するが、本発明はこれに限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto.

【0025】[0025]

【実施例1】26位Aspをシアロ複合型糖鎖を有するAsn残
基に置換したウナギカルシトニン誘導体の合成: (1)26位AspをAsn(GlcNAc)残基に置換した(化2)に
示すウナギカルシトニン誘導体 [Asn(GlcNAc)26]-CTの
調製:豊島ら[ペプチドケミストリー 1996(Peptide C
hemistry 1996)、第25〜28頁(1997)]の方法に従い、
固相法Bocストラテジーによって合成した。HPLC[ODS
(YMC Pak ODS-AM, φ4.6x150mm)、展開溶媒0.1% トリフ
ルオロ酢酸(TFA)含有20〜70%アセトニトリル(0〜40
分)、流速1.2ml/分]で220nmの吸収により分析する
と、目的物は保持時間14.3分のピークとして検出され
た。MALDI-TOFMS分析で、m/z [M+H]+ 3617.4に主イオン
ピークが認められ、式(化2)に示す[Asn(GlcNAc)26]-
CT (分子式 C154H255O51N45S2、分子量3617.1)である
ことが確認された。
Example 1 Synthesis of an eel calcitonin derivative in which Asp at position 26 was substituted with an Asn residue having a sialo complex type sugar chain: (1) Asp (position 2) was substituted with Asn (GlcNAc) residue Preparation of eel calcitonin derivative [Asn (GlcNAc) 26 ] -CT: Toshima et al. [Peptide Chemistry 1996 (Peptide C
hemistry 1996), pp. 25-28 (1997)]
It was synthesized by the solid phase Boc strategy. HPLC [ODS
(YMC Pak ODS-AM, φ4.6x150mm), developing solvent 0.1% trifluoroacetic acid (TFA) containing 20-70% acetonitrile (0-40
) At a flow rate of 1.2 ml / min], and the target substance was detected as a peak with a retention time of 14.3 minutes. In MALDI-TOFMS analysis, a main ion peak was observed at m / z [M + H] + 3617.4, and [Asn (GlcNAc) 26 ]-
CT (molecular formula C 154 H 255 O 51 N 45 S 2 , molecular weight 3617.1) was confirmed.

【0026】(2)糖鎖供与体の調製:卵黄から瀬古ら
[バイオキミカ バイオフィジカ アクタ(Biochim. B
iophys. Acta)、第1335巻、第23〜32頁(1997)]によ
り調製したシアロ複合型糖鎖を有する糖ペプチドSGPを
プロナーゼ処理後、セファデックスG-25ゲルろ過により
ペプチド部分をAsn残基のみにしたシアロ複合型糖アミ
ノ酸SGN [(NeuAc-Gal-GlcNAc-Man)2-Man-GlcNAc2-Asn
(分子量2338)]を調製した。
(2) Preparation of Sugar Chain Donor: Egg yolk to Seki et al. [Biochimica Bacteria Acta (Biochim. B)
Acta), Vol. 1335, pp. 23-32 (1997)], treating the glycopeptide SGP having a sialo complex type sugar chain with pronase, and then filtering the peptide portion with Asn residues by Sephadex G-25 gel filtration. The only sialo complex type sugar amino acid SGN [(NeuAc-Gal-GlcNAc-Man) 2 -Man-GlcNAc 2 -Asn
(Molecular weight 2338)].

【0027】(3)糖鎖転移反応:シアロ複合型糖アミ
ノ酸SGN 25mM、(化2)に示す[Asn(GlcNAc)26]-CT 10m
M、60mM pH6.25リン酸緩衝液、Mucor hiemalisの培養液
から門脇ら[ジャーナル オブ バイオケミストリー
(J. Biochem.)、第110巻、第17〜21頁(1991)]の方
法により精製したエンド-M酵素 30mU/mlを含む反応液40
μlを37℃、1時間反応させた。等量の1% 冷TFA溶液を
加えて反応を停止した後、反応生成物をHPLC[ODS (Mig
htysil RP-18, φ6 x 250mm、関東化学)、展開溶媒0.1%
TFA含有30〜35%アセトニトリル(0〜40分)、流速1.2m
l/分]で210nmの紫外吸収により分析した。シアロ複合
型等アミノ酸SGNから糖鎖受容体[Asn(GlcNAc)26]-CT へ
の糖鎖転移反応生成物がHPLC分析の保持時間 30.1分
(糖鎖受容体[Asn(GlcNAc)26]-CT、37.1分)のピークと
して検出され、その反応収率(対糖鎖受容体、モル収
率)は 15.0%であった。
(3) Sugar chain transfer reaction: sialo-complex type sugar amino acid SGN 25 mM, [Asn (GlcNAc) 26 ] -CT 10 m shown in Chemical formula 2
M, 60 mM pH6.25 phosphate buffer, endopurified from the culture of Mucor hiemalis by the method of Kadowaki et al. [Journal of Biochemistry (J. Biochem.), Vol. 110, pp. 17-21 (1991)] Reaction solution 40 containing -m enzyme 30 mU / ml
μl was reacted at 37 ° C. for 1 hour. After the reaction was stopped by adding an equal volume of cold 1% TFA solution, the reaction product was subjected to HPLC [ODS (Mig
htysil RP-18, φ6 x 250mm, Kanto Chemical), developing solvent 0.1%
30-35% acetonitrile containing TFA (0-40 minutes), flow rate 1.2m
l / min] at 210 nm. Glycosyltransfer reaction product from amino acid SGN such as sialo complex type to sugar chain receptor [Asn (GlcNAc) 26 ] -CT has a retention time of HPLC analysis of 30.1 minutes (glycan receptor [Asn (GlcNAc) 26 ] -CT , 37.1 min), and the reaction yield (based on sugar chain acceptor, molar yield) was 15.0%.

【0028】(4)反応生成物の単離と同定:糖鎖転移
反応生成物に相当するHPLC分析のピーク物質をHPLC分取
により単離した。MALDI TOF-MS分析の結果、m/z [M-H]-
5619.8に主イオンピークが認められ、更にシアリダー
ゼ処理を行うと主イオンピークはアシアロ体に相当する
m/z値に移行し、 [(NeuAc-Gal-GlcNAc-Man)2-Man-GlcNA
c2]からなるジシアロ2本鎖複合型糖鎖を有するカルシ
トニン誘導体[C230H378O1 07N50S2、分子量5619.9]であ
ることが確認された。
(4) Isolation and identification of reaction product: A peak substance in HPLC analysis corresponding to a sugar chain transfer reaction product was isolated by HPLC fractionation. MALDI TOF-MS analysis result, m / z [MH] -
A main ion peak was recognized at 5619.8, and the main ion peak corresponded to the asialo form when further treated with sialidase.
Move to m / z value, ((NeuAc-Gal-GlcNAc-Man) 2 -Man-GlcNA
calcitonin derivative [C 230 H 378 O 1 07 N 50 S 2 having made of c 2] disialo double stranded complex type sugar chain, it was confirmed that the molecular weight 5619.9.

【0029】[0029]

【実施例2】26位Aspをアシアロ複合型糖鎖を有するAsn
残基に置換したウナギカルシトニン誘導体の合成:糖鎖
供与体として、実施例1で調製した卵黄由来シアロ複合
糖アミノ酸SGNを更にシアリダーゼ処理、セファデック
スG-25ゲルろ過して調製したアシアロ複合糖アミノ酸AS
GN [(Gal-GlcNAc-Man)2-Man-GlcNAc2-Asn(分子量175
6)]を用い、実施例1と同一の反応条件で反応させた。
同一のHPLC分析条件で、アシアロ複合型糖アミノ酸ASGN
から糖鎖受容体[Asn(GlcNAc)26]-CT への糖鎖転移反応
生成物がHPLC分析の保持時間30.6分(糖鎖受容体[Asn(G
lcNAc)26]-CT、37.1分)のピークとして検出され、その
反応収率(対糖鎖受容体、モル収率)は11.2%であっ
た。糖鎖転移反応生成物に相当するHPLC分析のピーク物
質をHPLC分取により単離し、MALDI TOF-MS分析の結果、
m/z [M+H]+ 5035.7に主イオンピークが認められ、[(Gal
-GlcNAc-Man)2-Man-GlcNAc2]からなるアシアロ複合型糖
鎖を有するカルシトニン誘導体[C208H344O91N48S2、分
子量5037.4]であることが確認された。
Example 2 Asn having an asialo complex type sugar chain at Asp 26
Synthesis of Eel Calcitonin Derivative Substituted at Residue: Asialoglycosaccharide Amino Acid Prepared by Further Treating Egg Yolk-Derived Sialoglycosaccharide SGN Prepared in Example 1 with Sialidase and Sephadex G-25 Gel Filtration as Sugar Chain Donor AS
GN [(Gal-GlcNAc-Man) 2 -Man-GlcNAc 2 -Asn (molecular weight 175
6)], and reacted under the same reaction conditions as in Example 1.
Under the same HPLC analysis conditions, asialo complex type sugar amino acid ASGN
Glycosyltransfer reaction product from the glycan receptor [Asn (GlcNAc) 26 ] -CT to the glycan receptor [Asn (GlcNAc) 26 ] -CT
lcNAc) 26 ] -CT, 37.1 min), and its reaction yield (to sugar chain acceptor, molar yield) was 11.2%. The peak substance of HPLC analysis corresponding to the transglycosylation reaction product was isolated by HPLC fractionation, and as a result of MALDI TOF-MS analysis,
A main ion peak was observed at m / z [M + H] + 5035.7, and [(Gal
-GlcNAc-Man) 2 -Man-GlcNAc 2] calcitonin derivative having asialo complex type sugar chain consisting of [C 208 H 344 O 91 N 48 S 2, it was confirmed that the molecular weight 5037.4.

【0030】26位Aspを高マンノース型糖鎖を有するAsn
残基に置換したウナギカルシトニン誘導体の合成: 糖
鎖供与体として、卵白アルブミンをプロナーゼ処理、セ
ファデックスG-25ゲルろ過、更にDowex 50イオン交換ク
ロマトグラフィーにより分離精製したMan6個からなる
高マンノース型糖アミノ酸M6GN [Man6-GlcNac2-Asn(分
子量1511)]を用い、実施例1と同一の反応条件で反応
させた。同一のHPLC分析条件で、HPLC分析したところ、
高マンノース型糖アミノ酸M6GNから糖鎖受容体[Asn(Glc
NAc)26]-CT への糖鎖転移反応生成物がHPLC分析の保持
時間31.8分のピークとして検出され、その反応収率(対
糖鎖受容体、モル収率)は3.9%であった。糖鎖転移反
応生成物に相当するHPLC分析のピーク物質をHPLC分取に
より単離し、MALDI TOF-MS分析の結果、m/z [M+H]+ 479
5.0に主イオンピークが認められ、[Man6-GlcNAc2]から
なる高マンノース型糖鎖を有するカルシトニン誘導体[C
19 8H328O86N46S2、分子量4793.2]であることが確認され
た。
Asp having a high mannose type sugar chain at Asp at position 26
Synthesis of Eel Calcitonin Derivatives Substituted with Residues: As a sugar chain donor, ovalbumin is treated with pronase, sephadex G-25 gel filtration, and further purified by Dowex 50 ion exchange chromatography. The reaction was carried out using the amino acid M 6 GN [Man 6 -GlcNac 2 -Asn (molecular weight: 1511)] under the same reaction conditions as in Example 1. Under the same HPLC analysis conditions, HPLC analysis
Sugar chain receptor from high-mannose type sugar amino acid M 6 GN [Asn (Glc
The transglycosylation reaction product to NAc) 26 ] -CT was detected as a peak at a retention time of 31.8 minutes in HPLC analysis, and the reaction yield (vs. sugar chain receptor, molar yield) was 3.9%. The peak substance of the HPLC analysis corresponding to the transglycosylation reaction product was isolated by HPLC fractionation, and as a result of MALDI TOF-MS analysis, m / z [M + H] +
A main ion peak was observed at 5.0, and a calcitonin derivative [C6-Clc having a high mannose-type sugar chain consisting of [Man6-GlcNAc2]
19 8 H 328 O 86 N 46 S 2, it was confirmed that the molecular weight 4793.2.

【0031】[0031]

【発明の効果】生理活性ペプチドカルシトニンの構成ア
ミノ酸を糖鎖導入可能なアミノ酸に変換して糖鎖を導入
した誘導体を合成することにより、血液中や体内での安
定性の向上や薬理作用の改善された有効性の高いカルシ
トニン誘導体を提供することが出来、医薬として用いる
場合に有効である。
EFFECT OF THE INVENTION By converting a constituent amino acid of the physiologically active peptide calcitonin into an amino acid capable of introducing a sugar chain and synthesizing a derivative having a sugar chain introduced therein, the stability in blood or the body is improved and the pharmacological action is improved. It is possible to provide a highly effective calcitonin derivative, which is effective when used as a medicine.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】26位アスパラギン酸をN-結合型糖鎖を有す
るアスパラギン残基に置換したカルシトニン誘導体。
1. A calcitonin derivative in which aspartic acid at position 26 is substituted with an asparagine residue having an N-linked sugar chain.
【請求項2】26位アスパラギン酸をN-結合型糖鎖を有す
るアスパラギン残基に置換したウナギカルシトニン誘導
体。
2. An eel calcitonin derivative in which aspartic acid at position 26 is substituted with an asparagine residue having an N-linked sugar chain.
【請求項3】下記式(化1)で示される26位アスパラギ
ン酸をN-結合型糖鎖を有するアスパラギン残基に置換し
たウナギカルシトニン誘導体。 【化1】 式中、Rは(NeuAc-Gal-GlcNAc-Man)2-Man-GlcNAc、(Gal-
GlcNAc-Man)2-Man-GlcNAcあるいはMan6-GlcNAcである
(NeuAcはシアル酸、GalはD-ガラクトース、GlcNAcはN-
アセチル-D-グルコサミン、ManはD-マンノースを示
す)。
3. An eel calcitonin derivative in which aspartic acid at position 26 represented by the following formula (Formula 1) is substituted by an asparagine residue having an N-linked sugar chain. Embedded image In the formula, R is (NeuAc-Gal-GlcNAc-Man) 2 -Man-GlcNAc, (Gal-
GlcNAc-Man) 2 -Man-GlcNAc or Man 6 -GlcNAc (NeuAc is sialic acid, Gal is D-galactose, GlcNAc is N-
Acetyl-D-glucosamine, Man indicates D-mannose).
【請求項4】エンドグリコシダーゼの存在下、26位アス
パラギン酸をN-アセチル-D-グルコサミニルアスパラギ
ン残基に置換したカルシトニン誘導体に複合糖質の糖鎖
を転移させることにより、26位アスパラギン残基にN-結
合型糖鎖の付加したカルシトニン誘導体を製造する方
法。
4. The method according to claim 4, wherein the sugar chain of the complex saccharide is transferred to a calcitonin derivative in which aspartic acid at position 26 is substituted with an N-acetyl-D-glucosaminyl asparagine residue in the presence of endoglycosidase. A method for producing a calcitonin derivative having an N-linked sugar chain added to a group.
JP11115369A 1999-04-22 1999-04-22 Sugar chain calcitonin derivative Pending JP2000302800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11115369A JP2000302800A (en) 1999-04-22 1999-04-22 Sugar chain calcitonin derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11115369A JP2000302800A (en) 1999-04-22 1999-04-22 Sugar chain calcitonin derivative

Publications (1)

Publication Number Publication Date
JP2000302800A true JP2000302800A (en) 2000-10-31

Family

ID=14660831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11115369A Pending JP2000302800A (en) 1999-04-22 1999-04-22 Sugar chain calcitonin derivative

Country Status (1)

Country Link
JP (1) JP2000302800A (en)

Similar Documents

Publication Publication Date Title
Yamamoto et al. Chemoenzymatic synthesis of a novel glycopeptide using a microbial endoglycosidase
Taylor Glycopeptides and glycoproteins: focus on the glycosidic linkage
CA1172978A (en) .alpha.-AMYLASE INACTIVATOR, A PROCESS FOR ITS PREPARATION, AN AGENT BASED ON THIS INACTIVATOR AND ITS USE
Pote et al. Otoconin-22, the major protein of aragonitic frog otoconia, is a homolog of phospholipase A2
US7955819B2 (en) Process for producing sugar chain asparagine derivative
Taguchi et al. Microheterogeneity in glycosylphosphatidylinositol anchor structures of bovine liver 5'-nucleotidase
Katzman et al. Invertebrate connective tissue. IX. Isolation and structure determination of glucosylgalactosylhydroxylysine from sponge and sea anemone collagen
Fiat et al. The Amino‐Acid and Carbohydrate Sequences of a Short Glycopeptide Isolated from Bovine κ‐Casein
Guo et al. Glycopeptide and glycoprotein synthesis involving unprotected carbohydrate building blocks
Sugiyama et al. Demonstration of a new glycopeptidase, from jack-bean meal, acting on aspartylglucosylamine linkages
Meldal Glycopeptide synthesis
Nakahara et al. Solid-phase synthesis of the B-chain of human α2HS glycoprotein
Stoeva et al. Primary structure and unusual carbohydrate moiety of functional unit 2-c of keyhole limpet hemocyanin (KLH)
JP2610646B2 (en) Bioactive glycopeptide
Takano et al. Solid-phase synthesis of core 2 O-linked glycopeptide and its enzymatic sialylation
Wong et al. Synthetic glycosylation of peptides using unprotected saccharide β-glycosylamines
JPH10306099A (en) New conjugated glycopeptide and its production
Zenteno et al. Chemical characterization of the lectin from the freshwater prawn Macrobrachium rosenbergii (De Man) by MALDI-TOF
Geyer et al. Oligosaccharides at individual glycosylation sites in glycoprotein 71 of Friend murine leukemia virus
JP2000302800A (en) Sugar chain calcitonin derivative
JP2003002899A (en) Peptide derivative with heterogeneous sugar chains
JPH10273500A (en) Composite glycopeptide and its production
JP3741495B2 (en) Novel complex glycopeptide and method for producing the same
Rákosi et al. Synthesis of N-glycopeptides applying glycoamino acid building blocks with a combined Fmoc/Boc strategy
JP2002272479A (en) Sugar chain derivative of calcitonin