JP2000300933A - Dehumidifying apparatus - Google Patents

Dehumidifying apparatus

Info

Publication number
JP2000300933A
JP2000300933A JP11113888A JP11388899A JP2000300933A JP 2000300933 A JP2000300933 A JP 2000300933A JP 11113888 A JP11113888 A JP 11113888A JP 11388899 A JP11388899 A JP 11388899A JP 2000300933 A JP2000300933 A JP 2000300933A
Authority
JP
Japan
Prior art keywords
air
cooling
area
regeneration
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11113888A
Other languages
Japanese (ja)
Other versions
JP3919379B2 (en
Inventor
Shinichi Hagiwara
伸一 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP11388899A priority Critical patent/JP3919379B2/en
Publication of JP2000300933A publication Critical patent/JP2000300933A/en
Application granted granted Critical
Publication of JP3919379B2 publication Critical patent/JP3919379B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1004Bearings or driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1012Details of the casing or cover
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • F24F2203/106Electrical reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1088Rotary wheel comprising three flow rotor segments

Abstract

PROBLEM TO BE SOLVED: To enhance the dehumidifying capacity while suppressing a rise in the temp. of a region to be dehumidified. SOLUTION: In the dehumidifying apparatus provided with an air permeable moisture absorbing member 2 wherein a part thereof becomes a dehumidifying region 2d through which air to be dehumidified passes and the other part thereof becomes a regenerating region 2r through which regenerating air passes and the respective parts are successively altered to the dehumidifying region 2d and the regenerating region 2r, the respective parts of the moisture absorbing member 2 are provided so as to be successively altered to the dehumidifying region 2d through a cooling region 2c through which regenerating air cooled by a cooling means C passes after they become the regenerating region 2r and a circulating blower means 5 is constituted so as to circulate the regenerating air through the circulating route L passing through the heating action region of a heating means 3, the regenerating region 2r and the cooling action region and cooling region 2c of the cooling means C and the cooling means C is equipped with an air-liquid heat exchange part 7 performing the heat exchange of the regenerating air with a liquid cooling medium to cool the regenerating air.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、通気可能に構成さ
れた吸湿体が、その一部が除湿対象空気の通流する除湿
領域となり、他部が再生用気体の通流する再生領域とな
り、且つ、各部が前記除湿領域と前記再生領域とに順次
代わるように設けられ、 除湿対象域から除湿対象空気を吸気して、前記吸湿体の
除湿領域を通過させた後に除湿対象域に送気する除湿用
送風手段と、 再生用気体を加熱する加熱手段の加熱作用域、前記再生
領域、再生用気体を冷却してその再生用気体に含まれる
水分を凝縮させて分離する冷却手段の冷却作用域の順に
通る循環経路で、再生用気体を循環させる循環用送風手
段とが設けられた除湿装置に関する。
[0001] The present invention relates to a moisture absorbing body which is configured to be ventilated, a part of which serves as a dehumidifying area through which air to be dehumidified flows, and the other part serves as a regenerating area through which a regeneration gas flows. And each part is provided so that it may replace the dehumidification area and the regeneration area in order. Intake air to be dehumidified from the dehumidification target area, and send air to the dehumidification target area after passing through the dehumidification area of the hygroscopic body. A dehumidifying blower, a heating zone of a heating unit for heating the regeneration gas, a regeneration zone, and a cooling zone of a cooling unit for cooling the regeneration gas and condensing and separating water contained in the regeneration gas. And a circulation blowing means for circulating the regeneration gas in a circulation path passing through in the order of.

【0002】[0002]

【従来の技術】かかる除湿装置には、図6に示すよう
に、通気可能に構成された吸湿体2を、例えば、その周
方向における一部が除湿対象空気の通流する除湿対象空
気通流域Adに位置し、他部が再生用気体の通流する再
生用気体通流域Arに位置する状態で、回転軸芯P周り
に回転されるように設けている。又、除湿対象域Rの空
気を吸気口10から吸気して、除湿対象空気通流域Ad
を通過させた後、送気口11から除湿対象域Rに送気す
る除湿用送風手段4と、再生用気体を加熱する加熱手段
3の加熱作用域、再生用気体通流域Ar、再生用気体を
冷却してその再生用気体に含まれる水分を凝縮させて分
離する冷却手段Cの冷却作用域の順に通る循環経路L
で、再生用気体を循環させる循環用送風手段5を設けて
いる。つまり、吸湿体2を回転軸芯P周りに回転させる
ことにより、吸湿体2において、除湿対象空気通流域A
dに位置する部分が除湿領域2dとなり、再生用気体通
流域Arに位置する部分が再生領域2rとなり、吸湿体
2の各部が除湿領域2dと再生領域2rとに順次代わる
ようになっている。
2. Description of the Related Art In such a dehumidifying apparatus, as shown in FIG. 6, a dehumidifying body 2 which is permeable to air is provided, for example, in an area where a part of the circumferential direction of the dehumidifying air flows. It is provided so as to be rotated around the rotation axis P in a state where it is located at Ad and the other portion is located in the regeneration gas flow area Ar where the regeneration gas flows. In addition, air in the dehumidification target area R is taken in from the intake port 10, and the dehumidification target air flow area Ad
After passing through, the dehumidifying air supply means 4 for supplying air from the air supply port 11 to the dehumidification target area R, the heating area of the heating means 3 for heating the regeneration gas, the regeneration gas flow area Ar, the regeneration gas Of the cooling means C of the cooling means C for cooling the water and condensing and separating the water contained in the regeneration gas.
Thus, a circulating blower 5 for circulating the regeneration gas is provided. That is, by rotating the hygroscopic body 2 around the rotation axis P, the dehumidification target air flow area A
The part located at d is the dehumidification area 2d, the part located at the regeneration gas flow area Ar is the regeneration area 2r, and each part of the moisture absorber 2 is sequentially replaced by the dehumidification area 2d and the regeneration area 2r.

【0003】従来は、図6に示すように、冷却手段C
は、再生用気体を除湿対象空気通流域Adに通流させる
除湿対象空気と熱交換させて冷却する気体−気体熱交換
器27にて構成していた。従って、気体−気体熱交換器
27においては、除湿対象域Rから吸気した除湿対象空
気と、再生領域2rを通過した高温高湿の再生用気体と
を熱交換させて、除湿対象空気に、再生用気体の顕熱、
及び、再生用気体に含まれる水分の凝縮熱を吸熱させ
て、再生用気体から水分を凝縮分離することになる。そ
して、気体−気体熱交換器27で水分が凝縮分離され、
更に、加熱手段により加熱された高温低湿の再生用空気
を、吸湿体2の再生領域2rに通流させて、その再生用
気体に吸湿体2から水分を放出させて、吸湿体2を再生
する。そのように再生された吸湿体2の再生領域2rが
除湿領域2dに代わる。その吸湿体2の除湿領域2d
に、気体−気体熱交換器27を通過した除湿対象空気を
通流させて、そこで除湿した後、除湿対象域Rに送気す
るようにしていた。
Conventionally, as shown in FIG.
Was constituted by a gas-gas heat exchanger 27 that exchanges heat with the air to be dehumidified in which the regeneration gas flows through the air passage area Ad for dehumidification and cools. Accordingly, in the gas-gas heat exchanger 27, heat is exchanged between the dehumidification target air sucked in from the dehumidification target region R and the high-temperature and high-humidity regeneration gas passed through the regeneration region 2r to regenerate into the dehumidification target air. Sensible heat of the working gas,
In addition, the heat of condensation of the moisture contained in the regeneration gas is absorbed, and the moisture is condensed and separated from the regeneration gas. Then, water is condensed and separated in the gas-gas heat exchanger 27,
Further, the high-temperature and low-humidity regeneration air heated by the heating means is passed through the regeneration region 2r of the moisture absorber 2, and the regeneration gas releases moisture from the moisture absorber 2 to regenerate the moisture absorber 2. . The regeneration area 2r of the moisture absorbent 2 thus regenerated replaces the dehumidification area 2d. Dehumidifying area 2d of the moisture absorbing body 2
Then, the air to be dehumidified is allowed to flow through the gas-gas heat exchanger 27, and after being dehumidified there, is sent to the dehumidification target area R.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来
は、熱伝導率が小さい除湿対象空気を冷却媒体として再
生用気体と熱交換させて再生用気体を冷却するため、そ
の熱交換効率が低くかった。従って、再生用気体を冷却
する冷却能力、即ち、再生用気体から水分を凝縮させて
分離する能力が低く、延いては、吸湿体の再生能力(即
ち、冷却手段による冷却により水分を分離した再生用気
体を吸湿体に通流させることにより、吸湿体から水分を
放出させる能力)が低いため、除湿能力を向上させる面
で改善の余地があった。
However, in the past, since the air for dehumidification having a low thermal conductivity was used as a cooling medium to exchange heat with the regeneration gas to cool the regeneration gas, the heat exchange efficiency was low. . Therefore, the cooling capacity for cooling the regeneration gas, that is, the ability to condense and separate moisture from the regeneration gas is low, and hence the regeneration capacity of the moisture absorbent (that is, the regeneration in which moisture is separated by cooling by cooling means). (The ability to release moisture from the moisture absorber by passing the use gas through the moisture absorber) is low, and there is room for improvement in improving the dehumidification ability.

【0005】又、従来では、除湿対象域から吸気した除
湿対象空気に、気体−気体熱交換器において、再生用気
体の顕熱(つまり、吸湿体2の再生のために与えた再生
用の熱に相当する)及び再生用気体に含まれる水分の凝
縮熱(除湿対象空気中の水分の凝縮熱に相当する)を吸
熱させていた。更に、加熱手段3で加熱された再生用気
体が通過した吸湿体2の再生領域2rが、次に除湿領域
2dとなるので、除湿領域2dにおいては、除湿対象空
気に、吸湿体2の再生用の熱の余熱を吸熱させていた。
従って、従来では、除湿対象域に、除湿対象空気中の水
分の凝縮熱、及び、吸湿体再生用の熱が放熱されること
となるので、除湿対象域は除湿されるものの、除湿対象
域内の温度が上昇するという問題があった。特に、除湿
が必要とされる梅雨期から夏期にかけては、除湿対象域
内の温度が上昇して不快な状態となるので、かかる問題
が顕著となっていた。ちなみに、除湿対象域内の温度
は、少なくとも3〜5°C程度は上昇していた。
Conventionally, the sensible heat of the regeneration gas (that is, the regeneration heat applied for regeneration of the moisture absorber 2) is supplied to the dehumidification target air taken in from the dehumidification target area by a gas-gas heat exchanger. ) And the heat of condensation of moisture contained in the regeneration gas (corresponding to the heat of condensation of moisture in the air to be dehumidified). Furthermore, the regeneration area 2r of the moisture absorbent 2 through which the regeneration gas heated by the heating means 3 has passed becomes the dehumidification area 2d, so that in the dehumidification area 2d, the air to be dehumidified is used for regeneration of the moisture absorbent 2 The remaining heat of the heat was absorbed.
Therefore, conventionally, the heat of condensation of the moisture in the air to be dehumidified, and the heat for regenerating the absorbent body are radiated to the dehumidification target area, so that the dehumidification target area is dehumidified, but in the dehumidification target area. There was a problem that the temperature rose. Particularly, from the rainy season to the summer season, when dehumidification is required, the temperature in the dehumidification target area rises to an unpleasant state, so that such a problem has been remarkable. Incidentally, the temperature in the dehumidification target area increased by at least about 3 to 5 ° C.

【0006】本発明は、かかる実情に鑑みてなされたも
のであり、その目的は、除湿能力の向上、及び、除湿対
象域内の温度上昇の抑制を図ることにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to improve the dehumidifying ability and to suppress a temperature rise in a dehumidification target area.

【0007】[0007]

【課題を解決するための手段】〔請求項1記載の発明〕
請求項1に記載の特徴構成は、前記吸湿体の各部が、前
記再生領域となった後、前記冷却手段にて冷却された再
生用気体の通流する冷却領域を経由して、前記除湿領域
に順次代わるように設けられ、前記循環用送風手段が、
前記加熱手段の加熱作用域、前記再生領域、前記冷却手
段の冷却作用域、前記冷却領域の順に通る循環経路で、
再生用気体を循環させるように構成され、前記冷却手段
が、再生用気体を液状冷却媒体と熱交換させて冷却する
気体−液体熱交換部を備えて構成されていることにあ
る。
Means for Solving the Problems [Invention according to claim 1]
The characteristic configuration according to claim 1, wherein, after each part of the moisture absorber becomes the regeneration area, the dehumidification area passes through a cooling area through which a regeneration gas cooled by the cooling unit flows. Is provided so as to sequentially replace, the circulating air blowing means,
In the circulation path passing through the heating action area of the heating means, the regeneration area, the cooling action area of the cooling means, the cooling area,
The cooling gas is configured to circulate the regeneration gas, and the cooling unit includes a gas-liquid heat exchange unit that exchanges heat with the liquid cooling medium to cool the regeneration gas.

【0008】請求項1に記載の特徴構成によれば、再生
用気体は、加熱手段の加熱作用域、吸湿体の再生領域、
冷却手段の冷却作用域、吸湿体の冷却領域を順に通る循
環経路を通流するので、冷却手段で冷却された再生用気
体は、吸湿体の冷却領域を通流するときに、吸湿体から
吸湿体再生用の熱の余熱を吸熱する。又、吸湿体の各部
は、再生領域となった後、冷却領域を経由して除湿領域
となるので、吸湿体の再生領域となった部分に与えられ
た再生用の熱は、その部分が除湿領域となる前の冷却領
域のときに、再生用気体に対して放熱される。又、冷却
手段は、気体−液体熱交換部を備えて構成しているの
で、その気体−液体熱交換部においては、吸湿体の再生
領域を通過した再生用気体と液状冷却媒体とを熱交換さ
せることにより、液状冷却媒体に、再生用気体の顕熱
(吸湿体再生用の熱)及び再生用気体に含まれる水分の
凝縮熱(除湿対象空気中の水分の凝縮熱に相当する)を
吸熱させて、再生用気体を冷却し、再生用気体から水分
を凝縮分離する。
[0008] According to the characteristic structure of the first aspect, the regeneration gas includes a heating area of the heating means, a regeneration area of the absorbent,
Since the gas flows through the circulation path that passes through the cooling area of the cooling means and the cooling area of the moisture absorbent in order, the regeneration gas cooled by the cooling means absorbs moisture from the moisture absorbent when flowing through the cooling area of the moisture absorbent. Absorbs excess heat from body regeneration. Further, since each part of the moisture absorbent becomes a dehumidification area via the cooling area after becoming the regeneration area, the heat for regeneration given to the part which became the regeneration area of the moisture absorbent dehumidifies that part. In the cooling area before the area, the heat is radiated to the regeneration gas. Further, since the cooling means includes a gas-liquid heat exchange section, the gas-liquid heat exchange section exchanges heat between the regeneration gas passing through the regeneration area of the absorbent and the liquid cooling medium. By doing so, the liquid cooling medium absorbs the sensible heat of the regeneration gas (heat for regeneration of the absorbent) and the heat of condensation of moisture contained in the regeneration gas (equivalent to the heat of condensation of moisture in the air to be dehumidified). Then, the regeneration gas is cooled, and water is condensed and separated from the regeneration gas.

【0009】従って、吸湿体再生用の熱及び除湿対象空
気中の水分の凝縮熱を液状冷却媒体に吸熱させること、
及び、吸湿体の再生領域となった部分に与えられた再生
用の熱を、その部分が除湿領域となる前の冷却領域のと
きに再生用気体に対して放熱させることの相乗効果によ
り、除湿対象空気中の水分の凝縮熱及び吸湿体再生用の
熱が除湿対象域に放熱されるのを抑制することができる
ので、除湿対象域内の温度上昇を抑制することができる
ようになった。又、加熱手段によって再生用気体を通じ
て吸湿体に与えた再生用の熱の一部を、再生用気体が吸
湿体の冷却領域を通流するときに、再生用気体に回収さ
せるので、加熱手段における消費エネルギーを低減する
ことができるようになった。又、液状冷却媒体を冷却媒
体として用いると、液状冷却媒体は気体の冷却媒体に比
べて熱伝導率が大きいため、冷却媒体として除湿対象空
気を用いる場合に比べて、再生用気体との熱交換効率が
高くなり、再生用気体を効率良く冷却して再生用気体に
含まれる水分を凝縮して分離することができるようにな
り、その結果、吸湿体の再生能力を向上することができ
て、延いては、除湿能力を向上することができるように
なった。
Therefore, the liquid cooling medium absorbs the heat for regenerating the moisture absorbent and the heat of condensation of the moisture in the air to be dehumidified,
And the dehumidification is achieved by synergistic effect of radiating the regeneration heat given to the portion that has become the regeneration region of the moisture absorbent to the regeneration gas when the portion is in the cooling region before becoming the dehumidification region. Since the heat of condensation of moisture in the target air and the heat for regenerating the moisture absorbent can be suppressed from being radiated to the dehumidification target area, the temperature rise in the dehumidification target area can be suppressed. In addition, since a part of the heat for regeneration given to the moisture absorbent through the regeneration gas by the heating means is recovered by the regeneration gas when the regeneration gas flows through the cooling region of the moisture absorbent, the heat in the heating means Energy consumption can be reduced. Further, when the liquid cooling medium is used as the cooling medium, the liquid cooling medium has a higher thermal conductivity than the gas cooling medium, and therefore, compared with the case where the air to be dehumidified is used as the cooling medium, heat exchange with the regeneration gas is performed. The efficiency increases, the regeneration gas can be efficiently cooled, and the moisture contained in the regeneration gas can be condensed and separated, and as a result, the regeneration ability of the moisture absorber can be improved, As a result, the ability to dehumidify can be improved.

【0010】ちなみに、吸湿体の冷却領域に対して、別
途設けた冷凍機等により再生用気体とは別の気体を冷却
して通流させる場合が想定される。しかしながら、この
場合は、冷凍機等を設けることによるコストアップ、及
び、消費エネルギーの増加等の欠点が有り、実用的では
ない。
[0010] By the way, a case is conceivable in which a gas different from the regeneration gas is cooled and passed through the cooling region of the moisture absorbing body by a separately provided refrigerator or the like. However, in this case, there are disadvantages such as an increase in cost due to the provision of a refrigerator or the like and an increase in energy consumption, which is not practical.

【0011】〔請求項2記載の発明〕請求項2に記載の
特徴構成は、前記冷却手段が、再生用気体を前記除湿領
域に通流させる除湿対象空気と熱交換させて冷却する気
体−気体熱交換部を備えて、その気体−気体熱交換部及
び前記気体−液体熱交換部を用いて再生用気体を冷却す
るように構成されていることにある。
According to a second aspect of the present invention, there is provided a gas-gas cooling system in which the cooling means exchanges heat with the air to be dehumidified for allowing the regeneration gas to flow through the dehumidification area. A heat exchange unit is provided, and the gas for gas regeneration is cooled using the gas-gas heat exchange unit and the gas-liquid heat exchange unit.

【0012】請求項2に記載の特徴構成によれば、気体
−気体熱交換部と気体−液体熱交換部の協働により、再
生用気体から一層効率良く水分を凝縮させて分離するこ
とができる。従って、請求項1に記載の特徴構成による
よりも、除湿対象域内の温度上昇を抑制する面での効果
は多少劣るものの、再生用気体を冷却する冷却能力を一
層向上することができるから、除湿能力を一層向上する
ことができる。
According to the second aspect of the present invention, the gas-gas heat exchange section and the gas-liquid heat exchange section cooperate to more efficiently condense and separate moisture from the regeneration gas. . Therefore, although the effect of suppressing the temperature rise in the dehumidification target area is somewhat inferior to that according to the characteristic configuration of the first aspect, the cooling capacity for cooling the regeneration gas can be further improved. The ability can be further improved.

【0013】〔請求項3記載の発明〕請求項3に記載の
特徴構成は、前記冷却手段が、再生用気体から分離した
凝縮水を前記液状冷却媒体として前記気体−液体熱交換
部に供給する凝縮水供給手段を備えて構成されているこ
とにある。
According to a third aspect of the present invention, the cooling means supplies condensed water separated from the regeneration gas to the gas-liquid heat exchange section as the liquid cooling medium. The condensed water supply means is provided.

【0014】請求項3に記載の特徴構成によれば、気体
−気体熱交換部と気体−液体熱交換部の協働により、再
生用気体から一層効率良く水分を凝縮させて分離するこ
とができ、そのように分離した凝縮水が、凝縮水供給手
段によって、液状冷却媒体として気体−液体熱交換部に
供給される。従って、液状冷却媒体として、冷却手段で
分離された凝縮水を用いるから、気体−液体熱交換部で
使用する液状冷却媒体の補給が不要になるか、あるいは
補給量を低減することができるので、液状冷却媒体の補
給にかかわる使用者の負担を軽減することができる
According to the third aspect of the present invention, the gas-gas heat exchange section and the gas-liquid heat exchange section cooperate to more efficiently condense and separate water from the regeneration gas. The condensed water thus separated is supplied to the gas-liquid heat exchange section as a liquid cooling medium by the condensed water supply means. Therefore, since the condensed water separated by the cooling means is used as the liquid cooling medium, it is not necessary to replenish the liquid cooling medium used in the gas-liquid heat exchange unit, or the replenishment amount can be reduced. The burden on the user involved in replenishing the liquid cooling medium can be reduced

【0015】[0015]

【発明の実施の形態】〔第1実施形態〕以下、図1及び
図4に基づいて、本発明の第1の実施の形態を説明す
る。図4に示すように、除湿装置は、除湿対象域R内に
設置し、吸気口10から除湿対象域Rの空気を吸気し、
その吸気空気を除湿した後、吹出し口11から吹出すこ
とにより、除湿対象域Rを除湿する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [First Embodiment] A first embodiment of the present invention will be described below with reference to FIGS. As shown in FIG. 4, the dehumidifying device is installed in the dehumidification target area R, sucks air in the dehumidification target area R from the intake port 10,
After dehumidifying the intake air, the dehumidification target area R is dehumidified by blowing out the air from the outlet 11.

【0016】図1に示すように、除湿装置は、筐体1の
内部に、通気可能に構成した吸湿体としての除湿用ロー
タ2を、その周方向における一部が除湿対象空気の通流
する除湿対象空気通流域Adに位置し、他部が再生用気
体としての再生用空気が通流する再生用空気通流域Ar
に位置する状態で回転されるように設けてある。又、筐
体1の内部に、除湿対象域Rから除湿対象空気を吸気し
て、除湿対象空気通流域Adを通過させて除湿した後、
除湿対象域Rに送気する除湿用送風機4(除湿用送風手
段に相当する)と、再生用空気を加熱する電気ヒータ3
(加熱手段に相当する)の加熱作用域、再生用空気通流
域Ar、再生用空気を冷却してその再生用空気に含まれ
る水分を凝縮させて分離する冷却部C(冷却手段に相当
する)の冷却作用域の順に通る循環経路Lで、再生用空
気体を循環させる循環用送風機5(循環用送風手段に相
当する)と、除湿装置の制御を司る制御部6等を備えて
ある。
As shown in FIG. 1, in the dehumidifying device, a dehumidifying rotor 2 as a humidifying member which is configured to be ventilated, and a part of the dehumidifying air in a circumferential direction of the dehumidifying device flows inside a housing 1. A regeneration air flow area Ar, which is located in the dehumidification target air flow area Ad, and the other part of which the regeneration air flows as the regeneration gas flows.
It is provided so that it can be rotated in a state where it is located at. After the air to be dehumidified is sucked into the interior of the housing 1 from the dehumidification target area R and passed through the dehumidification target air flow area Ad to dehumidify,
A dehumidifying blower 4 (corresponding to a dehumidifying blowing means) for feeding air to the dehumidification target area R, and an electric heater 3 for heating regeneration air
The heating section (corresponding to the heating means), the air flow area for regeneration Ar, and the cooling section C (corresponding to the cooling means) for cooling the regeneration air to condense and separate the moisture contained in the regeneration air. A circulation blower 5 (corresponding to a circulation blower) for circulating the air for regeneration and a control unit 6 for controlling the dehumidifier are provided in a circulation path L passing through the cooling action area in this order.

【0017】従って、除湿用ロータ2において、除湿対
象空気通流域Ad内に位置する部分が除湿領域2dとな
り、再生用空気通流域Ar内に位置する部分が再生領域
2rとなり、除湿用ロータ2の各部が除湿領域2dと再
生領域2rとに順次代わるようになっている。
Accordingly, in the dehumidifying rotor 2, a portion located in the air passage area Ad for dehumidification is a dehumidification area 2d, and a part located in the regeneration air passage area Ar is a regeneration area 2r. Each part is sequentially replaced with a dehumidifying area 2d and a reproducing area 2r.

【0018】本発明においては、除湿用ロータ2の回転
方向において再生用空気通流域Arよりも下手側で除湿
対象空気通流域Adよりも上手側の位置に、冷却部Cに
て冷却された再生用空気の通流する冷却用空気通流域A
cを設け、循環用送風機5を、電気ヒータ3における加
熱作用域、再生用空気通流域Ar、冷却部Cにおける冷
却作用域、冷却用空気通流域Acを順に通る循環経路L
で、再生用空気を循環させるように構成してある。従っ
て、除湿用ロータ2において、冷却用空気通流域Ac内
に位置する部分が、冷却部Cにて冷却された再生用空気
の通流により除湿用ロータ2が冷却される冷却領域2c
となり、除湿用ロータ2の各部が、再生領域2rとなっ
た後、冷却領域2cを経由して、除湿領域2dに順次代
わるように設けてある。
In the present invention, in the rotation direction of the dehumidifying rotor 2, the regenerator cooled by the cooling unit C is located at a position lower than the air flow region Ar for regeneration and higher than the air flow region Ad for dehumidification. Cooling air flow area A through which cooling air flows
c, a circulation path L passing through the circulation blower 5 in order through the heating action area in the electric heater 3, the regeneration air flow area Ar, the cooling action area in the cooling section C, and the cooling air flow area Ac.
Thus, the air for regeneration is circulated. Therefore, in the dehumidifying rotor 2, a portion located in the cooling air flow area Ac is a cooling area 2c in which the dehumidifying rotor 2 is cooled by the flow of the regeneration air cooled in the cooling unit C.
After the respective sections of the dehumidifying rotor 2 become the regeneration area 2r, they are provided so as to be sequentially replaced by the dehumidification area 2d via the cooling area 2c.

【0019】又、冷却部Cは、再生用空気を液状冷却媒
体としての冷却水と熱交換させて冷却する気体−液体熱
交換部7(以下、水冷式熱交換部と称する場合がある)
を備えて構成してある。
The cooling section C is a gas-liquid heat exchanging section 7 (hereinafter, sometimes referred to as a water-cooled heat exchanging section) for cooling the regenerating air by exchanging heat with cooling water as a liquid cooling medium.
It is provided with.

【0020】除湿用ロータ2は、回転軸芯P方向での通
気が可能なハニカム状の基材に、吸湿剤(シリカゲルや
塩化リチウム等)を保持して構成し、その除湿用ロータ
2を、除湿対象空気通流域Ad、再生用空気通流域Ar
及び冷却用空気通流域Acに跨る状態で、モータ8によ
って回転軸芯P周りに回転駆動されるように設けてあ
る。除湿対象空気が除湿用ロータ2を回転軸芯Pの方向
に通過して通流する除湿対象空気通流域Ad、再生用空
気が除湿用ロータ2を回転軸芯Pの方向に通過して通流
する再生用空気通流域Ar、及び、再生用空気が除湿用
ロータ2を回転軸芯Pの方向に通過して通流する冷却用
空気通流域Acを、除湿用ロータ2の回転方向において
冷却用空気通流域Acが再生用空気通流域Arよりも下
流側で除湿対象空気通流域Adよりも上流側に位置する
状態で、区画形成する通流域形成部材9を設けてある。
The dehumidifying rotor 2 is constituted by holding a hygroscopic agent (silica gel, lithium chloride, etc.) on a honeycomb-shaped base material capable of ventilation in the direction of the rotation axis P. Air flow area Ad for dehumidification, air flow area for regeneration Ar
The motor 8 is provided so as to be driven to rotate around the rotation axis P while straddling the cooling air flow area Ac. The air to be dehumidified passes through the dehumidifying rotor 2 in the direction of the rotation axis P, and the air to be dehumidified flows through the dehumidification rotor 2 in the direction of the rotation axis P. The regenerating air flow area Ar and the cooling air flow area Ac in which the regenerating air passes through the dehumidifying rotor 2 in the direction of the rotation axis P are cooled in the rotating direction of the dehumidifying rotor 2. A flow area forming member 9 is formed so that the air flow area Ac is located downstream of the regeneration air flow area Ar and upstream of the dehumidification target air flow area Ad.

【0021】筐体1に、除湿対象域Rの空気を吸い込む
吸気口10と、吸い込んだ空気を除湿対象域Rに吹出す
吹出し口11を形成し、筐体1の内部に、吸気口10か
ら吸い込まれた除湿対象域Rの空気を、除湿対象空気通
流域Adを通過してから吹出し口11から除湿対象域R
に吹出されるように案内する除湿用流路12を形成し、
除湿用送風機4は、その除湿用流路12に通風作用する
ように設けてある。
An air inlet 10 for sucking air in the dehumidification target area R and an air outlet 11 for blowing out the sucked air to the dehumidification target area R are formed in the housing 1. After the sucked air in the dehumidification target area R passes through the dehumidification target air flow area Ad, the air is discharged from the outlet 11 to the dehumidification target area R.
Forming a dehumidifying flow path 12 for guiding the air to be blown out,
The dehumidification blower 4 is provided so as to ventilate the dehumidification channel 12.

【0022】筐体1の内部に、再生用空気を、電気ヒー
タ3における加熱作用域、再生用空気通流域Ar、冷却
部Cにおける冷却作用域、冷却用空気通流域Acを順に
通る循環経路Lにて通流するように案内する循環用流路
13を形成し、循環用送風機5は、その循環用流路13
に通風作用するように設けてある。電気ヒータ3は、再
生用空気の循環経路Lにおける、冷却用空気通流域Ac
よりも下流側で、再生用空気通流域Arよりも上流側の
位置において、循環用流路13を通流する再生用空気を
加熱するように設けてある。
In the housing 1, a circulation path L through which the regeneration air passes through the heating action area of the electric heater 3, the regeneration air flow area Ar, the cooling action area of the cooling section C, and the cooling air flow area Ac in this order. The circulation blower 5 is formed so as to guide the flow through the circulation passage.
It is provided so as to provide ventilation. The electric heater 3 is provided in the cooling air flow area Ac in the regeneration air circulation path L.
At a position further downstream and upstream of the regeneration air flow area Ar, the regeneration air flowing through the circulation passage 13 is heated.

【0023】冷却部Cについて説明を加える。冷却部C
には、冷却水を貯留する冷却水タンク17と、その冷却
水タンク17から冷却水を水冷式熱交換部7に供給する
冷却水供給路14と、水冷式熱交換部7から冷却水を排
出する冷却水排出路15と、水冷式熱交換部7にて分離
された凝縮水を排出する凝縮水排出路16と、冷却水排
出路15を通じて排出される冷却水及び凝縮水排出路1
6を通じて排出される凝縮水を受けて貯留する排水タン
ク19とを設けてある。
The cooling section C will be described. Cooling section C
The cooling water tank 17 for storing the cooling water, the cooling water supply path 14 for supplying the cooling water from the cooling water tank 17 to the water-cooled heat exchange unit 7, and the discharge of the cooling water from the water-cooled heat exchange unit 7 Cooling water discharge path 15, a condensed water discharge path 16 for discharging the condensed water separated in the water-cooled heat exchange unit 7, a cooling water discharged through the cooling water discharge path 15, and the condensed water discharge path 1.
A drain tank 19 is provided for receiving and storing condensed water discharged through 6.

【0024】水冷式熱交換部7について説明を加える。
水冷式熱交換部7は、筐体31内に、2枚の隔壁32に
より、空気供給室33、貯水室34及び空気排出室35
を、上側から順に上下方向に並ぶ状態で区画形成すると
共に、複数の空気通流管36を、貯水室34を上下方向
に貫通し且つ空気供給室33及び空気排出室35に連通
するように、2枚の隔壁32にわたって設けて構成して
ある。そして、水冷式熱交換部7を、循環用流路13に
おける再生用空気通流域Arから冷却用空気通流域Ac
に至る部分の途中に、空気供給室33に循環用流路13
の上流側が連通接続され、空気排出室35に循環用流路
13の下流側が連通接続される状態で設けてある。
The water-cooled heat exchange section 7 will be described.
The water-cooled heat exchange unit 7 includes an air supply chamber 33, a water storage chamber 34, and an air discharge chamber 35 in a housing 31 by two partition walls 32.
Are formed in a state of being vertically arranged in order from the upper side, and a plurality of air flow pipes 36 penetrate the water storage chamber 34 in the vertical direction and communicate with the air supply chamber 33 and the air discharge chamber 35, It is provided over two partition walls 32. Then, the water-cooled heat exchange unit 7 is moved from the regeneration air flow area Ar in the circulation flow path 13 to the cooling air flow area Ac.
On the way to the air supply chamber 33,
Are connected in communication with each other, and the air discharge chamber 35 is provided in a state where the downstream side of the circulation channel 13 is connected in communication.

【0025】冷却水タンク17内の冷却水を貯水室34
にその下部から供給すべく、冷却水供給路14は、冷却
水タンク17と貯水室34の下部とに接続し、冷却水供
給路14に、冷却水ポンプ18を設けてある。貯水室3
4内の冷却水をオーバーフロー状態で排出すべく、冷却
水排出路15は、貯水室34の上部に接続し、水冷式熱
交換部7にて分離された凝縮水を排出すべく、凝縮水排
出路16は、空気排出室35の底部に接続してある。
The cooling water in the cooling water tank 17 is stored in the water storage chamber 34.
The cooling water supply path 14 is connected to the cooling water tank 17 and the lower part of the water storage chamber 34, and a cooling water pump 18 is provided in the cooling water supply path 14. Water storage room 3
The cooling water discharge passage 15 is connected to the upper part of the water storage chamber 34 to discharge the cooling water in the overflow state in the overflow state, and discharges the condensed water separated in the water-cooled heat exchange unit 7 to discharge the condensed water. The passage 16 is connected to the bottom of the air discharge chamber 35.

【0026】図中の50は、空気排出室35と凝縮水排
出路16との接続口を開閉するフロートであり、このフ
ロート50は、空気排出室35の凝縮水の貯留量が所定
量以下のときは、前記接続口を閉じ、所定量を越えると
浮いて前記接続口を開くようになっていて、再生用空気
が凝縮水排出路16に流入するのを防止しながら、空気
排出室35の凝縮水が凝縮水排出路16へ流入するのを
許容するようにしてある。
In the drawing, reference numeral 50 denotes a float which opens and closes a connection port between the air discharge chamber 35 and the condensed water discharge passage 16. The float 50 has a condensed water storage amount in the air discharge chamber 35 of a predetermined amount or less. At this time, the connection port is closed, and when the amount exceeds a predetermined amount, the connection port is floated to open the connection port, and while the regeneration air is prevented from flowing into the condensed water discharge path 16, the air discharge chamber 35 is closed. The condensed water is allowed to flow into the condensed water discharge passage 16.

【0027】又、貯水室34内の冷却水の温度を検出す
る温度センサ20を設けてある。又、水冷式熱交換部7
を保温して、水冷式熱交換部7から除湿対象域Rへの放
熱を抑制する断熱材37、冷却水タンク17を保温し
て、冷却水タンク17内の冷却水の温度上昇や冷却水タ
ンク17表面での結露を抑制する断熱材21、及び、排
水タンク19を保温して、排水タンク19内に貯留され
ている水から除湿対象域Rへの放熱を抑制する断熱材2
2を設けてある。
A temperature sensor 20 for detecting the temperature of the cooling water in the water storage chamber 34 is provided. The water-cooled heat exchange unit 7
Insulating material 37 that suppresses heat radiation from the water-cooled heat exchange unit 7 to the dehumidification target area R, keeps the cooling water tank 17 warm, and increases the temperature of the cooling water in the cooling water tank 17 and the cooling water tank. A heat insulating material 21 for suppressing dew condensation on the surface 17 and a heat insulating material 2 for keeping the drain tank 19 warm and suppressing heat release from the water stored in the drain tank 19 to the dehumidification target area R.
2 is provided.

【0028】次に、除湿装置の作用について説明する。
モータ8を作動させて除湿用ロータ2を回転させ、電気
ヒータ3を作動させ、並びに、除湿用送風機4及び循環
用送風機5を作動させる。ちなみに、除湿用ロータ2の
回転速度は、例えば、1回/3分間程度に設定する。す
ると、除湿用送風機4の通風作用により、除湿対象域R
の除湿対象空気が、吸気口10から吸気されて除湿対象
空気通流域Ad内を通過し、そこを通過するときに、除
湿対象空気に含まれる水分が、除湿対象空気通流域Ad
内に位置する除湿用ロータ2に保持されている吸湿剤に
吸湿されて除湿され、そのように除湿された除湿空気
が、吹出し口11から除湿対象域Rに吹出されて、除湿
対象域Rが除湿される。
Next, the operation of the dehumidifier will be described.
The motor 8 is operated to rotate the dehumidifying rotor 2, the electric heater 3 is operated, and the dehumidifying fan 4 and the circulation fan 5 are operated. Incidentally, the rotation speed of the dehumidifying rotor 2 is set, for example, to about once / 3 minutes. Then, due to the ventilation action of the dehumidification blower 4, the dehumidification target area R
Of the air to be dehumidified is sucked from the intake port 10 and passes through the air passage area Ad to be dehumidified, and when passing therethrough, the moisture contained in the air air to be dehumidified becomes the air passage area Ad to be dehumidified.
The dehumidifying agent held in the dehumidifying rotor 2 located therein absorbs and dehumidifies the air, and the dehumidified air thus dehumidified is blown out from the outlet 11 into the dehumidification target region R, and the dehumidification target region R is dehumidified. Dehumidified.

【0029】除湿用ロータ2において、除湿対象空気通
流域Adに位置して吸湿した部分が、再生用空気通流域
Arに移動すると、高温低湿の再生用空気の通過によっ
て加熱されて、除湿用ロータ2に吸湿されていた水分が
放出されて、除湿用ロータ2が再生される。除湿用ロー
タ2において、再生用空気通流域Arに位置して再生さ
れた部分は、昇温しているが、その部分は、冷却用空気
通流域Acに移動することにより、冷却部Cでの冷却に
より除湿並びに降温された低温低湿の再生用空気が通過
するので、冷却される。そして、除湿用ロータ2におい
て再生並びに冷却された部分が、除湿対象空気通流域A
dへ移動して、そこで除湿対象空気に除湿作用すること
になる。
When the portion of the dehumidification rotor 2 which is located in the air passage area Ad for dehumidification and absorbs moisture moves to the air circulation area Ar for regeneration, it is heated by the passage of regeneration air having a high temperature and a low humidity to be heated. The moisture absorbed in the rotor 2 is released, and the dehumidifying rotor 2 is regenerated. In the dehumidifying rotor 2, the temperature of the regenerated portion located in the regenerating air flow region Ar is rising, but the portion is moved to the cooling air flow region Ac, and thus the regenerated portion is cooled by the cooling portion C. The low-temperature and low-humidity regeneration air, which has been dehumidified and cooled down by cooling, passes, and is thus cooled. Then, the regenerated and cooled portion of the dehumidifying rotor 2 forms the dehumidification target air flow area A
Then, the air moves to d, where the air to be dehumidified is dehumidified.

【0030】再生用空気は、循環用送風機5の通風作用
により、電気ヒータ3における加熱作用域、再生用空気
通流域Ar、冷却部Cにおける冷却作用域、冷却用空気
通流域Acを順に通る循環経路Lにて循環する。再生用
空気通流域Arを通過して高湿となった再生用空気は、
水冷式熱交換部7の空気通流管36を通流するときに、
貯水室34内の冷却水により冷却され、再生用空気に含
まれる水分が凝縮して分離される。水冷式熱交換部7に
て冷却されて水分が分離された再生用空気は冷却用空気
通流域Acを通過してから、更に、電気ヒータ3にて加
熱されて高温低湿状態となって再生用空気通流域Arを
通流し、そこで、除湿用ロータ2に対して吸湿作用す
る。水冷式熱交換部7にて再生用空気から分離された凝
縮水は、水冷式熱交換部7の空気排出室35の底部から
凝縮水排出路16を通じて排出され、排水タンク19に
貯留される。
The regenerating air is circulated through the heating area of the electric heater 3, the regenerating air flow area Ar, the cooling area of the cooling section C, and the cooling air flow area Ac in order by the ventilation action of the circulation blower 5. Circulates on route L. The regeneration air that has passed through the regeneration air flow area Ar and has become highly humid,
When flowing through the air flow pipe 36 of the water-cooled heat exchange unit 7,
Cooled by the cooling water in the water storage chamber 34, the water contained in the air for regeneration is condensed and separated. The regeneration air cooled by the water-cooled heat exchange unit 7 and separated from the water passes through the cooling air flow area Ac, and is further heated by the electric heater 3 to be in a high temperature and low humidity state for regeneration. The air flows through the air flow area Ar, where it acts on the dehumidifying rotor 2 to absorb moisture. The condensed water separated from the air for regeneration in the water-cooled heat exchange unit 7 is discharged from the bottom of the air discharge chamber 35 of the water-cooled heat exchange unit 7 through the condensed water discharge passage 16 and stored in the drainage tank 19.

【0031】従って、除湿用ロータ2再生用の熱及び除
湿対象空気中の水分の凝縮熱を冷却水に吸熱させるこ
と、除湿用ロータ2の再生領域2rとなった部分に与え
られた再生用の熱を、その部分が除湿領域2dになる前
の冷却領域2cのときに再生用空気に対して放熱させる
こと、水冷式熱交換部7から除湿対象域Rへの放熱が断
熱材37により抑制されること、及び、排水タンク19
から除湿対象域Rへの放熱が断熱材22により抑制され
ることの相乗効果により、除湿対象域R内の昇温を効果
的に抑制することができる。
Therefore, the heat for regenerating the dehumidifying rotor 2 and the heat of condensation of the moisture in the air to be dehumidified are absorbed by the cooling water, and the regenerating area given to the portion of the dehumidifying rotor 2 which has become the regenerating region 2r is used. The heat is radiated to the regeneration air in the cooling region 2c before the portion becomes the dehumidifying region 2d, and the heat radiation from the water-cooled heat exchange unit 7 to the dehumidifying target region R is suppressed by the heat insulating material 37. And the drainage tank 19
Due to the synergistic effect of suppressing heat radiation from the heat sink to the dehumidification target region R by the heat insulating material 22, the temperature rise in the dehumidification target region R can be effectively suppressed.

【0032】水冷式熱交換部7の貯水室34内の冷却水
は、再生用空気との熱交換により昇温するので、温度セ
ンサ20の検出温度が所定の温度に達すると、冷却水ポ
ンプ18を作動させる。すると、冷却水タンク17内の
低温の冷却水が貯水室34の下部から供給されることに
伴って、貯水室34内の高温の冷却水がオーバーフロー
状態で冷却水排出路15を通じて排出されるので、貯水
室34内の冷却水の温度が低下する。冷却水排出路15
を通じて排出された冷却水は、排水タンク19に凝縮水
と共に貯留される。
Since the temperature of the cooling water in the water storage chamber 34 of the water-cooled heat exchange section 7 is increased by heat exchange with the air for regeneration, when the temperature detected by the temperature sensor 20 reaches a predetermined temperature, the cooling water pump 18 Activate Then, as the low-temperature cooling water in the cooling water tank 17 is supplied from the lower part of the water storage chamber 34, the high-temperature cooling water in the water storage chamber 34 is discharged through the cooling water discharge path 15 in an overflow state. Then, the temperature of the cooling water in the water storage chamber 34 decreases. Cooling water discharge path 15
The cooling water discharged through is stored in the drainage tank 19 together with the condensed water.

【0033】冷却水タンク17には、例えば、水道水を
貯留する。あるいは、冷却水タンク17に、冷蔵庫等で
冷やした水を貯留したり、冷却水タンク17に氷を入れ
て貯留冷却水を冷やすと、除湿能力を一層向上すること
ができる。排水タンク19内の水は、使用者が適宜捨て
る。
The cooling water tank 17 stores, for example, tap water. Alternatively, when water cooled by a refrigerator or the like is stored in the cooling water tank 17 or ice is put into the cooling water tank 17 to cool the stored cooling water, the dehumidifying ability can be further improved. The user discards the water in the drain tank 19 as appropriate.

【0034】制御部6の制御作動について説明する。制
御部6は、温度センサ20の検出温度が予め設定した設
定温度以上になると、冷却水ポンプ18を冷却水ポンプ
作動用の設定時間の間作動させる。前記冷却水ポンプ作
動用の設定時間は適宜設定することができるが、例え
ば、貯水室34内の冷却水の略全量を冷却水タンク17
内の冷却水に交換することができるように設定する。
The control operation of the control unit 6 will be described. When the temperature detected by the temperature sensor 20 becomes equal to or higher than a preset set temperature, the control unit 6 operates the cooling water pump 18 for a set time for operating the cooling water pump. The set time for operating the cooling water pump can be set as appropriate. For example, substantially the entire amount of the cooling water in the water storage chamber 34 is stored in the cooling water tank 17.
Set so that it can be replaced with the cooling water inside.

【0035】〔第2実施形態〕以下、図2に基づいて、
本発明の第2の実施の形態を説明する。第2実施形態に
おいては、冷却部Cを、再生用空気を除湿対象空気通流
域Adに通流させる除湿対象空気と熱交換させて冷却す
る気体−気体熱交換部23(以下、空冷式熱交換部と記
載する場合がある)を備えて、その空冷式熱交換部23
及び水冷式熱交換部7を用いて再生用空気を冷却するよ
うに構成してあり、その他は、上記の第1実施形態と同
様に構成してある。
[Second Embodiment] Hereinafter, based on FIG.
A second embodiment of the present invention will be described. In the second embodiment, a gas-gas heat exchange unit 23 (hereinafter, air-cooled heat exchange) that cools the cooling unit C by exchanging heat with dehumidification target air that allows regeneration air to flow through the dehumidification target air flow area Ad. The air-cooled heat exchange unit 23
The air for regeneration is configured to be cooled by using a water-cooled heat exchange unit 7, and the other configuration is the same as that of the first embodiment.

【0036】冷却部Cについて、説明を加える。冷却部
Cは、空冷部形成用筐体41内に、空気供給ヘッダ42
と水冷部形成用筐体43を、空気供給ヘッダ42が上方
に位置する状態で上下方向に間隔を隔てて配設し、水冷
部形成用筐体43内に、隔壁47により、貯水室44及
び空気排出室45を上側から順に上下方向に並ぶ状態で
区画形成し、並びに、複数の空気通流管46を、貯水室
44を上下方向に貫通して、空気供給ヘッダ42及び空
気排出室45夫々に連通接続して設けることにより、構
成してある。
The cooling section C will be described. The cooling unit C includes an air supply header 42 in an air cooling unit forming casing 41.
And the water-cooling section forming casing 43 are arranged at an interval in the vertical direction in a state where the air supply header 42 is located above, and the water storage chambers 44 and The air discharge chambers 45 are formed so as to be vertically arranged in order from the upper side, and a plurality of air flow pipes 46 penetrate the water storage chambers 44 in the vertical direction to form the air supply header 42 and the air discharge chamber 45, respectively. Is provided by being connected to the device.

【0037】そして、冷却部Cを、循環用流路13にお
ける再生用空気通流域Arから冷却用空気通流域Acに
至る部分の途中に、空気供給ヘッダ42に循環用流路1
3の上流側が連通接続され、空気排出室45に循環用流
路13の下流側が連通接続される状態で設けてある。
又、除湿用流路12における除湿対象空気通流域Adよ
りも上流側部分の途中に、空冷部形成用筐体41を接続
して、除湿用流路12を通流する除湿対象空気が空冷部
形成用筐体41を通流してから、除湿対象空気通流域A
dに供給されるようにしてある。従って、空冷部形成用
筐体41及び空気通流管46により、空冷式熱交換部2
3を構成し、水冷部形成用筐体43及び空気通流管46
により、水冷式熱交換部7を構成してある。
The cooling section C is connected to the air supply header 42 in the circulation passage 13 in the middle of a portion of the circulation passage 13 from the regeneration air passage Ar to the cooling air passage Ac.
3 is connected to the upstream side, and the air discharge chamber 45 is provided so that the downstream side of the circulation channel 13 is connected to the air discharge chamber 45.
Further, an air-cooling section forming casing 41 is connected to a portion of the dehumidification flow path 12 upstream of the dehumidification target air flow area Ad, so that the dehumidification target air flowing through the dehumidification flow path 12 passes through the air-cooling section. After flowing through the forming casing 41, the air flow area A for dehumidification
d. Therefore, the air-cooled heat exchange section 2 is formed by the air-cooled section forming casing 41 and the air flow pipe 46.
3 and a water-cooling section forming casing 43 and an air flow pipe 46.
Constitute a water-cooled heat exchange unit 7.

【0038】第1実施形態と同様に、冷却水タンク17
内の冷却水を水冷式熱交換部7の貯水室44にその下部
から供給すべく、冷却水供給路14を冷却水タンク17
と貯水室44の下部とに接続し、貯水室44内の冷却水
をオーバーフロー状態で排出すべく、冷却水排出路15
を貯水室44の上部に接続し、空冷式熱交換部23及び
水冷式熱交換部7にて分離された凝縮水を排出すべく、
凝縮水排出路16を空気排出室45の底部に接続してあ
る。空気排出室45と凝縮水排出路16との接続口に
は、第1実施形態と同様に作用するフロート50を設け
てある。又、貯水室44内の冷却水の温度を検出する温
度センサ20を設けてある。又、断熱材48を、空冷部
形成用筐体41の外周を覆うように設けて、冷却部Cか
ら除湿対象域Rへの放熱を抑制している。制御部6は、
第1実施形態と同様に、温度センサ20の検出温度が前
記設定温度以上になると、冷却水ポンプ18を設定時間
の間作動させる。
As in the first embodiment, the cooling water tank 17
In order to supply the cooling water in the cooling water supply passage 14 to the water storage chamber 44 of the water-cooled heat exchange unit 7 from below, the cooling water supply passage 14 is connected to the cooling water tank 17.
And a lower portion of the water storage chamber 44, and a cooling water discharge passage 15 for discharging the cooling water in the water storage chamber 44 in an overflow state.
Is connected to the upper part of the water storage chamber 44, and the condensed water separated in the air-cooled heat exchange unit 23 and the water-cooled heat exchange unit 7 is discharged.
The condensed water discharge passage 16 is connected to the bottom of the air discharge chamber 45. At the connection port between the air discharge chamber 45 and the condensed water discharge passage 16, a float 50 that operates in the same manner as in the first embodiment is provided. Further, a temperature sensor 20 for detecting the temperature of the cooling water in the water storage chamber 44 is provided. In addition, the heat insulating material 48 is provided so as to cover the outer periphery of the air-cooling section forming casing 41 to suppress heat radiation from the cooling section C to the dehumidification target area R. The control unit 6
As in the first embodiment, when the temperature detected by the temperature sensor 20 becomes equal to or higher than the set temperature, the cooling water pump 18 is operated for a set time.

【0039】空冷式熱交換部23においては、空冷部形
成用筐体41を通流する除湿対象空気により空気通流管
46を通流する再生用空気が冷却される。そして、空冷
式熱交換部23で分離された凝縮水、及び、水冷式熱交
換部7で分離された凝縮水は、共に空気通流管46を流
下して、凝縮水排出路16を通じて排出される。
In the air-cooling type heat exchange section 23, the regeneration air flowing through the air flow pipe 46 is cooled by the air to be dehumidified flowing through the air-cooling section forming casing 41. The condensed water separated by the air-cooled heat exchange unit 23 and the condensed water separated by the water-cooled heat exchange unit 7 both flow down the air flow pipe 46 and are discharged through the condensed water discharge passage 16. You.

【0040】第2実施形態による除湿装置では、空冷式
熱交換部23と水冷式熱交換部7の協働により、再生用
空気から一層効率良く水分を凝縮させて分離することが
できる。
In the dehumidifying apparatus according to the second embodiment, the cooperation of the air-cooled heat exchange unit 23 and the water-cooled heat exchange unit 7 allows water to be more efficiently condensed and separated from the regeneration air.

【0041】〔第3実施形態〕以下、図3に基づいて、
本発明の第3の実施の形態を説明する。第3実施形態に
おいては、冷却部Cを、第2実施形態と同様に、再生用
空気を除湿対象空気通流域Adに通流させる除湿対象空
気と熱交換させて冷却する空冷式熱交換部23を備え
て、その空冷式熱交換部23及び水冷式熱交換部7を用
いて再生用空気から水分を凝縮させて分離するように構
成してあり、更に、再生用空気から分離した凝縮水を冷
却水として水冷式熱交換部7に供給する凝縮水ポンプ2
4(凝縮水供給手段に相当する)を備えて構成してあ
る。但し、第2実施形態における冷却水タンク17、冷
却水供給路14、冷却水ポンプ、温度センサ20及び凝
縮水排出路16を省略してある。
[Third Embodiment] Hereinafter, based on FIG.
A third embodiment of the present invention will be described. In the third embodiment, similarly to the second embodiment, an air-cooling heat exchange unit 23 that exchanges heat with dehumidification target air that allows regeneration air to flow through a dehumidification target air flow area Ad, as in the second embodiment, and cools the air. The air-cooled heat exchange section 23 and the water-cooled heat exchange section 7 are used to condense and separate moisture from the regeneration air. Further, the condensed water separated from the regeneration air is separated from the regeneration air. Condensed water pump 2 that supplies cooling water to water-cooled heat exchange section 7
4 (corresponding to condensed water supply means). However, the cooling water tank 17, the cooling water supply path 14, the cooling water pump, the temperature sensor 20, and the condensed water discharge path 16 in the second embodiment are omitted.

【0042】第3実施形態においては、第2実施形態に
おける空気排出室45は、再生用空気から分離した凝縮
水の貯留用としても機能させるようにして、空気排出室
兼凝縮水貯留室45として用いる。そして、空気排出室
兼凝縮水貯留室45の下部と貯水室44の下部とを凝縮
水供給路25にて接続し、空気排出室兼凝縮水貯留室4
5に貯留されている凝縮水を冷却水として水冷式熱交換
部23に供給すべく、その凝縮水供給路25に凝縮水ポ
ンプ24を設けてある。冷却水排出路15は、第2実施
形態と同様に、貯水室44内の冷却水としての凝縮水を
オーバーフロー状態で排出すべく、貯水室44の上部に
接続し、排水タンク19は、冷却水排出路15を通じて
排出される凝縮水を受けて貯留するように設けてある。
又、空気排出室兼凝縮水貯留室45に貯留される凝縮水
の水位が設定水位になったことを検出する水位センサ2
6を設けてある。
In the third embodiment, the air discharge chamber 45 in the second embodiment also functions as a storage for condensed water separated from the air for regeneration, and serves as an air discharge chamber and a condensed water storage chamber 45. Used. Then, the lower part of the air discharge chamber / condensed water storage chamber 45 and the lower part of the water storage chamber 44 are connected by the condensed water supply passage 25, and the air discharge chamber / condensed water storage chamber 4 is connected.
In order to supply the condensed water stored in 5 as cooling water to the water-cooled heat exchange unit 23, a condensed water pump 24 is provided in the condensed water supply passage 25. The cooling water discharge passage 15 is connected to the upper part of the water storage chamber 44 to discharge condensed water as the cooling water in the water storage chamber 44 in an overflow state, as in the second embodiment. The condensed water discharged through the discharge passage 15 is received and stored.
Further, a water level sensor 2 for detecting that the level of the condensed water stored in the air discharge chamber / condensed water storage chamber 45 has reached the set water level.
6 is provided.

【0043】そして、水位センサ26が空気排出室兼凝
縮水貯留室45内の凝縮水の水位が前記設定水位になっ
たことを検出すると、凝縮水ポンプ24を作動させる。
すると、空気排出室兼凝縮水貯留室45内の凝縮水が貯
水室44の下部から供給され、それに伴って、貯水室4
4内の高温の凝縮水がオーバーフロー状態で冷却水排出
路15を通じて排出されるので、貯水室44内の冷却水
としての凝縮水の温度が低下する。
When the water level sensor 26 detects that the water level of the condensed water in the air discharge chamber / condensed water storage chamber 45 has reached the set water level, the condensed water pump 24 is operated.
Then, the condensed water in the air discharge chamber / condensed water storage chamber 45 is supplied from the lower part of the water storage chamber 44, and accordingly, the water storage chamber 4
Since the high-temperature condensed water in 4 is discharged through the cooling water discharge passage 15 in an overflow state, the temperature of the condensed water as the cooling water in the water storage chamber 44 decreases.

【0044】制御部6の制御作動について説明する。制
御部6は、水位センサ26が前記設定水位になったこと
を検出すると、凝縮水ポンプ24を凝縮水ポンプ作動用
の設定時間の間作動させる前記凝縮水ポンプ作動用の設
定時間は適宜設定することができるが、例えば、空気排
出室兼凝縮水貯留室45内の凝縮水の略全量を貯水室4
4に供給することができるような時間に設定する。第3
実施形態による除湿装置では、冷却水を補給する手間が
省けるので、使い勝手が一層良くなる。
The control operation of the control unit 6 will be described. When the control unit 6 detects that the water level sensor 26 has reached the set water level, the control unit 6 operates the condensed water pump 24 for the set time for operating the condensed water pump, and appropriately sets the set time for operating the condensed water pump. For example, substantially all of the condensed water in the air discharge chamber / condensed water storage chamber 45 can be stored in the water storage chamber 4.
4 is set to a time that can be supplied. Third
In the dehumidifying device according to the embodiment, since the labor for replenishing the cooling water can be omitted, the usability is further improved.

【0045】〔別実施形態〕次に別実施形態を説明す
る。 (イ) 吸湿体2を、その各部が再生領域2rとなった
後、冷却領域2cを経由して除湿領域2dに順次代わる
ように設けるための具体構成は、上記の実施形態におい
て例示した構成に限定されるものではない。例えば、吸
湿体2を固定して設けるとともに、吸湿体2を3つ以上
の領域に区分する。そして、加熱手段3にて加熱された
再生用空気が通流する領域と、冷却部Cにて冷却された
再生用空気が通流する領域と、除湿対象空気が通流する
領域とが同時に存在する状態で、ダンパ等により、各領
域について、加熱手段3にて加熱された再生用空気、冷
却部Cにて冷却された再生用空気、除湿対象空気を記載
順に順次通流させるよう切り換える。つまり、加熱手段
3にて加熱された再生用空気が通流する領域が再生領域
2rとなり、冷却部Cにて冷却された再生用空気が通流
する領域が冷却領域2cとなり、除湿対象空気が通流す
る領域が除湿領域2dとなる。
[Another Embodiment] Next, another embodiment will be described. (A) The specific configuration for providing the moisture absorber 2 so that each part thereof becomes the regeneration region 2r and then sequentially replaces the dehumidification region 2d via the cooling region 2c is the same as the configuration exemplified in the above embodiment. It is not limited. For example, the moisture absorber 2 is fixedly provided, and the moisture absorber 2 is divided into three or more regions. A region through which the regeneration air heated by the heating means 3 flows, a region through which the regeneration air cooled by the cooling unit C flows, and a region through which the air to be dehumidified simultaneously exist. In this state, switching is performed such that the regeneration air heated by the heating unit 3, the regeneration air cooled by the cooling unit C, and the dehumidification target air are sequentially passed through the respective regions by a damper or the like in the stated order. That is, the area through which the regeneration air heated by the heating means 3 flows is the regeneration area 2r, the area through which the regeneration air cooled by the cooling unit C flows is the cooling area 2c, and the air to be dehumidified is The flowing region is the dehumidifying region 2d.

【0046】(ロ) 上記の第1及び第2の各実施形態
において、冷却水タンク21を省略して、冷却水供給路
14に水道管を接続すると共に、冷却水供給路14に開
閉弁を設け、その開閉弁の操作により、水道水を冷却水
として水冷式熱交換部7に供給するように構成しても良
い。この場合は、冷却水を補給する手間が省けるので、
使い勝手が一層良くなる。上記の第1、第2及び第3の
各実施形態において、排水タンク19を省略して、冷却
水排出路15を通じて直接排水しても良い。
(B) In each of the first and second embodiments, the cooling water tank 21 is omitted, a water pipe is connected to the cooling water supply path 14, and an opening / closing valve is provided in the cooling water supply path 14. The tap water may be supplied to the water-cooled heat exchange unit 7 as cooling water by operating the on-off valve. In this case, there is no need to supply cooling water,
Usability is further improved. In each of the first, second and third embodiments, the drainage tank 19 may be omitted, and the water may be directly drained through the cooling water discharge passage 15.

【0047】(ハ) 冷却部Cを空冷式熱交換部23と
水冷式熱交換部7とを備えて構成した第2及び第3の各
実施形態においては、空冷式熱交換部23及び水冷式熱
交換部7を、空冷式熱交換部23が水冷式熱交換部7よ
りも上流側に位置する状態で循環用流路13に設ける場
合について例示したが、図5に示すように、水冷式熱交
換部7が空冷式熱交換部23よりも上流側に位置する状
態で循環用流路13に設けてもよい。この場合は、上流
側に位置する水冷式熱交換部7で先に、再生用空気を冷
却するので、第2及び第3の各実施形態に比べて、除湿
用ロータ2再生用の熱、及び、除湿体対象空気中の水分
の凝縮熱が除湿対象空気に放熱されるのを抑制すること
ができる。従って、除湿対象域Rの昇温を一層抑制する
ことができる。
(C) In the second and third embodiments in which the cooling section C is provided with the air-cooled heat exchange section 23 and the water-cooled heat exchange section 7, the air-cooled heat exchange section 23 and the water-cooled The case where the heat exchange unit 7 is provided in the circulation flow channel 13 in a state where the air-cooled heat exchange unit 23 is located on the upstream side of the water-cooled heat exchange unit 7 has been exemplified, but as shown in FIG. The heat exchange unit 7 may be provided in the circulation channel 13 in a state where the heat exchange unit 7 is located on the upstream side of the air-cooled heat exchange unit 23. In this case, since the air for regeneration is cooled first by the water-cooled heat exchange unit 7 located on the upstream side, the heat for regeneration of the dehumidifying rotor 2 and the heat for regeneration, as compared with the second and third embodiments, and In addition, the heat of condensation of moisture in the air to be dehumidified can be suppressed from being radiated to the air to be dehumidified. Therefore, the temperature rise in the dehumidification target area R can be further suppressed.

【0048】尚、図5は、凝縮水を冷却水として用いる
ように構成した場合について、図示している。水冷式熱
交換部7は、貯水室51と、その貯水室5を上下方向に
貫通する状態で設けた複数の空気通流管52にて構成し
てある。空冷式熱交換部23は、除湿対象空気を通流さ
せる除湿対象空気通流室53と、その除湿対象空気通流
室53を上下方向に貫通する状態で設けた複数の上流側
空気通流管54と、その除湿対象空気通流室53を上下
方向に貫通する状態で設けた複数の下流側空気通流管5
5にて構成してある。
FIG. 5 shows a case in which condensed water is used as cooling water. The water-cooled heat exchange unit 7 includes a water storage chamber 51 and a plurality of air flow pipes 52 provided to penetrate the water storage chamber 5 in the up-down direction. The air-cooling type heat exchange unit 23 includes a dehumidification target air flow chamber 53 through which the dehumidification target air flows, and a plurality of upstream air flow pipes provided in a vertically penetrating state through the dehumidification target air flow chamber 53. 54 and a plurality of downstream air flow pipes 5 provided so as to vertically penetrate the air flow chamber 53 to be dehumidified.
5.

【0049】水冷式熱交換部7の空気通流管52の上端
開口に連通する空気供給室56、水冷式熱交換部7の空
気通流管52の下端開口と空冷式熱交換部23の上流側
空気通流管54の下端開口とを連通すると共に凝縮水を
貯留する凝縮水貯留室57、上流側空気通流管54の上
端開口と下流側空気通流管55の上端開口とを連通する
連通室58、下流側空気通流管55の下端開口に連通す
ると共に、凝縮水貯留室57の上方に位置して、底部に
凝縮水貯留室57に連通する連通開口59aを備えた空
気排出室59を設けてある。図5中の50は、空気排出
室59の連通開口59aを開閉するフロートであり、こ
のフロート50は、空気排出室59の凝縮水の貯留量が
所定量以下のときは、連通開口59aを閉じ、所定量を
越えると浮いて連通開口59aを開くようになってい
て、再生用空気が凝縮水貯留室57に流入するのを防止
しながら、空気排出室59の凝縮水を凝縮水貯留室57
へ移すように構成してある。
The air supply chamber 56 communicating with the upper end opening of the air flow pipe 52 of the water-cooled heat exchange section 7, the lower end opening of the air flow pipe 52 of the water-cooled heat exchange section 7 and the upstream of the air-cooled heat exchange section 23. The lower end opening of the side air flow pipe 54 and the condensed water storage chamber 57 for storing the condensed water, the upper end opening of the upstream air flow pipe 54 and the upper end opening of the downstream air flow pipe 55 are connected. The communication chamber 58 communicates with the lower end opening of the downstream air flow pipe 55, and is located above the condensed water storage chamber 57 and has at the bottom a communication opening 59 a that communicates with the condensed water storage chamber 57. 59 are provided. 5 is a float for opening and closing the communication opening 59a of the air discharge chamber 59. The float 50 closes the communication opening 59a when the storage amount of the condensed water in the air discharge chamber 59 is less than a predetermined amount. When the amount exceeds a predetermined amount, the condensed water in the air discharge chamber 59 is released while preventing the regeneration air from flowing into the condensed water storage chamber 57 while opening the communication opening 59a.
It is configured to move to

【0050】そして、循環用流路13の上流側を空気供
給室56に接続し、循環用流路13の下流側を空気排出
室59に接続して、再生用空気が、空気供給室56、水
冷式熱交換部7の空気通流管52、凝縮水貯留室57、
空冷式熱交換部23の上流側空気通流管54、連通室5
8、下流側空気通流管55、空気排出室59を順に通流
するように構成してある。又、除湿用流路12における
除湿対象空気通流域Adよりも上流側部分の途中に、除
湿用空気通流室53を接続して、除湿用流路12を通流
する除湿対象空気が除湿用空気通流室53を通流してか
ら、除湿対象空気通流域Adに供給されるようにしてあ
る。
The upstream side of the circulation channel 13 is connected to the air supply chamber 56, and the downstream side of the circulation channel 13 is connected to the air discharge chamber 59, so that the regeneration air is supplied to the air supply chamber 56, The air flow pipe 52 of the water-cooled heat exchange section 7, the condensed water storage chamber 57,
The air flow pipe 54 on the upstream side of the air-cooled heat exchange unit 23 and the communication chamber 5
8, the downstream air flow pipe 55 and the air discharge chamber 59 are configured to flow sequentially. Further, a dehumidification air flow chamber 53 is connected to a portion of the dehumidification flow path 12 upstream of the dehumidification air flow area Ad, so that the dehumidification air flowing through the dehumidification flow path 12 is used for dehumidification. After flowing through the air flow chamber 53, the air is supplied to the dehumidification target air flow area Ad.

【0051】凝縮水貯留室57の下部と貯水室51の下
部とを凝縮水供給路25にて接続し、凝縮水貯留室57
に貯留されている凝縮水を冷却水として水冷式熱交換部
7に供給すべく、その凝縮水供給路25に凝縮水ポンプ
24を設けてある。冷却水排出路15は、貯水室51内
の冷却水としての凝縮水をオーバーフロー状態で排出す
べく、貯水室51の上部に接続してある。又、凝縮水貯
留室57に貯留される凝縮水の水位が設定水位になった
ことを検出する水位センサ26を設けてある。
The lower part of the condensed water storage chamber 57 and the lower part of the water storage chamber 51 are connected by the condensed water supply passage 25, and the condensed water storage chamber 57 is connected.
A condensed water pump 24 is provided in the condensed water supply passage 25 so as to supply the condensed water stored in the condensed water as cooling water to the water-cooled heat exchange unit 7. The cooling water discharge passage 15 is connected to an upper part of the water storage chamber 51 so as to discharge condensed water as cooling water in the water storage chamber 51 in an overflow state. Further, a water level sensor 26 for detecting that the water level of the condensed water stored in the condensed water storage chamber 57 has reached the set water level is provided.

【0052】(ニ) 加熱手段の具体構成としては、上
記の各実施形態において例示した電気ヒータ3に限定さ
れるものではなく、例えば、ガスバーナでも良い。
(D) The specific structure of the heating means is not limited to the electric heater 3 exemplified in each of the above embodiments, and may be, for example, a gas burner.

【0053】(ホ) 吸湿体の具体構成は、上記の実施
形態において例示した構成に限定されるものではない。
例えば、通気可能な多孔状体を基材として、その多孔状
体に吸湿剤を保持させる構成でも良い。あるいは、吸湿
剤そのものを、通気可能な多孔状に成形する構成として
も良い。
(E) The specific configuration of the moisture absorber is not limited to the configuration exemplified in the above embodiment.
For example, a configuration may be used in which a porous body that can be ventilated is used as a base material, and the porous body holds a moisture absorbent. Alternatively, a configuration may be employed in which the moisture absorbent itself is formed into a permeable porous shape.

【0054】(ヘ) 再生用気体としては、空気以外の
ものを使用しても良い。又、液状冷却媒体としては、水
以外のものを使用しても良い。
(F) A gas other than air may be used as the regeneration gas. In addition, a liquid cooling medium other than water may be used.

【0055】(ト) 吸湿剤は、空気中の水分を吸着す
るシリカゲル、活性アルミナ、合成ゼオライト、活性炭
等の吸着剤、あるいは、空気中の水分を吸収する塩化リ
チウムや塩化カルシウム等の吸収剤を初め、吸湿性を有
し、且つ、再生用気体による脱湿再生が可能なものであ
れば種々のものを採用することができる。
(G) Hygroscopic agents include adsorbents such as silica gel, activated alumina, synthetic zeolite, and activated carbon that absorb moisture in the air, and absorbents such as lithium chloride and calcium chloride that absorb moisture in the air. Initially, various materials can be employed as long as they have a hygroscopic property and can be dehumidified and regenerated by a regeneration gas.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施形態にかかる除湿装置の全体構成を示
すブロック図
FIG. 1 is a block diagram showing the overall configuration of a dehumidifier according to a first embodiment.

【図2】第2実施形態にかかる除湿装置の全体構成を示
すブロック図
FIG. 2 is a block diagram showing an overall configuration of a dehumidifying device according to a second embodiment.

【図3】第3実施形態にかかる除湿装置の全体構成を示
すブロック図
FIG. 3 is a block diagram showing an overall configuration of a dehumidifying device according to a third embodiment.

【図4】除湿装置の外観図FIG. 4 is an external view of a dehumidifier.

【図5】別実施形態にかかる冷却部を示す縦断面図FIG. 5 is a longitudinal sectional view showing a cooling unit according to another embodiment.

【図6】従来の除湿装置の全体構成を示すブロック図FIG. 6 is a block diagram showing the overall configuration of a conventional dehumidifier.

【符号の説明】[Explanation of symbols]

2 吸湿体 2c 冷却領域 2d 除湿領域 2r 再生領域 3 加熱手段 4 除湿用送風手段 5 循環用送風手段 7 気体−液体熱交換部 23 気体−気体熱交換部 24 凝縮水供給手段 C 冷却手段 L 循環経路 R 除湿対象域 DESCRIPTION OF SYMBOLS 2 Hygroscopic body 2c Cooling area 2d Dehumidifying area 2r Regeneration area 3 Heating means 4 Dehumidifying air blowing means 5 Circulating air blowing means 7 Gas-liquid heat exchange part 23 Gas-gas heat exchange part 24 Condensed water supply means C Cooling means L Circulation path R Dehumidification target area

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 通気可能に構成された吸湿体が、その一
部が除湿対象空気の通流する除湿領域となり、他部が再
生用気体の通流する再生領域となり、且つ、各部が前記
除湿領域と前記再生領域とに順次代わるように設けら
れ、 除湿対象域から除湿対象空気を吸気して、前記吸湿体の
除湿領域を通過させた後に除湿対象域に送気する除湿用
送風手段と、 再生用気体を加熱する加熱手段の加熱作用域、前記再生
領域、再生用気体を冷却してその再生用気体に含まれる
水分を凝縮させて分離する冷却手段の冷却作用域の順に
通る循環経路で、再生用気体を循環させる循環用送風手
段とが設けられた除湿装置であって、 前記吸湿体の各部が、前記再生領域となった後、前記冷
却手段にて冷却された再生用気体の通流する冷却領域を
経由して、前記除湿領域に順次代わるように設けられ、 前記循環用送風手段が、前記加熱手段の加熱作用域、前
記再生領域、前記冷却手段の冷却作用域、前記冷却領域
の順に通る循環経路で、再生用気体を循環させるように
構成され、 前記冷却手段が、再生用気体を液状冷却媒体と熱交換さ
せて冷却する気体−液体熱交換部を備えて構成されてい
る除湿装置。
A part of a moisture-absorbing body that is configured to be ventilated serves as a dehumidifying area through which air to be dehumidified flows, another part serves as a regenerating area through which a regenerating gas flows, and each part includes the dehumidifying section. A dehumidifying air supply unit that is provided so as to sequentially replace the area and the regeneration area, inhales dehumidification target air from the dehumidification target area, and supplies air to the dehumidification target area after passing through the dehumidification area of the desiccant. The circulation path passes through the heating action area of the heating means for heating the regeneration gas, the regeneration area, and the cooling action area of the cooling means for cooling the regeneration gas and condensing and separating the moisture contained in the regeneration gas. A dehumidifier provided with a circulating air blowing means for circulating a regeneration gas, wherein after the respective parts of the moisture absorber become the regeneration area, a flow of the regeneration gas cooled by the cooling means is performed. Dehumidification via the flowing cooling area The circulation air blowing means is provided so as to sequentially replace the area, and the circulation gas passes through the heating action area of the heating means, the regeneration area, the cooling action area of the cooling means, and the circulation path passing through the cooling area in order. A dehumidifier configured to circulate the gas, wherein the cooling unit includes a gas-liquid heat exchange unit that cools the regeneration gas by exchanging heat with a liquid cooling medium.
【請求項2】 前記冷却手段が、再生用気体を前記除湿
領域に通流させる除湿対象空気と熱交換させて冷却する
気体−気体熱交換部を備えて、その気体−気体熱交換部
及び前記気体−液体熱交換部を用いて再生用気体を冷却
するように構成されている請求項1記載の除湿装置。
2. The cooling means comprises a gas-gas heat exchange unit for cooling by exchanging heat with the air to be dehumidified for allowing the regeneration gas to flow through the dehumidification area. The dehumidifier according to claim 1, wherein the regeneration gas is cooled by using a gas-liquid heat exchange unit.
【請求項3】 前記冷却手段が、再生用気体から分離し
た凝縮水を前記液状冷却媒体として前記気体−液体熱交
換部に供給する凝縮水供給手段を備えて構成されている
請求項1又は2記載の除湿装置。
3. The cooling means includes a condensed water supply means for supplying condensed water separated from a regeneration gas as the liquid cooling medium to the gas-liquid heat exchange section. The dehumidifier according to any one of the preceding claims.
JP11388899A 1999-04-21 1999-04-21 Dehumidifier Expired - Fee Related JP3919379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11388899A JP3919379B2 (en) 1999-04-21 1999-04-21 Dehumidifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11388899A JP3919379B2 (en) 1999-04-21 1999-04-21 Dehumidifier

Publications (2)

Publication Number Publication Date
JP2000300933A true JP2000300933A (en) 2000-10-31
JP3919379B2 JP3919379B2 (en) 2007-05-23

Family

ID=14623656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11388899A Expired - Fee Related JP3919379B2 (en) 1999-04-21 1999-04-21 Dehumidifier

Country Status (1)

Country Link
JP (1) JP3919379B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006150162A (en) * 2004-11-25 2006-06-15 Matsushita Electric Ind Co Ltd Air cleaner and air conditioner
JP2008212696A (en) * 2008-04-03 2008-09-18 Matsushita Electric Ind Co Ltd Air cleaner and air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11435094B2 (en) * 2020-06-23 2022-09-06 New Widetech Industries Co., Ltd. Dehumidifier with controlling assembly for water pump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006150162A (en) * 2004-11-25 2006-06-15 Matsushita Electric Ind Co Ltd Air cleaner and air conditioner
JP4687081B2 (en) * 2004-11-25 2011-05-25 パナソニック株式会社 Air conditioner
JP2008212696A (en) * 2008-04-03 2008-09-18 Matsushita Electric Ind Co Ltd Air cleaner and air conditioner
JP4687740B2 (en) * 2008-04-03 2011-05-25 パナソニック株式会社 Air conditioner

Also Published As

Publication number Publication date
JP3919379B2 (en) 2007-05-23

Similar Documents

Publication Publication Date Title
JP4374393B1 (en) Humidity control device
JP4954018B2 (en) Air conditioner
KR100707440B1 (en) Humidifier
WO2022074919A1 (en) Air conditioner
KR20190024396A (en) Air conditioner and the method thereof
KR20060032478A (en) Ventilation system
JP2008142656A (en) Dehumidification apparatus
JP2006329596A (en) Humidity conditioner
JP4529318B2 (en) Dehumidifying device and cold air generator using the dehumidifying device
JP2005164148A (en) Humidity conditioning device
JP3919379B2 (en) Dehumidifier
JP3933343B2 (en) Air conditioner
JP3916343B2 (en) Dehumidifier
JP3960708B2 (en) Dehumidifier
WO2022074918A1 (en) Air conditioner
WO2022074920A1 (en) Air conditioner
WO2022074917A1 (en) Air conditioner
JPWO2008117684A1 (en) Humidifier and air conditioner
KR100755831B1 (en) ventilating device
KR200184583Y1 (en) A dry type dehumidfying air-conditioner of a larger capacity
JP3835920B2 (en) Warm air heater
JP2006346659A (en) Humidity controller
JP7065446B2 (en) Air conditioner
KR20190024395A (en) Air conditioner and the method thereof
JP2008241212A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070213

R150 Certificate of patent or registration of utility model

Ref document number: 3919379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees