JP2000298086A - Material tester - Google Patents

Material tester

Info

Publication number
JP2000298086A
JP2000298086A JP11105718A JP10571899A JP2000298086A JP 2000298086 A JP2000298086 A JP 2000298086A JP 11105718 A JP11105718 A JP 11105718A JP 10571899 A JP10571899 A JP 10571899A JP 2000298086 A JP2000298086 A JP 2000298086A
Authority
JP
Japan
Prior art keywords
hydraulic
pressure
valve
load
servo valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11105718A
Other languages
Japanese (ja)
Other versions
JP3340085B2 (en
Inventor
Nobunari Takahashi
信成 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Tobacco Inc
Original Assignee
Japan Tobacco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Tobacco Inc filed Critical Japan Tobacco Inc
Priority to JP10571899A priority Critical patent/JP3340085B2/en
Priority to KR1020000017861A priority patent/KR100388725B1/en
Publication of JP2000298086A publication Critical patent/JP2000298086A/en
Application granted granted Critical
Publication of JP3340085B2 publication Critical patent/JP3340085B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/62Manufacturing, calibrating, or repairing devices used in investigations covered by the preceding subgroups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0017Tensile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0073Fatigue

Abstract

PROBLEM TO BE SOLVED: To provide a material tester provided with a hydraulic circuit capable of controlling the hydraulic cylinder in the material tester simply and highly accurately. SOLUTION: A cylinder driving circuit is constituted by providing a load response type pressure reducing valve 7 operated corresponding to the oil pressure difference ΔP(=P1-P2) between the pressures before and behind a hydraulic servo valve 5 to adjust the oil pressure supplied to the hydraulic servo valve, between the hydraulic servo valve 5 driving a hydraulic cylinder 1 corresponding to the load applied to a test piece and the hydraulic pump 3 thereof. Further, a relief valve 8 for adjusting the oil pressure P0 supplied to the input side of the load responce type pressure reducing valve corresponding to the oil pressure P1 on the output side of the load response type pressure reducing valve is provided to a hydraulic source.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、油圧シリンダを介
して試験片に負荷を加えて圧縮・伸張・疲労等の試験を
行う材料試験機に係り、特に上記油圧シリンダを駆動す
る油圧回路の制御性を高めると共にその構成の簡素化を
図った材料試験機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material testing machine for performing a test such as compression, extension and fatigue by applying a load to a test piece via a hydraulic cylinder, and more particularly to a control of a hydraulic circuit for driving the hydraulic cylinder. The present invention relates to a material testing machine having improved simplicity and a simplified configuration.

【0002】[0002]

【関連する背景技術】油圧シリンダを用いて試験片に負
荷を加え、上記試験片に加わる荷重と変位との関係から
該試験片の圧縮特性や伸張特性、更には疲労破壊強度等
を試験する材料試験機においては、油圧シリンダを精度
良く制御することが重要である。油圧シリンダの駆動
は、油圧源から供給される圧力油を油圧サーボ弁を介し
て該油圧シリンダに与えることによって行われ、上記油
圧サーボ弁の作動(弁開度)を制御することでその油圧
(駆動圧力)、ひいては油圧シリンダの負荷圧が調整さ
れる。尚、油圧サーボ弁の制御は、専ら、フィードバッ
ク制御系をなして設けられたサーボアンプにより電気的
に行われる。
[Related Background Art] A material for applying a load to a test piece using a hydraulic cylinder, and testing the compression properties and extension properties of the test piece and the fatigue fracture strength from the relationship between the load applied to the test piece and the displacement. In a test machine, it is important to control the hydraulic cylinder with high accuracy. The hydraulic cylinder is driven by applying pressure oil supplied from a hydraulic pressure source to the hydraulic cylinder via a hydraulic servo valve, and controlling the operation (valve opening) of the hydraulic servo valve to control the hydraulic pressure (valve opening). Drive pressure), and thus the load pressure of the hydraulic cylinder. The control of the hydraulic servo valve is exclusively performed electrically by a servo amplifier provided as a feedback control system.

【0003】[0003]

【発明が解決しようとする課題】ところで、例えば実公
平7−52608号公報には油圧源(油圧ポンプ)と油
圧サーボ弁とを結ぶ1次側管路にリリーフ弁を設け、こ
のリリーフ弁を油圧サーボ弁の前後の油圧差に応じて駆
動することで該油圧サーボ弁の前後の油圧差を予め設定
した値以下に保つ技術が開示される。このような油圧回
路によれば油圧サーボ弁の前後の油圧差を一定に保つこ
とができるので、油圧サーボ弁での弁圧力降下を小さく
し、熱エネルギへの変換を少なくすることができる。
In Japanese Utility Model Publication No. 7-52608, for example, a relief valve is provided in a primary line connecting a hydraulic source (hydraulic pump) and a hydraulic servo valve, and the relief valve is connected to a hydraulic valve. A technology is disclosed in which a hydraulic pressure difference before and after the hydraulic servo valve is maintained at a value equal to or less than a preset value by driving the hydraulic valve in accordance with a hydraulic pressure difference before and after the servo valve. According to such a hydraulic circuit, the hydraulic pressure difference before and after the hydraulic servo valve can be kept constant, so that the valve pressure drop at the hydraulic servo valve can be reduced, and the conversion to heat energy can be reduced.

【0004】しかしながら一般的に210kgf/cm2程度
の高い油圧を発生する油圧源(油圧ポンプ)に接続され
た油圧サーボ弁の1次側の圧力がリリーフ弁によって直
接制御されるので、リリーフ弁における負荷が大きい。
しかもリリーフ弁の作動が油圧サーボ弁に影響を及ぼし
易いので、油圧サーボ弁の安定した動作が妨げられる虞
がある。
However, since the pressure on the primary side of a hydraulic servo valve connected to a hydraulic source (hydraulic pump) for generating a high hydraulic pressure of about 210 kgf / cm 2 is directly controlled by the relief valve, the Heavy load.
In addition, since the operation of the relief valve easily affects the hydraulic servo valve, there is a possibility that stable operation of the hydraulic servo valve is hindered.

【0005】本発明はこのような事情を考慮してなされ
たもので、その目的は、油圧シリンダの作動圧力(負荷
圧)に拘わることなく該油圧シリンダを簡易にして高精
度に制御することのできる油圧回路を備えた材料試験機
を提供することにある。
The present invention has been made in view of such circumstances, and an object of the present invention is to control a hydraulic cylinder simply and with high accuracy without regard to the operating pressure (load pressure) of the hydraulic cylinder. It is an object of the present invention to provide a material testing machine provided with a hydraulic circuit that can be used.

【0006】[0006]

【課題を解決するための手段】上述した目的を達成する
べく本発明に係る材料試験機は、試験片に加える負荷に
応じて油圧シリンダを駆動する油圧サーボ弁とその油圧
源との間に、該油圧サーボ弁の前後の油圧差に応じて作
動して該油圧サーボ弁に供給する油圧を調整する負荷感
応型減圧弁を設けてシリンダ駆動回路を構成し、更にこ
のシリンダ駆動回路における上記負荷感応型減圧弁の出
力側の油圧に応じて前記油圧源から該負荷感応型減圧弁
の入力側に供給する油圧を調整するリリーフ弁を設けた
ことを特徴としている。
In order to achieve the above-mentioned object, a material testing machine according to the present invention comprises a hydraulic test apparatus comprising: a hydraulic servo valve for driving a hydraulic cylinder in accordance with a load applied to a test piece; A cylinder drive circuit is provided by providing a load-sensitive pressure reducing valve that operates in accordance with the hydraulic pressure difference before and after the hydraulic servo valve to adjust the hydraulic pressure supplied to the hydraulic servo valve. A relief valve is provided for adjusting the hydraulic pressure supplied from the hydraulic pressure source to the input side of the load-responsive pressure reducing valve in accordance with the hydraulic pressure at the output side of the pressure reducing valve.

【0007】即ち、本発明は油圧サーボ弁とその油圧源
との間に該油圧サーボ弁の前後の油圧差に応じて作動す
る負荷感応型減圧弁を設けることで油圧サーボ弁と油圧
源との干渉を防ぎ、更にこの負荷感応型減圧弁と油圧源
との間に該負荷感応型減圧弁の出力側の油圧に応じて作
動するリリーフ弁を設けることで、簡易にして効果的に
油圧サーボ弁の安定した作動を確保するようにしたこと
を特徴としている。
That is, the present invention provides a load-sensitive pressure-reducing valve which operates in accordance with a hydraulic pressure difference before and after the hydraulic servo valve between the hydraulic servo valve and the hydraulic pressure source, so that the hydraulic servo valve and the hydraulic pressure source can be connected to each other. Preventing interference and providing a relief valve between the load-sensitive pressure-reducing valve and the hydraulic pressure source that operates according to the oil pressure on the output side of the load-sensitive pressure-reducing valve, thereby simplifying and effectively providing the hydraulic servo valve. The feature is to ensure stable operation of.

【0008】また本発明は、複数の油圧シリンダをそれ
ぞれ駆動する複数のシリンダ駆動回路に対して、共通の
油圧源から油圧をそれぞれ供給するように構成すると共
に、複数のシリンダ駆動回路における各負荷感応型減圧
弁の出力側の油圧に従って、油圧源に設けらたれリリー
フ回路を駆動して各負荷感応型減圧弁の入力側に供給す
る油圧を調整するように構成することを特徴としてい
る。
Further, according to the present invention, a plurality of cylinder drive circuits for driving a plurality of hydraulic cylinders are respectively supplied with hydraulic pressure from a common hydraulic source, and each of the plurality of cylinder drive circuits is provided with a load-sensitive circuit. According to the present invention, a relief circuit provided in a hydraulic pressure source is driven in accordance with the hydraulic pressure on the output side of the type pressure reducing valve to adjust the hydraulic pressure supplied to the input side of each load-sensitive type pressure reducing valve.

【0009】好ましくは各負荷感応型減圧弁の出力側の
油圧を逆止弁を介してそれぞれ導入してリリーフ弁を駆
動するようにすることで、各負荷感応型減圧弁の出力側
の最も高い油圧に応じてリリーフ弁を作動させて、油圧
源から前記各負荷感応型減圧弁の入力側にそれぞれ供給
する油圧を調整することを特徴としている。
Preferably, the hydraulic pressure at the output side of each load-responsive pressure reducing valve is introduced via a check valve to drive the relief valve, so that the output side of each load-responsive pressure reducing valve has the highest output. The relief valve is operated according to the oil pressure to adjust the oil pressure supplied from the oil pressure source to the input side of each of the load-responsive pressure reducing valves.

【0010】[0010]

【発明の実施の形態】以下、図面を参照して本発明の実
施形態に係る材料試験機における油圧回路について説明
する。図1はこの実施形態に係る材料試験機における油
圧回路の概略的な構成図で、1は油圧を受けて駆動され
て試験片(図示せず)に所定の負荷を加える油圧シリン
ダである。この油圧シリンダ1の作動によって上記試験
片に荷重または変位からなる負荷が加えられ、そのとき
の荷重値と変位値との関係から圧縮や引っ張り強度、更
には曲げ強度等の試験が行われる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a hydraulic circuit in a material testing machine according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a hydraulic circuit in a material testing machine according to this embodiment. Reference numeral 1 denotes a hydraulic cylinder that is driven by receiving hydraulic pressure and applies a predetermined load to a test piece (not shown). By the operation of the hydraulic cylinder 1, a load consisting of a load or a displacement is applied to the test piece, and tests such as compression and tensile strength and further bending strength are performed based on the relationship between the load value and the displacement value at that time.

【0011】さて上記油圧シリンダ1の駆動は、基本的
にはオイルタンク2から油圧ポンプ3、更にフィルタ4
を介して供給される所定圧力の圧力油を、油圧サーボ弁
5を介して流量調整して上記油圧シリンダ1に供給する
ことによって行われる。特に油圧サーボ弁5の弁開度の
制御による圧力油の流量調整(圧力制御)は、コントロ
ーラ6の制御の下で電気的に実行されるようになってい
る。尚、コントローラ6は、例えば制御目標値と前記油
圧シリンダ1に組み込まれた圧力センサ(図示せず)に
よって求められる負荷(作動圧力)との誤差に基づき、
その誤差を零とするように油圧サーボ弁5の作動をフィ
ードバック制御する。
The hydraulic cylinder 1 is basically driven by the hydraulic pump 3 and the filter 4 from the oil tank 2.
This is performed by adjusting the flow rate of pressure oil of a predetermined pressure supplied through the hydraulic cylinder 1 through the hydraulic servo valve 5 and supplying it to the hydraulic cylinder 1. In particular, the flow rate adjustment (pressure control) of the pressure oil by controlling the valve opening of the hydraulic servo valve 5 is electrically executed under the control of the controller 6. Note that the controller 6 is configured, for example, based on an error between a control target value and a load (operating pressure) obtained by a pressure sensor (not shown) incorporated in the hydraulic cylinder 1.
The operation of the hydraulic servo valve 5 is feedback-controlled to make the error zero.

【0012】さてこの油圧回路が特徴とするところは、
油圧サーボ弁5の1次側(入力側)とその油圧源である
油圧ポンプ3との間に負荷感応型減圧弁7を備えている
点にある。この負荷感応型減圧弁7は油圧ポンプ3から
供給される、例えば210kgf/cm2程度の圧力油を減圧
して油圧サーボ弁5の1次側に供給する役割を担うもの
で、特に前記油圧シリンダ1の負荷圧である油圧サーボ
弁5の2次側圧力P2に応じて、該油圧サーボ弁5の1
次側圧力P1を、上記2次側圧力P2によりも常に一定圧
力だけ高い圧力に設定する役割を担う。そして負荷感応
型減圧弁7は、油圧サーボ弁5と共に油圧シリンダ1を
高精度に、且つ安定に駆動するためのシリンダ駆動回路
を構成する。
The feature of this hydraulic circuit is that:
The point is that a load-sensitive pressure reducing valve 7 is provided between the primary side (input side) of the hydraulic servo valve 5 and the hydraulic pump 3 as its hydraulic pressure source. The load-responsive pressure reducing valve 7 serves to reduce the pressure oil supplied from the hydraulic pump 3, for example, about 210 kgf / cm 2 , and supply the reduced pressure oil to the primary side of the hydraulic servo valve 5. In accordance with the secondary pressure P2 of the hydraulic servo valve 5 which is the load pressure of 1, the hydraulic servo valve 5
The secondary pressure P1 has a role of always being set to a pressure higher than the secondary pressure P2 by a constant pressure. The load-responsive pressure reducing valve 7 together with the hydraulic servo valve 5 constitutes a cylinder drive circuit for driving the hydraulic cylinder 1 with high accuracy and stability.

【0013】即ち、負荷感応型減圧弁7は、油圧シリン
ダ1の負荷圧P2に拘わらず、また油圧ポンプ3から供
給される圧力油の圧力に拘わることなく、油圧サーボ弁
5の1次側と2次側との圧力差ΔP(=P1−P2)を、
例えば5〜10kgf/cm2程度に常に一定に保つように機
能する。具体的には負荷感応型減圧弁7は、油圧サーボ
弁5の1次側圧力P1に応じて弁開度が調整され、その
出力側の圧力である油圧サーボ弁5の2次側圧力P2が
上記1次側圧力P1に対して所定の圧力差ΔPとなった
時点で平衡する圧力調整弁を備えて構成される。
That is, the load-responsive pressure reducing valve 7 is connected to the primary side of the hydraulic servo valve 5 regardless of the load pressure P 2 of the hydraulic cylinder 1 and regardless of the pressure of the pressure oil supplied from the hydraulic pump 3. The pressure difference ΔP from the secondary side (= P1-P2)
For example, it functions so as to always keep it constant at about 5 to 10 kgf / cm 2 . Specifically, the load-responsive pressure-reducing valve 7 has its valve opening adjusted in accordance with the primary pressure P1 of the hydraulic servo valve 5, and the secondary pressure P2 of the hydraulic servo valve 5, which is the pressure on the output side, is adjusted. A pressure regulating valve is provided which equilibrates when a predetermined pressure difference ΔP with respect to the primary pressure P1 is reached.

【0014】一方、負荷感応型減圧弁7と、その油圧源
である油圧ポンプ3とを結ぶ管路にはリリーフ弁8が設
けられている。このリリーフ弁8は基本的には負荷感応
型減圧弁7の前後の油圧差に応じて作動し、特に負荷感
応型減圧弁7の出力側での油圧、つまり油圧サーボ弁5
に供給する1次側圧力P1に応じて作動して油圧ポンプ
3が吐出する圧力油をリリーフし、油圧ポンプ3から負
荷感応型減圧弁7に対して供給される油圧Poを調整す
る。具体的には上記油圧Poが負荷感応型減圧弁7の作
動に必要な所定の圧力差ΔQ(=Po−P1)を持ち、ま
た負荷感応型減圧弁7にとって不必要な(過剰な)油圧
となることのないように制御する。
On the other hand, a relief valve 8 is provided in a pipe connecting the load-responsive pressure-reducing valve 7 and the hydraulic pump 3 as its hydraulic pressure source. The relief valve 8 basically operates according to the difference in oil pressure before and after the load-sensitive pressure-reducing valve 7, and particularly, the oil pressure at the output side of the load-sensitive pressure-reducing valve 7, that is, the hydraulic servo valve 5.
The hydraulic pump 3 operates in accordance with the primary pressure P1 supplied to the hydraulic pump 3 to relieve the pressure oil discharged from the hydraulic pump 3, and adjusts the hydraulic pressure Po supplied from the hydraulic pump 3 to the load-responsive pressure reducing valve 7. Specifically, the hydraulic pressure Po has a predetermined pressure difference ΔQ (= Po−P1) required for the operation of the load-sensitive pressure-reducing valve 7, and an unnecessary (excess) hydraulic pressure for the load-sensitive pressure-reducing valve 7. Control so that it does not become.

【0015】尚、このリリーフ弁8は、油圧ポンプ3か
ら吐出される圧力油の圧力(1次圧力)を、例えば21
0kgf/cm2程度に制限することでその最大負荷圧を保持
し、油圧回路全体の安全弁としても機能する。更にこの
リリーフ弁8は、リリーフにより低下する油圧を5〜1
7kgf/cm2程度に制限することで、油圧シリンダ1が無
負荷状態の場合であっても負荷感応型減圧弁7の作動に
必要な最小限の1次側圧力を確保する役割をも担う。
The relief valve 8 controls the pressure (primary pressure) of the pressure oil discharged from the hydraulic pump 3 by, for example, 21
By limiting it to about 0 kgf / cm 2 , the maximum load pressure is maintained, and it also functions as a safety valve for the entire hydraulic circuit. Further, the relief valve 8 reduces the hydraulic pressure reduced by the relief from 5 to 1
By limiting the pressure to about 7 kgf / cm 2 , even when the hydraulic cylinder 1 is in a no-load state, it also plays a role of securing a minimum primary pressure required for the operation of the load-responsive pressure reducing valve 7.

【0016】かくしてこのような負荷感応型減圧弁7を
油圧サーボ弁5の1次側に備えたシリンダ駆動回路をな
し、更に該シリンダ駆動回路(負荷感応型減圧弁7)の
前段にリリーフ弁8を備えた油圧回路によれば、油圧ポ
ンプ3から供給される圧力油の圧力が、油圧シリンダ1
に加えるべき圧力に比較して非常に大きい場合であって
も、負荷感応型減圧弁7によりその圧力が減圧された上
で油圧サーボ弁5の1次側に与えられる。従って油圧サ
ーボ弁5の前後における弁圧力降下、即ち、その1次側
圧力P1と2次側圧力P2との圧力差ΔPが過大化するこ
とがない。しかも負荷感応型減圧弁7によって、上記1
次側圧力P1が油圧シリンダ1の負荷圧(油圧サーボ弁
5の2次側圧力)P2に対して常に一定の圧力差ΔPを
有するように制御される。従ってコントローラ6の制御
の下で油圧サーボ弁5の開度を調整する場合であって
も、上述した如くサーボ弁前後の圧力差ΔPが常に一定
に保たれるので、油圧サーボ弁5を介する圧力油の流量
を、その弁開度に応じて高精度に制御することが可能と
なり、高精度な油圧サーボ制御が可能となる。
Thus, a cylinder drive circuit having such a load-sensitive pressure reducing valve 7 provided on the primary side of the hydraulic servo valve 5 is provided, and a relief valve 8 is provided upstream of the cylinder drive circuit (load-sensitive pressure reducing valve 7). According to the hydraulic circuit including the hydraulic cylinder 1, the pressure of the pressure oil supplied from the hydraulic pump 3
Even when the pressure is extremely large as compared with the pressure to be applied to the hydraulic servo valve 5, the pressure is reduced by the load-responsive pressure reducing valve 7 and then applied to the primary side of the hydraulic servo valve 5. Therefore, the valve pressure drop before and after the hydraulic servo valve 5, that is, the pressure difference ΔP between the primary pressure P1 and the secondary pressure P2 does not become excessive. In addition, the load-responsive pressure reducing valve 7 enables
The secondary pressure P1 is controlled so as to always have a constant pressure difference ΔP with respect to the load pressure of the hydraulic cylinder 1 (the secondary pressure of the hydraulic servo valve 5) P2. Therefore, even when the opening degree of the hydraulic servo valve 5 is adjusted under the control of the controller 6, the pressure difference ΔP before and after the servo valve is always kept constant as described above. The oil flow rate can be controlled with high accuracy in accordance with the valve opening, and highly accurate hydraulic servo control can be achieved.

【0017】特に油圧シリンダ1の負荷圧、即ち、油圧
サーボ弁5の2次側圧力P2に応じて負荷感応型減圧弁
7の弁開度を調整するだけでよいので、その制御系がシ
ンプルであり、簡易にして効果的に油圧サーボ弁5の前
後圧(圧力差ΔP)を一定に保つことができる。換言す
れば油圧サーボ弁5の前後圧(圧力差ΔP)を監視する
ことなく、簡単に上記油圧サーボ弁5の前後圧(圧力差
ΔP)を一定に保つことができる。
In particular, since it is only necessary to adjust the valve opening of the load-responsive pressure reducing valve 7 in accordance with the load pressure of the hydraulic cylinder 1, that is, the secondary pressure P2 of the hydraulic servo valve 5, the control system is simple. Thus, the pressure before and after the hydraulic servo valve 5 (pressure difference ΔP) can be kept constant simply and effectively. In other words, the pressure across the hydraulic servo valve 5 (pressure difference ΔP) can be easily kept constant without monitoring the pressure across the hydraulic servo valve 5 (pressure difference ΔP).

【0018】また油圧サーボ弁5の前後の圧力差ΔPを
一定に保った条件の下で該油圧サーボ弁5の作動を制御
するに際して、仮に油圧ポンプ3側の作動状態が何らか
の要因により変化し、これによって油圧ポンプ3から供
給される圧力油の圧力が変動しても、その圧力変動が負
荷感応型減圧弁7によって遮られるので、油圧サーボ弁
5に悪影響が及ぶことがない。従って油圧サーボ弁5を
油圧源からアイソレートし、該油圧サーボ弁5を独立さ
せて高精度に制御することが可能となる。
In controlling the operation of the hydraulic servo valve 5 under the condition that the pressure difference ΔP before and after the hydraulic servo valve 5 is kept constant, the operating state of the hydraulic pump 3 temporarily changes due to some factor. As a result, even if the pressure of the pressure oil supplied from the hydraulic pump 3 fluctuates, the pressure fluctuation is blocked by the load-responsive pressure reducing valve 7, so that the hydraulic servo valve 5 is not adversely affected. Therefore, it is possible to isolate the hydraulic servo valve 5 from the hydraulic pressure source and control the hydraulic servo valve 5 independently with high accuracy.

【0019】更にはシリンダ駆動回路の前段に設けられ
たリリーフ弁8が、負荷感応型減圧弁7の動作状態に応
じて作動して油圧ポンプ3から負荷感応型減圧弁7に加
える圧力油の圧力Poを制御するので、負荷感応型減圧
弁7に加わる圧力が過大となり、負荷感応型減圧弁7で
の負荷が不本意に増大することがない。しかも油圧シリ
ンダ1の無負荷時や油圧サーボ弁5の非作動時、或いは
負荷感応型減圧弁7の2次側油圧(油圧サーボ弁5の1
次側油圧)が低いときには、これに応じてリリーフ弁8
が作動して負荷感応型減圧弁7に加える圧力が低く抑え
られる。従って油圧シリンダ1が無負荷状態であるよう
な場合、負荷感応型減圧弁7の1次側に供給される圧力
油の圧力が上記低圧リリーフ弁13により規定されて低
圧に保持されるので、負荷感応型減圧弁7の安定した作
動が可能となる。
Further, a relief valve 8 provided in the preceding stage of the cylinder drive circuit operates according to the operation state of the load-sensitive pressure-reducing valve 7 to operate the pressure of pressure oil applied from the hydraulic pump 3 to the load-sensitive pressure-reducing valve 7. Since Po is controlled, the pressure applied to the load-sensitive pressure-reducing valve 7 is not excessively increased, and the load on the load-sensitive pressure-reducing valve 7 is not unintentionally increased. In addition, when the hydraulic cylinder 1 is not loaded, the hydraulic servo valve 5 is not operated, or the secondary hydraulic pressure of the load-responsive pressure reducing valve 7 (the hydraulic servo valve 5
When the secondary side hydraulic pressure is low, the relief valve 8
Operates to reduce the pressure applied to the load-responsive pressure reducing valve 7 to a low level. Therefore, when the hydraulic cylinder 1 is in a no-load state, the pressure of the pressure oil supplied to the primary side of the load-responsive pressure-reducing valve 7 is regulated by the low-pressure relief valve 13 and maintained at a low pressure. The stable operation of the responsive pressure reducing valve 7 becomes possible.

【0020】即ち、負荷感応型減圧弁7の動作状態(出
力側の油圧P1)に応じてリリーフ弁8が作動してその
1次側に供給される油圧ポンプ3からの圧力油の圧力が
調整されるので、負荷感応型減圧弁7を安定に作動させ
ることができる。この結果、負荷感応型減圧弁7による
油圧サーボ弁5の安定した作動と、その高精度なサーボ
制御を確保しながら、リリーフ弁8による上記負荷感応
型減圧弁7の安定した動作を確保することができる。そ
して油圧サーボ弁5の前後の油圧差、および負荷感応型
減圧弁7の前後圧(圧力差)をそれぞれ小さく押さえる
ことができ、その弁圧力降下に起因する熱エネルギ変換
による圧力油の発熱を効果的に防止することができる。
この結果、油圧回路の全体的な発熱を押さえ、オイルク
ーラを組み込む等の煩わしさを回避することが可能とな
る。
That is, the relief valve 8 is operated in accordance with the operation state of the load-responsive pressure reducing valve 7 (output hydraulic pressure P1) to adjust the pressure of the pressure oil supplied from the hydraulic pump 3 to the primary side thereof. Therefore, the load-responsive pressure reducing valve 7 can be operated stably. As a result, the stable operation of the hydraulic servo valve 5 by the load-sensitive pressure-reducing valve 7 and the stable operation of the load-sensitive pressure-reducing valve 7 by the relief valve 8 are ensured while ensuring the highly accurate servo control. Can be. The pressure difference before and after the hydraulic servo valve 5 and the pressure (pressure difference) before and after the load-responsive pressure reducing valve 7 can be kept small, and the heat generation of the pressure oil due to the heat energy conversion caused by the valve pressure drop is reduced. Can be prevented.
As a result, it is possible to suppress the overall heat generation of the hydraulic circuit and to avoid troublesome work such as incorporating an oil cooler.

【0021】特に油圧シリンダ1が無負荷状態であると
きにもリリーフ弁8の作動により油圧回路全体の油圧を
低くすることができ、その待機時における1次側圧力を
低く押さえて油圧ポンプ3の負荷を大幅に軽減すること
ができるので、所謂省エネルギ・モードを効果的に設定
することができる等の効果が奏せられる。ところで上述
した如く構成されたシリンダ駆動回路を用いることで、
1つの油圧源を共有して複数の油圧シリンダを並列駆動
することもできる。
In particular, even when the hydraulic cylinder 1 is in a no-load state, the operation of the relief valve 8 can lower the hydraulic pressure of the entire hydraulic circuit. Since the load can be greatly reduced, effects such as a so-called energy saving mode can be set effectively. By the way, by using the cylinder drive circuit configured as described above,
A plurality of hydraulic cylinders can be driven in parallel by sharing one hydraulic source.

【0022】図2に示す第2の実施形態は2つの油圧シ
リンダ1a,1bを備えた2軸型の材料試験機、或いは
2台の材料試験機からなり、各油圧シリンダ1a,1b
毎に油圧サーボ弁5a,5bとそのコントローラ6a,6
b、および負荷感応型減圧弁7a,7bからなるシリン
ダ駆動回路A,Bが設けられる。そして各シリンダ駆動
回路A,Bにおける負荷感応型減圧弁7a,7bは、先の
実施形態と同様に油圧サーボ弁5a,5bにおける1次
側油圧Pa1,Pb1と2次側油圧Pa2,Pb2との圧力差
ΔPa(=Pa2−Pa1),ΔPb(=Pb2−Pb1)
がそれぞれ一定となる如く作動する。
The second embodiment shown in FIG. 2 comprises a two-axis type material testing machine provided with two hydraulic cylinders 1a and 1b, or two material testing machines.
Hydraulic servo valves 5a, 5b and their controllers 6a, 6
b and cylinder drive circuits A and B comprising load-responsive pressure-reducing valves 7a and 7b. The load-responsive pressure reducing valves 7a and 7b in each of the cylinder drive circuits A and B are connected to the primary hydraulic pressures Pa1 and Pb1 and the secondary hydraulic pressures Pa2 and Pb2 in the hydraulic servo valves 5a and 5b in the same manner as in the previous embodiment. Pressure difference ΔPa (= Pa2-Pa1), ΔPb (= Pb2-Pb1)
Operate so as to be constant.

【0023】一方、上記2つのシリンダ駆動回路A,B
の各負荷感応型減圧弁7a,7bの入力側と、これらの
シリンダ駆動回路A,Bに対して共通な油圧源である油
圧ポンプ3とを結ぶ管路には、リリーフ弁8を主体とす
るリリーフ回路Cが設けられている。このリリーフ回路
Cは、前記シリンダ駆動回路A,Bにおける負荷感応型
減圧弁7a,7bの出力側の油圧(油圧サーボ弁5a,5
bにおける1次側油圧Pa1,Pb1)を逆止弁(チェッ
ク弁)9a,9bを介してそれぞれ導入し、その油圧を
統合してリリーフ弁8を駆動する如く構成される。従っ
てリリーフ弁8は逆止弁9a,9bの作用により、各負
荷感応型減圧弁7a,7bの出力側から導入された油圧
Pa1,Pb1の高い方の油圧を受けて駆動されることに
なる。尚、リリーフ弁8の駆動部には流量調整弁(ドレ
イン弁)10が接続されており、リリーフ弁8に加えら
れる油圧が各逆止弁9a,9bを介して導入された油圧
Pa1,Pb1の高い方の油圧に保たれるようになってい
る。尚、逆止弁9a,9bを介して導入された油圧Pa
1,Pb1の高い方を、リリーフ弁8自体における漏れを
利用して保つように構成することも可能である。この場
合には流量調整弁10が不要となるので、その構成の簡
素化とコストの低減を図ることが可能となる。
On the other hand, the two cylinder drive circuits A and B
The pipeline connecting the input side of each of the load-responsive pressure-reducing valves 7a and 7b to the hydraulic pump 3 which is a common hydraulic pressure source for these cylinder drive circuits A and B mainly includes a relief valve 8. A relief circuit C is provided. The relief circuit C is provided with a hydraulic pressure (hydraulic servo valves 5a, 5) on the output side of the load-responsive pressure reducing valves 7a, 7b in the cylinder drive circuits A, B.
The primary hydraulic pressures Pa1 and Pb1) are introduced through check valves (check valves) 9a and 9b, respectively, and the hydraulic pressures are integrated to drive the relief valve 8. Therefore, the relief valve 8 is driven by the action of the check valves 9a and 9b by receiving the higher one of the hydraulic pressures Pa1 and Pb1 introduced from the output side of each of the load-responsive pressure reducing valves 7a and 7b. A flow control valve (drain valve) 10 is connected to the drive section of the relief valve 8, and the hydraulic pressure applied to the relief valve 8 is controlled by the hydraulic pressures Pa1 and Pb1 introduced through the check valves 9a and 9b. The higher hydraulic pressure is maintained. The hydraulic pressure Pa introduced through the check valves 9a and 9b
It is also possible to configure so that the higher one of Pb1 is maintained by utilizing the leak in the relief valve 8 itself. In this case, since the flow control valve 10 is not required, the configuration can be simplified and the cost can be reduced.

【0024】かくしてこのように構成された油圧回路に
よれば、仮にシリンダ駆動回路Aにおける負荷感応型減
圧弁7aの出力側の油圧Pa1が、シリンダ駆動回路B
における負荷感応型減圧弁7bの出力側の油圧Pb1よ
りも高い場合、シリンダ駆動回路Aからの逆止弁9aを
介する油圧Pa1の導入により、逆止弁9bが閉じられ
る。そして上記油圧Pa1がリリーフ弁8に加えられて
シリンダ駆動回路A,Bの各負荷感応型減圧弁7a,7b
にそれぞれ供給される油圧がPao(=Pa1+ΔQ)に
設定される。この際、シリンダ駆動回路Bにおける負荷
感応型減圧弁7bには、その出力側の油圧Pb1を基準
とする油圧Pbo(=Pb1+ΔQ)よりも高い油圧Pa
o(=Pa1+ΔQ)が供給されることになるが、該負荷
感応型減圧弁7bでの弁圧力降下が増大するだけであ
り、その油圧サーボ弁5bの作動に影響が及ぶことがな
い。
According to the hydraulic circuit thus constructed, if the hydraulic pressure Pa1 on the output side of the load-responsive pressure reducing valve 7a in the cylinder driving circuit A is temporarily changed to the cylinder driving circuit B
Is higher than the hydraulic pressure Pb1 on the output side of the load-responsive pressure-reducing valve 7b, the check valve 9b is closed by the introduction of the hydraulic pressure Pa1 from the cylinder drive circuit A via the check valve 9a. Then, the hydraulic pressure Pa1 is applied to the relief valve 8, and the load-responsive pressure reducing valves 7a, 7b of the cylinder driving circuits A, B
Are set to Pao (= Pa1 + ΔQ). At this time, the load-responsive pressure reducing valve 7b in the cylinder drive circuit B has a hydraulic pressure Pa higher than the hydraulic pressure Pbo (= Pb1 + ΔQ) based on the hydraulic pressure Pb1 on the output side.
Although o (= Pa1 + ΔQ) is supplied, only the valve pressure drop at the load-responsive pressure reducing valve 7b increases, and the operation of the hydraulic servo valve 5b is not affected.

【0025】また逆にシリンダ駆動回路Bにおける負荷
感応型減圧弁7bの出力側の油圧Pa1が高い場合に
は、シリンダ駆動回路Bからの逆止弁9bを介する油圧
Pb1の導入により、逆止弁9aが閉じられる。そして
上記油圧Pb1がリリーフ弁8に加えられてシリンダ駆
動回路A,Bの各負荷感応型減圧弁7a,7bにそれぞれ
供給される油圧がPbo(=Pb1+ΔQ)に設定され
る。つまり逆止弁9a,9bを介して導入される油圧P
a1,Pb1の内の高い方の油圧によりリリーフ弁8の作
動が制御され、負荷感応型減圧弁7a,7bにそれぞれ
供給される油圧が設定される。従ってシリンダ駆動回路
A,Bにおける各負荷感応型減圧弁7a,7bには、油圧
サーボ弁5a,5bの前後圧(油圧差ΔP)を一定に確
保しながら、油圧シリンダ1a,1bの負荷状態に応じ
て定まる必要な最小限の油圧が供給されることになり、
各負荷感応型減圧弁7a,7bをそれぞれ安定に動作さ
せることが可能となる。
Conversely, when the hydraulic pressure Pa1 on the output side of the load-responsive pressure reducing valve 7b in the cylinder drive circuit B is high, the check valve is introduced by the introduction of the hydraulic pressure Pb1 from the cylinder drive circuit B via the check valve 9b. 9a is closed. Then, the hydraulic pressure Pb1 is applied to the relief valve 8, and the hydraulic pressure supplied to each of the load-responsive pressure reducing valves 7a and 7b of the cylinder drive circuits A and B is set to Pbo (= Pb1 + ΔQ). That is, the hydraulic pressure P introduced through the check valves 9a and 9b
The operation of the relief valve 8 is controlled by the higher oil pressure of a1 and Pb1, and the oil pressure supplied to the load-responsive pressure reducing valves 7a and 7b is set. Therefore, the load-responsive pressure-reducing valves 7a and 7b in the cylinder drive circuits A and B maintain the pressures in the hydraulic cylinders 1a and 1b while maintaining a constant pressure (pressure difference ΔP) between the hydraulic servo valves 5a and 5b. The minimum required hydraulic pressure determined accordingly will be supplied,
Each of the load-responsive pressure reducing valves 7a and 7b can be operated stably.

【0026】更には上述した如く構成の油圧回路を採用
した場合、油圧源(油圧ポンプ3)の必要容量(吐出能
力)を低く抑えることができる。即ち、2軸型の材料試
験機にあっては2つの油圧シリンダ1a,1bを同時に
作動させることは希であり、例えば剪断試験を実行する
場合には、一方の油圧シリンダ1aを作動させて試験片
を保持した後、その状態を維持しながら他方の油圧シリ
ンダ1bを作動させて剪断応力を加えることが行われ
る。従ってこのような場合には、一方の油圧シリンダ1
aを駆動したシリンダ駆動回路の状態を保ったまま、他
方の油圧シリンダ1aにおけるシリンダ駆動回路を駆動
すればよく、その動作も静的なので、例えば各油圧シリ
ンダ1a,1bを個々に駆動するに要するポンプ能力を
若干上回る程度のポンプ能力の油圧ポンプ3を用いるだ
けで十分である。従って油圧源の低コスト化とそのコン
パクト化を図ることができる等の二次的な効果が奏せら
れる。またリリーフ回路Cを含む油圧源をシリンダ駆動
回路A,Bから独立させて1本化することができるの
で、そのメインテナンスの簡易化を図り得る等の効果も
奏せられる。
Further, when the hydraulic circuit having the above-described configuration is employed, the required capacity (discharge capacity) of the hydraulic source (hydraulic pump 3) can be reduced. That is, in a two-shaft type material testing machine, it is rare to operate two hydraulic cylinders 1a and 1b at the same time. For example, when performing a shear test, one hydraulic cylinder 1a is operated to perform a test. After holding the piece, the other hydraulic cylinder 1b is operated to apply shear stress while maintaining the state. Therefore, in such a case, one hydraulic cylinder 1
It is only necessary to drive the cylinder drive circuit of the other hydraulic cylinder 1a while maintaining the state of the cylinder drive circuit that has driven a. Since the operation is static, for example, it is necessary to individually drive each of the hydraulic cylinders 1a and 1b. It is sufficient to use the hydraulic pump 3 having a pump capacity slightly higher than the pump capacity. Therefore, secondary effects such as reduction in cost and size of the hydraulic power source can be achieved. In addition, since the hydraulic power source including the relief circuit C can be integrated into one independent from the cylinder drive circuits A and B, the maintenance can be simplified.

【0027】尚、本発明は上述した実施形態に限定され
るものではない。例えば油圧サーボ弁5の前後圧(圧力
差ΔP)については油圧回路の仕様に応じて定めれば良
く、またその仕様に応じて負荷感応型減圧弁7の作動圧
(減圧度)等を設定するようにすれば良い。またリリー
フ弁8によるリリーフ圧力についても、負荷感応型減圧
弁7や油圧ポンプ3の仕様等に応じて定めれば良い。更
には3つ以上のシリンダ駆動回路を並列駆動することも
可能である。その他、本発明はその要旨を逸脱しない範
囲で種々変形して実施することができる。
The present invention is not limited to the above embodiment. For example, the back-and-forth pressure (pressure difference ΔP) of the hydraulic servo valve 5 may be determined according to the specifications of the hydraulic circuit, and the operating pressure (degree of pressure reduction) of the load-responsive pressure reducing valve 7 is set according to the specifications. What should I do? Also, the relief pressure by the relief valve 8 may be determined according to the specifications of the load-responsive pressure-reducing valve 7 and the hydraulic pump 3. Further, it is possible to drive three or more cylinder drive circuits in parallel. In addition, the present invention can be variously modified and implemented without departing from the gist thereof.

【0028】[0028]

【発明の効果】以上説明したように本発明によれば、油
圧サーボ弁の1次側に負荷感応型減圧弁を設けて該油圧
サーボ弁の前後圧を常に一定に保ちながら、リリーフ弁
により油圧源から負荷感応型減圧弁に供給する油圧を制
御するので、油圧シリンダに対する高精度の制御が可能
となる。従って油圧サーボ弁における弁圧力効果に伴う
熱エネルギの発生を抑えることができ、また負荷感応型
減圧弁に余分な負担を掛けることなく、効率的な油圧制
御を可能となる等の実用上多大なる効果が奏せられる。
As described above, according to the present invention, a load-responsive pressure reducing valve is provided on the primary side of a hydraulic servo valve, and the hydraulic pressure is controlled by a relief valve while the front-rear pressure of the hydraulic servo valve is always kept constant. Since the hydraulic pressure supplied from the source to the load-responsive pressure reducing valve is controlled, highly accurate control of the hydraulic cylinder can be performed. Therefore, the generation of heat energy due to the valve pressure effect in the hydraulic servo valve can be suppressed, and the hydraulic pressure can be efficiently controlled without imposing an extra burden on the load-responsive pressure reducing valve. The effect is achieved.

【0029】また油圧シリンダが無負荷状態にあるとき
や、油圧サーボの1次側油圧が低いときには油圧源から
供給される圧力油を低圧に押さえるので、油圧源の負荷
を大幅に軽減して省エネルギ化を図ることができる等の
効果が奏せられる。
Also, when the hydraulic cylinder is in a no-load state or when the primary hydraulic pressure of the hydraulic servo is low, the pressure oil supplied from the hydraulic source is suppressed to a low pressure. Effects such as energy saving can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態に係る材料試験機にお
ける油圧回路の概略的な構成を示す図。
FIG. 1 is a diagram showing a schematic configuration of a hydraulic circuit in a material testing machine according to a first embodiment of the present invention.

【図2】本発明の第2の実施形態に係る材料試験機にお
ける油圧回路の概略的な構成を示す図。
FIG. 2 is a diagram showing a schematic configuration of a hydraulic circuit in a material testing machine according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,1a,1b 油圧シリンダ 3 油圧ポンプ 5,5a,5b 油圧サーボ弁 6,6a,6b コントローラ 7,7a,7b 負荷感応型減圧弁 8 リリーフ弁 9a,9b 逆止弁 10 流量調整弁 A,B シリンダ駆動回路 C リリーフ回路 1, 1a, 1b Hydraulic cylinder 3 Hydraulic pump 5, 5a, 5b Hydraulic servo valve 6, 6a, 6b Controller 7, 7a, 7b Load-sensitive pressure reducing valve 8 Relief valve 9a, 9b Check valve 10 Flow control valve A, B Cylinder drive circuit C relief circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 油圧源から供給される油圧を調整して試
験片に負荷を与える油圧シリンダを駆動する油圧サーボ
弁、およびこの油圧サーボ弁と前記油圧源との間に設け
られて該油圧サーボ弁の出力側の油圧に応じて該油圧サ
ーボ弁に供給する油圧を減圧して該油圧サーボ弁の前後
における油圧差を一定にする負荷感応型減圧弁を備えた
シリンダ駆動回路と、 このシリンダ駆動回路における前記負荷感応型減圧弁の
出力側の油圧に応じて前記油圧源から該負荷感応型減圧
弁の入力側に供給する油圧を調整するリリーフ弁とを具
備したことを特徴とする材料試験機。
1. A hydraulic servo valve for driving a hydraulic cylinder for adjusting a hydraulic pressure supplied from a hydraulic source and applying a load to a test piece, and a hydraulic servo valve provided between the hydraulic servo valve and the hydraulic source. A cylinder drive circuit including a load-sensitive pressure-reducing valve for reducing the oil pressure supplied to the hydraulic servo valve in accordance with the oil pressure on the output side of the valve to make the oil pressure difference before and after the hydraulic servo valve constant; A relief valve for adjusting a hydraulic pressure supplied from the hydraulic pressure source to an input side of the load-sensitive pressure-reducing valve in accordance with a hydraulic pressure on an output side of the load-sensitive pressure-reducing valve in a circuit. .
【請求項2】 油圧源から供給される油圧を調整して試
験片に負荷を与える油圧シリンダを駆動する油圧サーボ
弁、およびこの油圧サーボ弁と前記油圧源との間に設け
られて該油圧サーボ弁の出力側の油圧に応じて該油圧サ
ーボ弁に供給する油圧を減圧して該油圧サーボ弁の前後
における油圧差を一定にする負荷感応型減圧弁を備えた
複数のシリンダ駆動回路と、前記油圧源側に設けられて
前記複数のシリンダ駆動回路における前記各負荷感応型
減圧弁の出力側の油圧に従って前記油圧源から前記各負
荷感応型減圧弁の入力側に供給する油圧を調整するリリ
ーフ弁を備えたリリーフ回路とを具備したことを特徴と
する材料試験機。
2. A hydraulic servo valve for driving a hydraulic cylinder that applies a load to a test piece by adjusting a hydraulic pressure supplied from a hydraulic source, and a hydraulic servo valve provided between the hydraulic servo valve and the hydraulic source. A plurality of cylinder drive circuits including a load-responsive pressure-reducing valve for reducing the oil pressure supplied to the hydraulic servo valve in accordance with the oil pressure on the output side of the valve to make the oil pressure difference before and after the hydraulic servo valve constant, A relief valve provided on a hydraulic pressure source side for adjusting a hydraulic pressure supplied from the hydraulic pressure source to an input side of each of the load-responsive pressure-reducing valves in accordance with a hydraulic pressure on an output side of each of the load-responsive pressure-reducing valves in the plurality of cylinder drive circuits. A material testing machine comprising: a relief circuit provided with:
【請求項3】 前記リリーフ回路は、複数のシリンダ駆
動回路における前記各負荷感応型減圧弁の出力側の油圧
をそれぞれ導入して前記リリーフ弁を駆動する複数の逆
止弁を備えることを特徴とする請求項2に記載の材料試
験機。
3. The relief circuit according to claim 1, further comprising a plurality of check valves that respectively drive the relief valve by introducing hydraulic pressures on the output side of each of the load-responsive pressure reducing valves in a plurality of cylinder drive circuits. The material testing machine according to claim 2, wherein
JP10571899A 1999-04-13 1999-04-13 Material testing machine Expired - Fee Related JP3340085B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10571899A JP3340085B2 (en) 1999-04-13 1999-04-13 Material testing machine
KR1020000017861A KR100388725B1 (en) 1999-04-13 2000-04-06 Material testing Machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10571899A JP3340085B2 (en) 1999-04-13 1999-04-13 Material testing machine

Publications (2)

Publication Number Publication Date
JP2000298086A true JP2000298086A (en) 2000-10-24
JP3340085B2 JP3340085B2 (en) 2002-10-28

Family

ID=14415123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10571899A Expired - Fee Related JP3340085B2 (en) 1999-04-13 1999-04-13 Material testing machine

Country Status (2)

Country Link
JP (1) JP3340085B2 (en)
KR (1) KR100388725B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103123309A (en) * 2012-12-12 2013-05-29 上海电气钠硫储能技术有限公司 Pressurization system used for detecting internal-pressure resistance of ceramic tube
CN105352812A (en) * 2015-12-10 2016-02-24 南京依维柯汽车有限公司 Testing device for blasting, pressure resistant and swelling amount of automobile flexible brake hose
CN106053211A (en) * 2016-07-21 2016-10-26 湖北泰和电气有限公司 Ground intensity measurement device with level sensor
CN106870516A (en) * 2017-03-28 2017-06-20 中国地质大学(武汉) A kind of HTHP rheometer fluid pressure type axle pressure generating apparatus and its application method
CN107917123A (en) * 2017-12-20 2018-04-17 广州市新欧机械有限公司 A kind of hydraulic valve is tired and high pressure resistant testing stand

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101371248B1 (en) * 2012-05-16 2014-03-07 한국표준과학연구원 An environment-combined Indentation tester
CN103257041B (en) * 2013-05-10 2015-06-17 杭州电子科技大学 Cylinder head gasket mechanical fatigue simulation test device and method
CN103323335A (en) * 2013-06-27 2013-09-25 宁波纺织仪器厂 Fabric bursting performance tester
CN108087382B (en) * 2017-11-30 2019-08-09 上海航天控制技术研究所 A kind of Dual-energy source electrohydraudic servomechanism reliability growth test system and method
KR102259736B1 (en) * 2019-08-28 2021-06-02 (주)제이.케이.에스 Apparatus for testing seismic isolation devices with specimen protection function

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103123309A (en) * 2012-12-12 2013-05-29 上海电气钠硫储能技术有限公司 Pressurization system used for detecting internal-pressure resistance of ceramic tube
CN105352812A (en) * 2015-12-10 2016-02-24 南京依维柯汽车有限公司 Testing device for blasting, pressure resistant and swelling amount of automobile flexible brake hose
CN106053211A (en) * 2016-07-21 2016-10-26 湖北泰和电气有限公司 Ground intensity measurement device with level sensor
CN106053211B (en) * 2016-07-21 2019-02-12 湖北泰和电气有限公司 The ground intensity measuring device of horizon sensor is set
CN106870516A (en) * 2017-03-28 2017-06-20 中国地质大学(武汉) A kind of HTHP rheometer fluid pressure type axle pressure generating apparatus and its application method
CN107917123A (en) * 2017-12-20 2018-04-17 广州市新欧机械有限公司 A kind of hydraulic valve is tired and high pressure resistant testing stand

Also Published As

Publication number Publication date
KR100388725B1 (en) 2003-06-25
KR20000071569A (en) 2000-11-25
JP3340085B2 (en) 2002-10-28

Similar Documents

Publication Publication Date Title
JP3340085B2 (en) Material testing machine
US10584645B2 (en) Compressor control device, compressor control system, and compressor control method
MXPA06015164A (en) Closed-loop, valve-based transmission control algorithm.
CN104214153A (en) Hydraulic valve arrangement
GB2327778A (en) Regulating the fuel pressure in an internal combustion engine
KR20020033532A (en) Power supply system
US20180159157A1 (en) Fuel cell system and method of operating fuel cell system
US6477837B2 (en) Method for operating hydraulic drive apparatus
CN111312186A (en) Circuit control method and power management module
JPH0777275A (en) Hydraulic controller of automatic transmission
JPH0384204A (en) Confluence valve device for load sensing type hydraulic circuit
US20220030772A1 (en) Hydraulic motor control system and method
KR20090091672A (en) Hydrostatic drive system
JPH11183347A (en) Material testing machine
JPH11183348A (en) Material testing machine
JP3110976B2 (en) Control method and control device for gas booster
JP2749320B2 (en) Hydraulic drive
KR101506743B1 (en) Hydraulic pump control apparatus for construction machinery
KR950002377B1 (en) Hydraulic autocontrol device for load sensing of constructive machines
KR100953807B1 (en) Method of controlling power of hydraulic pump in an excavator and apparatus using the same
JP2002317771A (en) Hydraulic pump control device
KR100943035B1 (en) Traveling nitrogen supply apparatus
US11639727B2 (en) Tail gas exhausting pressure stabilization control system
JP2000320467A (en) Air compressor
JPH0723590Y2 (en) Variable displacement pump

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees