JP2000292375A - X-ray diffraction device and measuring method of sample using this device - Google Patents

X-ray diffraction device and measuring method of sample using this device

Info

Publication number
JP2000292375A
JP2000292375A JP11095362A JP9536299A JP2000292375A JP 2000292375 A JP2000292375 A JP 2000292375A JP 11095362 A JP11095362 A JP 11095362A JP 9536299 A JP9536299 A JP 9536299A JP 2000292375 A JP2000292375 A JP 2000292375A
Authority
JP
Japan
Prior art keywords
sample
gas
chamber
ray
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11095362A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Wada
充弘 和田
Toshiro Kuji
俊郎 久慈
Shinichi Inoue
眞一 井上
Kenji Tomonari
健二 友成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP11095362A priority Critical patent/JP2000292375A/en
Publication of JP2000292375A publication Critical patent/JP2000292375A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To simultaneously measure the reaction quantity of a sample with a gas and the diffraction result such as crystal structure of the sample by connecting an evacuating means, a gas introducing means, and a gas quantity measuring means to a chamber part. SOLUTION: This device comprises a diffusion pump 5, a rotary pump 6 and the like as evacuating means, a gas cylinder 7 or the like filled with an inert gas as gas introducing means, and a pressure gauge 8, a precise pressure gauge 9, a high vacuum gauge 10 and the like as gas quantity measuring means. A heater consists of a Ta thin film heater, and it is provided on the X-ray emitting-side back surface of a sample. The pressure within a chamber 2 and the temperature are set to about 0-10 atm. and about 20-500 deg.C by these means, and the gas quantity according to the pressure within the chamber 2 is measured. In the case of a hydrogen storage alloy sample, for example, the hydrogen gas quantity or hydrogen storage quantity is measured from the equilibrated hydrogen pressure, and the lattice constant and crystal structure of the hydrogen storage alloy are measured by X-ray diffraction. This is intermittently performed with the lapse of time, whereby the hydrogen storage quantity, the lattice constant change, and the form change of crystal can be simultaneously measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、X線回折装置及び
該装置を用いた試料の測定方法に関し、詳しくは試料の
ガスとの反応量と試料の結晶構造等の回折結果を同時に
測定可能なX線回折装置及び該装置を用いた試料の測定
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray diffraction apparatus and a method for measuring a sample using the apparatus. More specifically, the present invention can simultaneously measure a reaction amount of a sample with a gas and a diffraction result such as a crystal structure of the sample. The present invention relates to an X-ray diffraction apparatus and a method for measuring a sample using the apparatus.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】放射
線、特にX線を利用して試料の結晶構造を解析するため
には、回折線をフィルム上に写し取るX線カメラ、もし
くは回折線を直接計数管に入れて計測する4軸型自動回
折計が使われている。一般に、X線を照射、回折する試
料は、最大長が1mmを超えない程度の大きさである。
この試料は、X線回折の影響が少ない物質からなる試料
板の先端に付けられる。そして、この試料板をゴニオメ
ーターヘッドに装着して、このゴニオメーターヘッドを
回折計に固定する。X線発生源から出たX線を試料に照
射して、例えば結晶の場合には三次元空間に分布する回
折線を効率よく収集するために、結晶を回転する方法が
採られている。
2. Description of the Related Art In order to analyze the crystal structure of a sample using radiation, in particular, X-rays, an X-ray camera that captures diffraction lines on a film or directly counts diffraction lines. A four-axis automatic diffractometer that measures in a tube is used. In general, a sample irradiated with X-rays and diffracted has a size such that the maximum length does not exceed 1 mm.
This sample is attached to the tip of a sample plate made of a substance that is less affected by X-ray diffraction. Then, the sample plate is mounted on a goniometer head, and the goniometer head is fixed to a diffractometer. A method of irradiating a sample with X-rays emitted from an X-ray source and rotating the crystal in order to efficiently collect, for example, diffraction lines distributed in a three-dimensional space in the case of a crystal has been adopted.

【0003】このような、X線回折装置を用いた試料の
測定方法において、真空又はガス圧力下や高温下で測定
可能なX線回折装置は報告されているが(例えば特開平
58−147634号公報)、試料の水素ガス等のガス
との反応量と回折結果とを直接測定可能なX線回折装置
は未だ報告されていない。
In such a method of measuring a sample using an X-ray diffractometer, an X-ray diffractometer capable of measuring under vacuum or gas pressure or at a high temperature has been reported (for example, Japanese Patent Application Laid-Open No. 58-147634). Gazette), an X-ray diffractometer capable of directly measuring a reaction amount of a sample with a gas such as hydrogen gas and a diffraction result has not yet been reported.

【0004】例えば水素吸蔵合金の水素吸蔵量に対する
格子定数の変化や相変態に伴う合金の形態変化をX線回
折装置で測定する場合、予め同一条件で水素吸蔵量と平
衡水素圧力の関係を測定しておき、実際のX線回折装置
では、その結果に基づき水素圧力から水素吸蔵量を見積
もることが必要なる。このため、測定方法が煩雑となる
という問題が生じる。
For example, when an X-ray diffractometer is used to measure a change in the lattice constant of the hydrogen storage alloy with respect to the hydrogen storage amount or a change in the form of the alloy due to phase transformation, the relationship between the hydrogen storage amount and the equilibrium hydrogen pressure is measured in advance under the same conditions. Incidentally, in an actual X-ray diffractometer, it is necessary to estimate the hydrogen storage amount from the hydrogen pressure based on the result. For this reason, there is a problem that the measuring method becomes complicated.

【0005】また、X線回折装置のチャンバー部内に固
定された試料を加熱するための加熱ヒーターは、試料の
外周にタングステンワイヤー等からなる抵抗体を巻き付
けているため、X線の入射及び反射を阻害する可能性が
ある。実際には、試料の背面の抵抗体は試料に近い距離
にあるが、試料の前面には細線の抵抗体は回折現象に影
響を及ぼさないように、距離をおいて配置されている。
このため、熱効率が悪く、かつ均一な温度領域が得にく
い。また、均熱帯が広く採れないため、測定試料のX線
照射面積を少なく使用しているため、得られる回折線も
制限される。
A heater for heating a sample fixed in a chamber portion of an X-ray diffraction apparatus has a resistor made of a tungsten wire or the like wound on the outer periphery of the sample. May inhibit. Actually, the resistor on the back side of the sample is at a distance close to the sample, but the thin-line resistor is arranged on the front side of the sample at a distance so as not to affect the diffraction phenomenon.
For this reason, thermal efficiency is poor and it is difficult to obtain a uniform temperature range. In addition, since the uniform tropical zone cannot be taken widely, the X-ray irradiation area of the measurement sample is small, so that the obtained diffraction line is also limited.

【0006】また、加熱ヒーターとして抵抗体を用いて
いる場合、昇温時に抵抗体内部に含まれている不純物を
徐々に放出しながら行わなければならない。昇降温は徐
々に行わないと、抵抗体の寿命を縮めることになる。ま
た、抵抗体から放出される不純物を取り除かなければ、
試料が不純物によって酸化等によって被毒される恐れが
ある。
When a resistor is used as the heater, the heating must be performed while gradually releasing impurities contained in the resistor when the temperature is raised. If the temperature is not raised and lowered gradually, the life of the resistor will be shortened. Also, if impurities released from the resistor are not removed,
The sample may be poisoned by oxidation or the like by impurities.

【0007】従って、本発明の目的は、試料のガスとの
反応量に対する試料の結晶構造等の回折結果を同時に測
定可能なX線回折装置及び該装置を用いた試料の測定方
法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an X-ray diffractometer capable of simultaneously measuring a diffraction result such as a crystal structure of a sample with respect to a reaction amount of the sample with a gas and a method of measuring a sample using the device. It is in.

【0008】[0008]

【課題を解決するための手段】本発明者らは、検討の結
果、チャンバー部に、真空排気手段とガス導入手段とガ
ス量測定手段とを接続することによって、上記目的が達
成されることを知見した。
As a result of the study, the present inventors have found that the above-mentioned object can be achieved by connecting the vacuum exhaust means, the gas introducing means, and the gas amount measuring means to the chamber. I learned.

【0009】本発明は、上記知見に基づきなされたもの
で、X線発生手段とチャンバー部とゴニオメーターとX
線検出器とを備え、該チャンバー部内に固定された試料
にX線を照射し、該試料からの回折線を測定するX線回
折装置において、上記チャンバー部に、該チャンバー部
を真空とする真空排気手段と該チャンバー部に各種ガス
を導入するガス導入手段と該チャンバーのガス変化量を
測定するガス量測定手段とを接続することを特徴とする
X線回折装置を提供するものである。
The present invention has been made on the basis of the above findings, and has an X-ray generating means, a chamber, a goniometer and an X-ray generator.
An X-ray diffractometer, comprising: a X-ray detector for irradiating a sample fixed in the chamber with X-rays and measuring a diffraction line from the sample. It is an object of the present invention to provide an X-ray diffraction apparatus characterized by connecting an exhaust means, a gas introducing means for introducing various gases into the chamber, and a gas amount measuring means for measuring a gas change amount in the chamber.

【0010】また、本発明は、上記X線回折装置を用い
て、該チャンバー部内に固定された試料にX線を照射
し、該試料の回折線を測定する方法において、上記チャ
ンバー部のガス変化量を圧力から測定し、同時に該試料
からの回折線を測定することを特徴とする試料の測定方
法を提供することにある。
The present invention also relates to a method for irradiating a sample fixed in the chamber portion with X-rays by using the X-ray diffractometer and measuring the diffraction line of the sample. It is an object of the present invention to provide a method for measuring a sample, wherein the amount is measured from the pressure, and simultaneously the diffraction line from the sample is measured.

【0011】[0011]

【発明の実施の形態】以下、本発明の好ましい実施形態
について説明する。図1は、本発明の実施形態を示すX
線回折装置の全体イメージ図である。図1において、X
線回折装置は、X線発生手段1とチャンバー部2とゴニ
オメーター3とX線検出器4とで本体を構成する。この
ような、X線回折装置本体を用いて、チャンバー部2内
に固定された試料に対してX線発生手段1からX線を照
射し、X線検出器4において回折線を測定する。ここに
おいて、ゴニオメーター3は、X線回折角度を測定する
ものである。このようなX線回折装置は、通常用いられ
る装置である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below. FIG. 1 shows an embodiment of the present invention, X
FIG. 2 is an overall image diagram of the line diffraction apparatus. In FIG. 1, X
The main part of the X-ray diffraction apparatus is composed of the X-ray generation means 1, the chamber 2, the goniometer 3, and the X-ray detector 4. Using such an X-ray diffraction apparatus main body, the sample fixed in the chamber section 2 is irradiated with X-rays from the X-ray generation means 1, and the X-ray detector 4 measures diffraction rays. Here, the goniometer 3 measures an X-ray diffraction angle. Such an X-ray diffractometer is a commonly used device.

【0012】本発明のX線回折装置は、このチャンバー
部2に該チャンバー部を真空とする真空排気手段と該チ
ャンバー部に各種ガスを導入するガス導入手段と該チャ
ンバーのガス量を測定するガス量測定手段とを接続す
る。
The X-ray diffractometer of the present invention comprises a vacuum exhaust means for evacuating the chamber to the chamber 2, a gas introducing means for introducing various gases into the chamber, and a gas for measuring the gas amount in the chamber. Connect the quantity measuring means.

【0013】真空排気手段は、拡散ポンプ5及びロータ
リーポンプ6等からなり、チャンバー部2内を真空とす
る。ガス導入手段は、水素ガスやヘリウムガス、窒素ガ
ス等の不活性ガスを充填したガスボンベ7等からなる。
ガス量測定手段は、圧力計8、精密圧力計9、高真空計
10等からなる。真空排気手段やガス導入手段はガス量
測定手段にて交叉され、最終的にチャンバー部2に接続
される。
The evacuation means includes a diffusion pump 5 and a rotary pump 6, and evacuates the chamber 2. The gas introducing means includes a gas cylinder 7 filled with an inert gas such as a hydrogen gas, a helium gas, and a nitrogen gas.
The gas amount measuring means includes a pressure gauge 8, a precision pressure gauge 9, a high vacuum gauge 10, and the like. The evacuation means and the gas introduction means are crossed by the gas amount measuring means, and are finally connected to the chamber 2.

【0014】また、本発明のX線回折装置は、上記チャ
ンバー部2内に固定された上記試料を加熱するための加
熱ヒーターが、Ta系薄膜ヒーターであり、該試料のX
線照射側の背面に設けられていることが望ましい。この
Ta系薄膜ヒーターは、スパッタリング法や蒸着法によ
って得られるが、好ましくはスパッタリング法で得られ
たものが好ましい。
In the X-ray diffractometer of the present invention, the heater for heating the sample fixed in the chamber section 2 is a Ta-based thin film heater, and the X-ray diffraction of the sample is
It is desirable to be provided on the back side on the radiation side. This Ta-based thin film heater can be obtained by a sputtering method or a vapor deposition method, and preferably obtained by a sputtering method.

【0015】このような加熱ヒーターを用いたチャンバ
ー部2の一例を示す概略断面図を図2に示す。また、チ
ャンバー部2の部分分解図を図3に示す。図2〜3にお
いて、11はX線窓、12は試料、13は試料板、14
は試料ホルダ、15は加熱ヒーター、16は試料側面固
定具、17は試料前面固定具、18は試料前面固定具押
さえ材、19はゴニオメーターステージ、20は真空/
ガス入口をそれぞれ示す。
FIG. 2 is a schematic sectional view showing an example of the chamber section 2 using such a heater. FIG. 3 shows a partial exploded view of the chamber section 2. 2 to 3, 11 is an X-ray window, 12 is a sample, 13 is a sample plate, 14
Is a sample holder, 15 is a heater, 16 is a sample side fixture, 17 is a sample front fixture, 18 is a sample front fixture holding member, 19 is a goniometer stage, and 20 is a vacuum /
Each shows a gas inlet.

【0016】最大30×20mm、厚さ2mmの試料1
2が詰め込まれた試料板13に試料ホルダ13に着脱自
在に固定され、垂直方式で保持されている。この試料ホ
ルダ13が試料ホルダ14に着脱自在に固定されてい
る。試料12は試料側面固定具16及び試料前面固定具
17で固定され、試料前面固定具17は試料前面固定具
押さえ材18で固定されている。また、X線窓11、試
料前面固定具17は、いずれも金属ベリリウムからなる
ので、X線窓11等をX線が通過しても放射及び回折を
妨げることがない。
Sample 1 having a maximum of 30 × 20 mm and a thickness of 2 mm
2 is removably fixed to the sample holder 13 on the sample plate 13 packed therein, and is held in a vertical manner. The sample holder 13 is detachably fixed to the sample holder 14. The sample 12 is fixed by a sample side fixture 16 and a sample front fixture 17, and the sample front fixture 17 is fixed by a sample front fixture holding member 18. Further, since both the X-ray window 11 and the sample front fixture 17 are made of metal beryllium, even if X-rays pass through the X-ray window 11 and the like, they do not hinder radiation and diffraction.

【0017】そして、加熱ヒーター15は、試料12の
裏面、すなわちX線の照射側の背面に設けられている。
また、この加熱ヒーター15は、面板状のTa系薄膜ヒ
ーターである。このような加熱ヒーターを用いることに
よって、試料面内での温度勾配の低減が可能となる。ま
た、Ta系薄膜ヒーターであるため、急速な昇温、降温
が可能であり、不純ガスの放出量も極めて少なく、取り
扱いが非常に容易なものとなる。
The heater 15 is provided on the back surface of the sample 12, that is, on the back surface on the X-ray irradiation side.
The heater 15 is a Ta-based thin film heater having a face plate shape. The use of such a heater makes it possible to reduce the temperature gradient in the sample plane. Further, since the heater is a Ta-based thin film heater, the temperature can be raised and lowered rapidly, the amount of release of impurity gas is extremely small, and the handling becomes very easy.

【0018】次に、本発明の試料の測定方法について説
明する。本発明では、上記チャンバー部のガス変化量を
圧力から測定し、同時に該試料からの回折線を測定す
る。
Next, the method for measuring a sample according to the present invention will be described. In the present invention, the amount of gas change in the chamber is measured from the pressure, and at the same time, the diffraction line from the sample is measured.

【0019】すなわち、真空排気系及びガス導入系によ
って、チャンバー部内の圧力を真空から10気圧とし、
また加熱ヒーターによって温度を室温(20℃)〜50
0℃とする。、例えば200℃、5気圧で行う。そし
て、チャンバー部内の圧力に伴うガスの量を測定する。
例えば試料として水素吸蔵合金を用いた場合において
は、平衡水素圧力から水素ガス量、ひいては水素吸蔵量
を測定し、この時の水素吸蔵合金の格子定数や結晶構造
をX線回折により測定する。このため、このような測定
を経時的又は間欠的に行うことによって、水素吸蔵量及
び温度、圧力の変化に対する格子定数の変化や相転移に
伴う結晶の形態変化を同時に測定することが可能とな
る。
That is, the pressure in the chamber is reduced from vacuum to 10 atm by a vacuum exhaust system and a gas introduction system.
Further, the temperature is set to a room temperature (20 ° C.) to 50 by a heater.
0 ° C. For example, at 200 ° C. and 5 atm. Then, the amount of gas accompanying the pressure in the chamber is measured.
For example, when a hydrogen storage alloy is used as a sample, the amount of hydrogen gas and thus the amount of hydrogen storage are measured from the equilibrium hydrogen pressure, and the lattice constant and crystal structure of the hydrogen storage alloy at this time are measured by X-ray diffraction. Therefore, by performing such a measurement over time or intermittently, it becomes possible to simultaneously measure the change in lattice constant with respect to the change in the hydrogen storage amount, temperature, and pressure, and the morphological change of the crystal accompanying the phase transition. .

【0020】ある一定温度で水素吸蔵量を測定する場
合、相変態の過程では、平衡水素圧力は水素吸蔵量に依
存せず一定である。従って、水素圧力から水素吸蔵量を
見積もることは困難である。一方、本発明では、平衡圧
力が一定領域でも常に水素吸蔵量を決定することができ
る。
When the hydrogen storage amount is measured at a certain temperature, during the phase transformation, the equilibrium hydrogen pressure is constant without depending on the hydrogen storage amount. Therefore, it is difficult to estimate the hydrogen storage amount from the hydrogen pressure. On the other hand, in the present invention, the hydrogen storage amount can always be determined even when the equilibrium pressure is constant.

【0021】[0021]

【実施例】以下、実施例に基づき本発明を具体的に説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments.

【0022】[実施例1]図1〜3に示されるX線回折
装置を用い、ニッケル粉末おける温度依存性を評価し
た。結果を図4に示す、
Example 1 The temperature dependence of nickel powder was evaluated using the X-ray diffraction apparatus shown in FIGS. The results are shown in FIG.

【0023】[実施例2]図1〜3に示されるX線回折
装置を用い、LaNi5 合金のX線回折を行った。結果
を図5に示す、
Example 2 X-ray diffraction of a LaNi 5 alloy was performed using the X-ray diffraction apparatus shown in FIGS. The results are shown in FIG.

【0024】[実施例3]図1〜3に示されるX線回折
装置を用い、LaNi5 合金の相変態量に及ぼす水素吸
蔵量の影響を評価した。結果を図6に示す、
Example 3 Using the X-ray diffractometer shown in FIGS. 1 to 3, the effect of the amount of hydrogen occlusion on the amount of phase transformation of the LaNi 5 alloy was evaluated. The results are shown in FIG.

【0025】[実施例4]図1〜3に示されるX線回折
装置を用い、LaNi5 合金の格子定数に及ぼす水素吸
蔵量の影響を評価した。結果を図7に示す、
Example 4 Using the X-ray diffractometer shown in FIGS. 1 to 3, the influence of the hydrogen storage amount on the lattice constant of the LaNi 5 alloy was evaluated. The results are shown in FIG.

【0026】[0026]

【発明の効果】以上説明したように、本発明のX線回折
装置を用いた試料の測定方法によって、試料のガスとの
反応量に対する試料の構造等の回折結果を同時に測定す
ることができる。
As described above, according to the sample measuring method using the X-ray diffractometer of the present invention, it is possible to simultaneously measure the diffraction result such as the structure of the sample with respect to the reaction amount of the sample with the gas.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の実施形態を示すX線回折装置
の全体イメージ図である。
FIG. 1 is an overall image diagram of an X-ray diffraction apparatus showing an embodiment of the present invention.

【図2】図2は、本発明で用いられるチャンバー部の一
例を示す概略断面図である。
FIG. 2 is a schematic sectional view showing an example of a chamber section used in the present invention.

【図3】図3は、本発明で用いられるチャンバー部の部
分分解図である。
FIG. 3 is a partially exploded view of a chamber portion used in the present invention.

【図4】図4は、ニッケル粉末おける温度依存性を示す
グラフである。
FIG. 4 is a graph showing the temperature dependence of nickel powder.

【図5】図5は、LaNi5 合金のX線回折図である。FIG. 5 is an X-ray diffraction diagram of a LaNi 5 alloy.

【図6】図6は、LaNi5 合金の相変態量と水素吸蔵
量の関係を示すグラフ。
FIG. 6 is a graph showing the relationship between the amount of phase transformation and the amount of hydrogen occlusion of a LaNi 5 alloy.

【図7】図7は、LaNi5 合金の格子定数と水素吸蔵
量の関係を示すグラフ。
FIG. 7 is a graph showing the relationship between the lattice constant of LaNi 5 alloy and the amount of hydrogen occlusion.

【符号の説明】[Explanation of symbols]

1 X線発生手段 2 チャンバー部 3 ゴニオメーター 4 X線検出器 5 拡散ポンプ 6 ロータリーポンプ 7 ガスボンベ 8 圧力計 9 精密圧力計 10 高真空計 11 X線窓 12 試料 13 試料板 14 試料ホルダ 15 加熱ヒーター 16 試料側面固定具 17 試料前面固定具 18 試料前面固定具押さえ材 19 ゴニオメーターステージ 20 真空/ガス入口 DESCRIPTION OF SYMBOLS 1 X-ray generation means 2 Chamber part 3 Goniometer 4 X-ray detector 5 Diffusion pump 6 Rotary pump 7 Gas cylinder 8 Pressure gauge 9 Precision pressure gauge 10 High vacuum gauge 11 X-ray window 12 Sample 13 Sample plate 14 Sample holder 15 Heater 16 Sample side fixture 17 Sample front fixture 18 Sample front fixture holder 19 Goniometer stage 20 Vacuum / gas inlet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 眞一 埼玉県上尾市原市1333−2 三井金属鉱業 株式会社総合研究所内 (72)発明者 友成 健二 埼玉県上尾市原市1333−2 三井金属鉱業 株式会社総合研究所内 Fターム(参考) 2G001 AA01 BA18 CA01 GA16 GA17 JA14 KA08 KA20 LA02 MA04 MA05 NA11 NA17 PA07 QA01 QA10  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shinichi Inoue 1333-2, Hara-shi, Ageo-shi, Saitama Mitsui Mining & Smelting Co., Ltd. (72) Inventor Kenji Tomonari 1333-2, Hara-shi, Ageo-shi, Saitama Mitsui Kinzoku Mining F-term in company research institute (reference) 2G001 AA01 BA18 CA01 GA16 GA17 JA14 KA08 KA20 LA02 MA04 MA05 NA11 NA17 PA07 QA01 QA10

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 X線発生手段とチャンバー部とゴニオメ
ーターとX線検出器とを備え、該チャンバー部内に固定
された試料にX線を照射し、該試料からの回折線を測定
するX線回折装置において、 上記チャンバー部に、該チャンバー部を真空とする真空
排気手段と該チャンバー部に各種ガスを導入するガス導
入手段と該チャンバーのガス変化量を測定するガス量測
定手段とを接続することを特徴とするX線回折装置。
An X-ray which includes an X-ray generating means, a chamber, a goniometer, and an X-ray detector, irradiates a sample fixed in the chamber with X-rays, and measures diffraction rays from the sample. In the diffraction apparatus, a vacuum evacuation unit for evacuating the chamber unit, a gas introduction unit for introducing various gases into the chamber unit, and a gas amount measurement unit for measuring a gas change amount of the chamber are connected to the chamber unit. An X-ray diffraction apparatus, comprising:
【請求項2】 上記チャンバー部内に固定された上記試
料を加熱するための加熱ヒーターが、Ta系薄膜ヒータ
ーであり、該試料のX線照射側の背面に設けられている
請求項1に記載のX線回折装置。
2. The heater according to claim 1, wherein the heater for heating the sample fixed in the chamber is a Ta-based thin film heater, and is provided on the back surface of the sample on the X-ray irradiation side. X-ray diffractometer.
【請求項3】 請求項1に記載のX線回折装置を用い
て、該チャンバー部内に固定された試料にX線を照射
し、該試料の回折線を測定する方法において、 上記チャンバー部のガス変化量を圧力から測定し、同時
に該試料からの回折線を測定することを特徴とする試料
の測定方法。 上記チャンバー部のガス変化量を圧力から測定し、同時
に該試料からの回折線を測定することを特徴とする試料
の測定方法。
3. A method for irradiating a sample fixed in the chamber portion with X-rays using the X-ray diffraction device according to claim 1 and measuring a diffraction line of the sample, wherein the gas in the chamber portion is measured. A method for measuring a sample, comprising measuring a change amount from a pressure and simultaneously measuring a diffraction line from the sample. A method for measuring a sample, comprising: measuring a gas change amount in the chamber from a pressure and simultaneously measuring a diffraction line from the sample.
JP11095362A 1999-04-01 1999-04-01 X-ray diffraction device and measuring method of sample using this device Pending JP2000292375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11095362A JP2000292375A (en) 1999-04-01 1999-04-01 X-ray diffraction device and measuring method of sample using this device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11095362A JP2000292375A (en) 1999-04-01 1999-04-01 X-ray diffraction device and measuring method of sample using this device

Publications (1)

Publication Number Publication Date
JP2000292375A true JP2000292375A (en) 2000-10-20

Family

ID=14135532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11095362A Pending JP2000292375A (en) 1999-04-01 1999-04-01 X-ray diffraction device and measuring method of sample using this device

Country Status (1)

Country Link
JP (1) JP2000292375A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1406084A1 (en) * 2002-10-02 2004-04-07 Rigaku Corporation Analyzing apparatus and analyzing method
CN104502367A (en) * 2014-12-09 2015-04-08 中国科学院上海应用物理研究所 In-situ testing platform for thermal chemical vapor deposition
JP2016223921A (en) * 2015-05-29 2016-12-28 国立大学法人名古屋大学 Hydrogen storage capacity measurement method and hydrogen storage capacity measurement apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1406084A1 (en) * 2002-10-02 2004-04-07 Rigaku Corporation Analyzing apparatus and analyzing method
US6937695B2 (en) 2002-10-02 2005-08-30 Rigaku Corporation Analyzing apparatus and analyzing method
CN104502367A (en) * 2014-12-09 2015-04-08 中国科学院上海应用物理研究所 In-situ testing platform for thermal chemical vapor deposition
JP2016223921A (en) * 2015-05-29 2016-12-28 国立大学法人名古屋大学 Hydrogen storage capacity measurement method and hydrogen storage capacity measurement apparatus

Similar Documents

Publication Publication Date Title
Ross et al. High temperature X-ray metallography: I. A new debye-scherrer camera for use at very high temperatures II. A new parafocusing camera III. Applications to the study of chromium, hafnium, molybdenum, rhodium, ruthenium and tungsten
US5226067A (en) Coating for preventing corrosion to beryllium x-ray windows and method of preparing
Erley Chlorine adsorption on the (111) faces of Pd and Pt
Sachtler et al. The surface of copper-nickel alloy films: I. Work function and phase composition
Baublitz Jr et al. Energy dispersive x‐ray diffraction from high pressure polycrystalline specimens using synchrotron radiation
Hagelstein et al. The beamline ID24 at ESRF for energy dispersive X-ray absorption spectroscopy
TW201209847A (en) Thick targets for transmission x-ray tubes
Dickerson et al. Effect of hydrostatic pressure on the self-diffusion rate in single crystals of gold
Zhang et al. Melting curve of vanadium up to 256 GPa: Consistency between experiments and theory
Breuer et al. Interstitial and substitutional diffusion of metallic solutes in Ti3Al
JP2000292375A (en) X-ray diffraction device and measuring method of sample using this device
JP2014032903A (en) Radiation emitting target, radiation generating unit, and radiation photography system
Kubiak et al. Dynamics of recombinative desorption of H2 and D2 from Cu (110), Cu (111), and sulfur‐covered Cu (111)
JP2003329619A (en) Sample surface observing device with x ray and method of evaluating crystallized state of metal with x ray
JP2008122101A (en) Image measuring method and device
McIntyre et al. SIMS studies of hydrogen diffusion through oxides on Zr Nb alloy
Mills Jr et al. Solid Kr moderator for producing slow positrons
JP3888577B2 (en) Crystal structure analysis method of hydrogen storage alloy
JP2006017543A (en) X-ray diffractometer and specimen measurement method
JP6583616B2 (en) Hydrogen storage amount measuring method and hydrogen storage amount measuring apparatus
Ujihara et al. In Situ Measurement of Composition in High-Temperature Solutions by X-Ray Fluorescence Spectrometry
Cabrera et al. Kinetics of subsurface hydrogen adsorbed on niobium: Thermal desorption studies
Colling et al. Superconducting tungsten films for use as phase transition thermometers for calorimetric detectors
Arora et al. Fabrication of enriched 170Yb2O3 thin targets for studying asymmetric fission in sub-lead mass region
GB1594782A (en) Cold neutron radiographic apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090925