JP2000290058A - Inorganic material caked body - Google Patents

Inorganic material caked body

Info

Publication number
JP2000290058A
JP2000290058A JP11098870A JP9887099A JP2000290058A JP 2000290058 A JP2000290058 A JP 2000290058A JP 11098870 A JP11098870 A JP 11098870A JP 9887099 A JP9887099 A JP 9887099A JP 2000290058 A JP2000290058 A JP 2000290058A
Authority
JP
Japan
Prior art keywords
solidified
mass
inorganic material
slaked lime
weathered granite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11098870A
Other languages
Japanese (ja)
Inventor
Seiki Saito
成輝 齋藤
Hiroteru Maenami
洋輝 前浪
Hiroto Shin
博人 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inax Corp
Original Assignee
Inax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inax Corp filed Critical Inax Corp
Priority to JP11098870A priority Critical patent/JP2000290058A/en
Publication of JP2000290058A publication Critical patent/JP2000290058A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/10Lime cements or magnesium oxide cements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an inorganic material caked body without heating to a high temperature. SOLUTION: Slaked lime and powder of weathered granite are mixed and caked by carbonation and hydration. The composition of the powder of weathered granite consists of 7-17 mass % Al2O3, 2-10 mass % alkali metal oxides and/or alkaline earth metal oxides, 1-6 mass % ignition loss and the balance substantially SiO2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内装材、外装材等
の建材、路盤、躯体床、躯体壁、建造物等に利用可能な
無機材料固化体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid inorganic material usable for building materials such as interior materials and exterior materials, roadbeds, skeleton floors, skeleton walls, buildings and the like.

【0002】[0002]

【従来の技術】内装材や外装材等に用いられるタイル等
の陶磁器や煉瓦等の耐火物に代表される従来のセラミッ
クス製品は、一般的には、天然に産出される粘土等の無
機材料原料を水とともに所定割合で調合・混練して所定
形状に成形し、こうして得られる成形体を高温に加熱す
ることにより固相反応、焼結、溶融、結晶成長等を生じ
しめて固化させている。
2. Description of the Related Art Conventional ceramic products such as ceramics such as tiles used for interior and exterior materials and refractories such as bricks are generally made of inorganic materials such as clay which are naturally produced. Is mixed and kneaded with water at a predetermined ratio to form a predetermined shape, and the thus obtained molded body is heated to a high temperature to cause a solid phase reaction, sintering, melting, crystal growth and the like to be solidified.

【0003】また、ブロックを成形したり、生コン等と
して躯体床や躯体壁等を施工する際に用いられたりする
セメントは、一般的には、SiO2、Al23、Fe2
3、CaOを含む原料を所定割合で調合し、こうして得
られる調合物を溶融するまで高温に加熱することにより
クリンカーとし、このクリンカーをセッコウ(CaSO
4・2H2O)とともに粉末状に粉砕してなる。このセメ
ントは、砂や小石等を骨材とし、水等とともに混練され
てセメントペーストとされる。そして、セメントペース
トは、セメント中のC2S(2CaO・SiO2)、C3
S(3CaO・SiO2)等の化合物が水和反応してC3
23(3CaO・2SiO2・3H2O)等の固体水和
物を生じ、凝結及び硬化により固化する。この際、セッ
コウは凝結の時間調整を行う。
[0003] In addition, cement used for forming a block or constructing a skeleton floor or a skeleton wall as ready-mixed concrete is generally made of SiO 2 , Al 2 O 3 , Fe 2 O.
3. A raw material containing CaO is blended at a predetermined ratio, and the resulting blend is heated to a high temperature until it is melted to form a clinker.
4 · 2H 2 O) with formed by crushed into powder. This cement uses sand, pebbles, etc. as aggregate, and is kneaded with water or the like to form a cement paste. The cement paste is composed of C 2 S (2CaO · SiO 2 ), C 3
Compounds such as S (3CaO.SiO 2 ) undergo a hydration reaction to form C 3
Produces solid hydrates such as S 2 H 3 (3CaO.2SiO 2 .3H 2 O) and solidifies by coagulation and hardening. At this time, the gypsum adjusts the setting time.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来のセラミ
ックス製品は所定形状で固化させるため、またセメント
はクリンカーを得るために、高温に加熱しなければなら
ない。このため、これらにより内装材、外装材、路盤、
躯体床、躯体壁、建造物等の固化体を得ようとする場合
には、大量のエネルギーの消費を生じ、環境上好ましく
ない。
However, conventional ceramic products must be heated to a high temperature in order to solidify them in a predetermined shape and cement to obtain clinker. For this reason, by these, interior material, exterior material, roadbed,
When trying to obtain a solidified body such as a skeleton floor, a skeleton wall, a building, etc., a large amount of energy is consumed, which is environmentally unfavorable.

【0005】本発明は、上記従来の実状に鑑みてなされ
たものであって、高温に加熱する必要なく得られる無機
材料固化体を提供することを解決すべき課題としてい
る。
The present invention has been made in view of the above-mentioned conventional situation, and has as an object to provide a solid inorganic material which can be obtained without heating to a high temperature.

【0006】[0006]

【課題を解決するための手段】本発明の無機材料固化体
は、消石灰と、風化した花崗岩の粉末とが混合され、炭
酸化反応と水和反応とにより固化されてなることを特徴
とする。この無機材料固化体(以下、単に固化体とい
う。)では、常温〜120°C未満の温度条件下におい
て、消石灰(水酸化カルシウム、Ca(OH)2)が炭
酸化反応により炭酸カルシウム(CaCO3)を生成し
て固化されている。また、常温〜120°C未満の温度
域において、風化した花崗岩の粉末(砂婆土、真砂土、
ヘナ土ともいう。)が水和反応してCSH(CxSyH
z;xCaO・ySiO2・zH2Oの意である。x、y
及びzは固体水和物として存在し得る正数。)、CAH
(CxAyHz;xCaO・yAl23・zH2Oの意
である。x、y及びzは固体水和物として存在し得る正
数。)、CASH(CwAxSyHz;wCaO・xA
23・ySiO2・zH2Oの意である。w、x、y及
びzは固体水和物として存在し得る正数。)等の固体水
和物を生成して固化されている。水和生成物は、120
°C付近で脱水を伴う相変化を起こし、亀裂を生じ易い
ことから120°C未満の温度条件下が好ましい。かか
る炭酸化反応と水和反応とは、同時期又はほぼ同時期に
進行し、互いに他方の反応を促進し合うと考えられる。
このため、これらの反応により生じる炭酸カルシウムと
固体水和物とは、一方が他方の相間を補強し合ったり、
新たな固体水和物を生じたりし、炭酸カルシウム及び固
体水和物の中間的な組成の水和物炭酸塩を生じると考え
られる。なお、水和物炭酸塩は、CSH、CAH、CA
SH等の固体水和物におけるCa、Si又はAlの一部
がアルカリ金属、アルカリ土類金属、非金属元素又は遷
移元素と置換されたものである場合もあり得る。また、
水和物炭酸塩は、結晶である場合の他、非結晶である場
合もあり得る。
The solidified inorganic material according to the present invention is characterized in that slaked lime and weathered granite powder are mixed and solidified by a carbonation reaction and a hydration reaction. In this solidified inorganic material (hereinafter, simply referred to as solidified), slaked lime (calcium hydroxide, Ca (OH) 2 ) is subjected to calcium carbonate (CaCO 3 ) by a carbonation reaction under a temperature condition of room temperature to less than 120 ° C. A) has been solidified. In a temperature range from room temperature to less than 120 ° C., weathered granite powders (Saba clay, Masago soil,
Also called henna soil. ) Undergoes a hydration reaction and CSH (CxSyH
z; is the meaning of xCaO · ySiO 2 · zH 2 O . x, y
And z are positive numbers that can exist as a solid hydrate. ), CAH
(CxAyHz; xCaO · yAl 2 O 3 · zH 2 O meaning a is .x of, y and z may be present as a solid hydrate positive number.), CASH (CwAxSyHz; wCaO · xA
It means l 2 O 3 .ySiO 2 .zH 2 O. w, x, y and z are positive numbers that can exist as solid hydrates. ) And solidified. The hydration product is 120
A temperature condition of less than 120 ° C. is preferable because a phase change accompanied by dehydration occurs at around ° C. and cracks are easily generated. It is considered that such a carbonation reaction and a hydration reaction proceed at the same time or almost at the same time, and promote the other reaction with each other.
Therefore, one of the calcium carbonate and the solid hydrate generated by these reactions reinforces the other phase,
It is believed that it produces a new solid hydrate or a hydrate carbonate intermediate in composition between calcium carbonate and solid hydrate. In addition, hydrate carbonate is CSH, CAH, CA
In some cases, Ca, Si or Al in a solid hydrate such as SH may be partially substituted with an alkali metal, an alkaline earth metal, a nonmetal element, or a transition element. Also,
The hydrate carbonate may be amorphous as well as crystalline.

【0007】こうして、常温〜120°C未満の温度条
件下で固化体とされているため、高温に加熱する必要が
ない。このため、内装材、外装材、路盤、躯体床、躯体
壁、建造物等の固化体を得るためのエネルギーの消費を
極力抑制することができ、優れた環境保全性を発揮する
ことができる。本発明の固化体は、インターブロッキン
グブロック等のブロック形状又は内装タイル若しくは外
装タイル等のタイル形状とされ得る。かかるブロック形
状又はタイル形状の固化体は、自然的な表面粗さが構造
物の意匠性を発揮する。また、屋外において雨水等に曝
されれば、表面から比較的容易に崩れてさらに自然的な
表面粗さを増し、美観を呈することができる。この際、
Ca2+等によるアルカリ成分が溶出し、これが肥料とし
て土壌を肥沃にするとともに、環境への悪影響を生じな
い効果も奏する。
As described above, since the solidified material is formed under the temperature condition of a normal temperature to less than 120 ° C., it is not necessary to heat it to a high temperature. For this reason, the consumption of energy for obtaining a solidified body such as an interior material, an exterior material, a roadbed, a skeleton floor, a skeleton wall, and a building can be suppressed as much as possible, and excellent environmental conservation can be exhibited. The solidified body of the present invention can be formed into a block shape such as an interblocking block or a tile shape such as an interior tile or an exterior tile. In such a block-shaped or tile-shaped solidified body, natural surface roughness exhibits the design of the structure. In addition, when exposed to rainwater or the like outdoors, the surface collapses relatively easily, further increasing the natural surface roughness, and providing an aesthetic appearance. On this occasion,
Alkali components such as Ca 2+ are eluted, which fertilizes the soil as a fertilizer, and also has an effect of not causing an adverse effect on the environment.

【0008】なお、固化体は所望の強度を発揮すべく骨
材を含むことができる。この骨材としては、砂、小石、
ガラス繊維等を採用し得る他、コンクリートがら、陶磁
器がら、カレット等の無機廃棄物を採用することができ
る。また、発明者らの試験結果によれば、本発明の固化
体はNaCl、MgCl2、Fe23及びAl(OH)3
の少なくとも1種を含むことが好ましい。NaCl及び
MgCl2は固化体の強度を向上させる。
[0008] The solidified body may contain an aggregate so as to exhibit a desired strength. This aggregate includes sand, pebbles,
In addition to glass fibers and the like, concrete waste, ceramic waste and cullet can be used. Further, according to the test results of the inventors, the solidified product of the present invention is NaCl, MgCl 2 , Fe 2 O 3 and Al (OH) 3
It is preferable to include at least one of the following. NaCl and MgCl 2 improve the strength of the solidified body.

【0009】[0009]

【発明の実施の形態】消石灰としては工業用のものを採
用することができる。他方、風化した花崗岩の粉末とし
て容易に入手可能なものの組成(質量%)を表1に示
す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As slaked lime, industrial lime can be employed. On the other hand, Table 1 shows the composition (% by mass) of those easily available as weathered granite powder.

【0010】[0010]

【表1】 [Table 1]

【0011】表1より、風化した花崗岩の粉末の組成
は、Al23が7〜17質量%、アルカリ金属酸化物又
は/及びアルカリ土類金属酸化物が2〜10質量%、灼
熱減量(Ignition loss。以下、Iglo
ssという。)が1〜6質量%、SiO2が実質残部
と、認識できる。実質とはFe23、TiO2等を含み
得る意である。このうち、発明者らの試験結果によれ
ば、風化した花崗岩の粉末の組成は、Al23が9〜1
5質量%、アルカリ金属酸化物又は/及びアルカリ土類
金属酸化物が3〜9質量%、Iglossが1〜3質量
%、SiO2が実質残部であることが固化体の強度確保
の点で好ましい。なお、風化した花崗岩の粉末は、アル
カリ金属酸化物としてはNa2O及びK2Oを含み、アル
カリ土類金属酸化物としてはCaO及びMgOを含む。
なお、アルカリ金属酸化物としてLi2Oを含むもの、
アルカリ土類金属酸化物としてBeO、SrO又はBa
Oを含むものも採用し得る。また、風化した花崗岩の粉
末の主な構成相は、XRD観察によれば、石英、ソーダ
長石、正長石、雲母、カオリン鉱物及び緑泥石である。
また、この粉末は角閃石を構成相として含むこともでき
る。また、表1に示した風化した花崗岩の粉末の一部の
粒度分布(頻度(%)、積算量(%))を図1に示す。
From Table 1, the composition of the weathered granite powder is such that Al 2 O 3 is 7 to 17% by mass, alkali metal oxide and / or alkaline earth metal oxide is 2 to 10% by mass, and the ignition loss ( Ignition loss.
It is called ss. ) Is 1-6 wt%, SiO 2 is substantially the balance, it can be recognized. Substantially means that it may contain Fe 2 O 3 , TiO 2 and the like. Among these, according to the test results of the inventors, the composition of the weathered granite powder is such that Al 2 O 3 is 9-1.
5% by mass, 3 to 9% by mass of alkali metal oxide and / or alkaline earth metal oxide, 1 to 3% by mass of Igloss, and substantially the remainder of SiO 2 are preferable from the viewpoint of securing the strength of the solidified body. . The weathered granite powder contains Na 2 O and K 2 O as alkali metal oxides and CaO and MgO as alkaline earth metal oxides.
In addition, those containing Li 2 O as an alkali metal oxide,
BeO, SrO or Ba as alkaline earth metal oxide
Those containing O may also be employed. According to XRD observation, the main constituent phases of the weathered granite powder are quartz, soda feldspar, orthoclase, mica, kaolin mineral and chlorite.
The powder may also include amphibolite as a constituent phase. FIG. 1 shows the particle size distribution (frequency (%), integrated amount (%)) of a part of the weathered granite powder shown in Table 1.

【0012】発明者らが確認した結果、花崗岩の粉末は
風化の程度の小さいものであることが固化体の強度確保
の点で好ましい。風化とは、風雨や気温の変化等の影響
及び植物やバクテリアの存在により岩石が変質し、分解
される過程である。この風化は構成相の部分的な粘土化
として表れていると考えられる。構成相の部分的な粘土
化は、まず大きな粒径の粉末の表面で水和物の生成を生
じ、これにより小さな粒径の粉末を生じ、さらに全体の
粉末の表面で水和物を生じて進行していくものと考えら
れる。このため、表1に示すIglossが粉末の表面
に存在する水和物の量を相対的に示すと考えられ、Ig
lossの量が多い程、風化が進行していると考えられ
る。また、発明者らがTG−DTA観察により上記花崗
岩の粉末の脱水挙動を確認した結果、60°C付近及び
150°C付近にピークをもつ脱水反応が得られたこと
から、これら花崗岩の粉末の風化は粉末の表面にハロイ
サイト又はモンモリロライトを生成することで進行して
いると考えられる。
As a result of confirmation by the inventors, it is preferable that the granite powder has a small degree of weathering from the viewpoint of securing the strength of the solidified body. Weathering is a process in which rocks are altered and decomposed due to the effects of wind and rain, changes in temperature, and the presence of plants and bacteria. This weathering is thought to be manifested as partial clayification of the constituent phases. Partial calcification of the constituent phases firstly results in the formation of hydrates on the surface of the larger particle size powder, thereby producing a smaller particle size powder, and furthermore the hydrate formation on the entire powder surface. It is thought to proceed. For this reason, it is considered that Igloss shown in Table 1 relatively indicates the amount of hydrate present on the surface of the powder.
It is considered that the greater the amount of loss, the more weathering has progressed. In addition, the inventors confirmed the dehydration behavior of the granite powder by TG-DTA observation. As a result, dehydration reactions having peaks at around 60 ° C. and around 150 ° C. were obtained. It is believed that weathering is proceeding by forming halloysite or montmorillonite on the surface of the powder.

【0013】また、本発明の固化体は、砂、小石、ガラ
ス繊維、タイル廃材、カレット等の骨材を含むことによ
り強度を向上し得ると考えられる。この意味において、
風化した花崗岩の粉末の最大粒径が固化体に作用する荷
重方向の寸法に対して1/5程度であることが固化体の
強度確保の点で好ましい。固化体は、通常、5MPa以
上の圧縮強度を必要とするため、本発明の固化体は消石
灰が5重量%以上混合されて固化していることが好まし
い。他方、消石灰は比較的高価であり、消石灰が30重
量%程度で固化体の圧縮強度はほぼ飽和状態となるた
め、本発明の固化体は消石灰が30重量%以下混合され
て固化していることが好ましい。
Further, it is considered that the solidified body of the present invention can improve the strength by including aggregates such as sand, pebbles, glass fibers, tile waste, and cullet. In this sense,
The maximum particle size of the weathered granite powder is preferably about 1/5 of the dimension in the load direction acting on the solidified body from the viewpoint of ensuring the strength of the solidified body. Since the solidified body usually needs a compressive strength of 5 MPa or more, it is preferable that the solidified body of the present invention is solidified by mixing slaked lime with 5% by weight or more. On the other hand, slaked lime is relatively expensive, and when the slaked lime is about 30% by weight, the compressive strength of the solidified body is almost saturated. Therefore, the solidified body of the present invention is solidified by mixing the slaked lime with 30% by weight or less. Is preferred.

【0014】[0014]

【実施例】以下、本発明を具体化した実施例1、2を図
面を参照しつつ説明する。 (実施例1) 「調合物の調製」表2に示す割合(質量%)で原料1と
消石灰とをモルタル混合用のミキサーを用いて混合し、
各調合物1〜17を得る。このときに、一度に混合する
量は最大5kgとした。ここで、原料1は表1に組成を
示す風化した花崗岩の粉末である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments 1 and 2 embodying the present invention will be described below with reference to the drawings. (Example 1) "Preparation of preparation" Raw material 1 and slaked lime were mixed at a ratio (% by mass) shown in Table 2 using a mixer for mortar mixing,
Obtain each formulation 1-17. At this time, the amount to be mixed at a time was 5 kg at the maximum. Here, the raw material 1 is a weathered granite powder having a composition shown in Table 1.

【0015】但し、調合物13、14では、粉末状の水
酸化アルミニウム5質量部を85質量部の原料1及び1
0質量部の消石灰に対して同時に添加した。
However, in the preparations 13 and 14, 5 parts by mass of the powdery aluminum hydroxide was added to 85 parts by mass of the raw materials 1 and 1
It was simultaneously added to 0 parts by mass of slaked lime.

【0016】[0016]

【表2】 [Table 2]

【0017】「混練物の調製」次いで、ミキサー中の調
合物1〜17に水等を添加する。このとき、各調合物1
〜17に対して水が8質量%となるようにしている。そ
して、ミキサーにて混練し、各調合物1〜17に対応し
て各混練物1〜17を得る。但し、調合物3、6、14
では、水82.5gにNaCl15g及びMgCl
22.5gを溶解した水溶液としてNaCl及びMgC
2を添加した。この水溶液は海水を濃縮したものに近
い組成を有しており、無尽蔵にある海水の有効利用及び
製造コストの低減を図るために用いている。
"Preparation of kneaded material"
Water and the like are added to Compounds 1 to 17. At this time, each formulation 1
The water content is set to 8% by mass with respect to 〜17. So
Then, knead with a mixer, corresponding to each formulation 1-17
To obtain the kneaded materials 1 to 17. However, Formulations 3, 6, 14
Then, 82.5 g of water and 15 g of NaCl and MgCl
TwoNaCl and MgC as an aqueous solution dissolving 2.5 g
lTwoWas added. This aqueous solution is close to the concentrated seawater.
Effective use of inexhaustible seawater
It is used to reduce manufacturing costs.

【0018】調合物5では、水96.5gにNaCl3
g及びMgCl20.5gを溶解した水溶液としてNa
Cl及びMgCl2を添加した。この水溶液も海水に近
い組成を有している。調合物7では、水96.5gにM
gCl23.5gを溶解した水溶液としてMgCl2を添
加した。
In formulation 5, 96.5 g of water was added to NaCl 3
g and 0.5 g of MgCl 2 as an aqueous solution
Cl and MgCl 2 were added. This aqueous solution also has a composition close to that of seawater. In formulation 7, 96.5 g of water contained M
MgCl 2 was added as an aqueous solution in which 3.5 g of gCl 2 was dissolved.

【0019】調合物8では、水82.5gにMgCl2
17.5gを溶解した水溶液としてMgCl2を添加し
た。調合物9では、濃度0.12%で水中にSiO2
含む水溶液として珪酸イオンを添加した。この水溶液は
スラグを処理して生じる高Si液である。調合物10で
は、上記高Si液96.5gにNaCl3g及びMgC
20.5gを溶解した水溶液として珪酸イオン、Na
Cl及びMgCl2を添加した。
In Formulation 8, MgCl 2 was added to 82.5 g of water.
MgCl 2 was added as an aqueous solution in which 17.5 g was dissolved. In formulation 9 was added silicate ions as an aqueous solution containing SiO 2 in water at a concentration 0.12%. This aqueous solution is a high Si solution generated by treating slag. In Formulation 10, 96.5 g of the high Si solution was mixed with 3 g of NaCl and MgC.
silicate ions as an aqueous solution obtained by dissolving l 2 0.5 g, Na
Cl and MgCl 2 were added.

【0020】調合物11では、上記高Si液82.5g
にNaCl15g及びMgCl22.5gを溶解した水
溶液として珪酸イオン、NaCl及びMgCl2を添加
した。調合物12では、上記高Si液82.5gにNa
Cl15g、MgCl22.5g及び濃度30%でNH3
を含むアンモニア水2gを溶解した水溶液として珪酸イ
オン、NaCl、MgCl2及びNH4OHを添加した。
In formulation 11, 82.5 g of the above high Si liquid
Silicate ions, NaCl and MgCl 2 were added as an aqueous solution in which 15 g of NaCl and 2.5 g of MgCl 2 were dissolved. In Formulation 12, 82.5 g of the high Si liquid was added to Na
Cl 15 g, MgCl 2 2.5 g and NH 3 at a concentration of 30%
Silicate ions, NaCl, MgCl 2 and NH 4 OH were added as an aqueous solution in which 2 g of aqueous ammonia containing the above was dissolved.

【0021】調合物15に添加した硬化剤はコンクリー
トの硬化のために用いられる液体(pH10.5程度で
あり、水中にCl-、Na+、K+、NH4 +、NO3 -等を
含み、pH緩衝能力を有する。)であり、調合物15に
よる混練物15が酸性条件下で炭酸カルシウム及び固体
水和物を生成しにくくなることを防止するために用いて
いる。硬化剤中の水分が100質量部の調合物15に対
して3質量部となるように、市販の原液を混練時に添加
した。
The curing agent added to the formulation 15 is liquid (about pH10.5 used for hardening of the concrete, Cl in water -, Na +, K +, NH 4 +, NO 3 - include such , Which has a pH buffering capacity), and is used to prevent the kneaded product 15 of the formulation 15 from becoming difficult to produce calcium carbonate and solid hydrate under acidic conditions. A commercially available stock solution was added at the time of kneading so that the water content in the curing agent was 3 parts by mass with respect to 100 parts by mass of Formulation 15.

【0022】調合物16では、濃度50%で市販の水ガ
ラス(JIS K1408の3号に準ずるソーダ系水ガ
ラス;SiO2が28〜30質量%、Na2Oが9〜10
質量%、Fe23が0.02質量%未満、水が残部)を
含む水溶液として水ガラスを添加した。調合物17で
は、水82.5gにNaCl15g、MgCl22.5
g及び濃度30%でNH3を含むアンモニア水2gを溶
解した水溶液としてNaCl、MgCl2及びNH4OH
を添加した。 「混練物の成形・固化」各混練物1〜17をモルタル試
験用の3連型に同一質量充填し、油圧式プレスにより3
0MPaで1軸加圧成形する。これにより各混練物1〜
17の粒子間の間隙を小さくして粒子の界面を接近させ
る。こうして、各混練物1〜17に対応して200×1
00×約60mm3のブロック形状の成形体1〜17及
び160×40×約20mm3のタイル形状の成形体1
〜17を得る。
Formulation 16 has a concentration of 50% and a commercially available water glass (a soda-based water glass according to JIS K1408 No. 3; 28 to 30% by mass of SiO 2 and 9 to 10% of Na 2 O).
Water glass was added as an aqueous solution containing 0.1% by mass, Fe 2 O 3 less than 0.02% by mass, and water as the balance. In formulation 17, 82.5 g of water, 15 g of NaCl, and 2.5 Cl of MgCl 2
NaCl, MgCl 2 and NH 4 OH as an aqueous solution in which 2 g of ammonia water containing NH 3 at a concentration of 30% are dissolved.
Was added. “Molding and solidification of kneaded material” Each of the kneaded materials 1 to 17 is filled in a triple mold for mortar test with the same mass, and the mixture is mixed with a hydraulic press.
Uniaxial pressure molding is performed at 0 MPa. Thereby, each kneaded material 1
The gap between particles 17 is reduced to bring the particle interface closer. Thus, 200 × 1 corresponding to each kneaded material 1 to 17
00 × molding 1 of tile shape of the molded body 1 to 17 and 160 × 40 × about 20 mm 3 of block-shaped about 60 mm 3
~ 17.

【0023】そして、温度25°C、湿度(RH)80
%の恒温恒湿器中において、7〜28日間、各成形体1
〜17の養生を行う。こうして、各成形体1〜17に対
応してブロック形状及びタイル形状の固化体1〜17を
得る。 「評価」各固化体1〜17について、養生日数の増加に
伴う曲げ強度(MPa)、圧縮強度(MPa)及び嵩密
度(g/cm3)の測定並びに生成相の確認を行った。
Then, a temperature of 25 ° C. and a humidity (RH) of 80
% In a constant temperature / humidity chamber for 7 to 28 days.
Perform curing of ~ 17. In this way, block-shaped and tile-shaped solidified bodies 1 to 17 corresponding to the respective molded bodies 1 to 17 are obtained. [Evaluation] For each of the solidified bodies 1 to 17, the bending strength (MPa), the compressive strength (MPa) and the bulk density (g / cm 3 ) with the increase in the curing days were measured, and the formed phase was confirmed.

【0024】なお、曲げ強度の測定は、材料試験機(A
&D TENSILON RTM−500)を使用し、
支点間隔120mm、クロスヘッドスピード0.5mm
/分で3点曲げにて行った。圧縮強度の測定は、電子式
万能試験機(CATY YONEKURA)を用い、曲
げ強度試験後の一の固化体を使用し、クロスヘッドスピ
ード0.5mm/分で行った。生成相の確認は、粉末X
線回折装置(RIGAKU RAD−B)を用いてXR
Dにより行った。
The bending strength was measured using a material testing machine (A
& D TENSILON RTM-500)
Support point interval 120mm, crosshead speed 0.5mm
/ Min by three-point bending. The compression strength was measured using an electronic universal testing machine (CATY YONEKURA), using one solidified body after the bending strength test, at a crosshead speed of 0.5 mm / min. Confirmation of the generated phase is as follows: powder X
XR using X-ray diffractometer (RIGAKU RAD-B)
D.

【0025】測定した曲げ強度を表3及び図2に示す。The measured bending strength is shown in Table 3 and FIG.

【0026】[0026]

【表3】 [Table 3]

【0027】測定した圧縮強度を表4及び図3に示す。The measured compressive strength is shown in Table 4 and FIG.

【0028】[0028]

【表4】 [Table 4]

【0029】表3、4及び図2、3より、何ら添加物を
添加していない調合物1に比して、他の調合物では時間
の経過とともに固化体の圧縮強度が向上していくことが
わかる。また、固化体3、5、6、7、8、10、1
1、12、14、17では、これらの調合物に塩化物を
添加しているため、高い圧縮強度を発揮できることもわ
かる。さらに、アルカリ金属化合物又はアルカリ土類金
属化合物を添加すれば、時間の経過による固化体の圧縮
強度の向上度合いを小さくしつつ、炭酸化反応の促進に
より安定した固化体の圧縮強度を確保できることもわか
る。また、ケイ酸塩又はアルミン酸を添加すれば、時間
の経過による固化体の圧縮強度の向上度合いを大きくし
つつ、水和反応の促進により安定した固化体の圧縮強度
を確保できることもわかる。
From Tables 3 and 4 and FIGS. 2 and 3, it can be seen that the compression strength of the solidified product increases with time in other formulations compared to Formulation 1 in which no additive is added. I understand. In addition, solidified bodies 3, 5, 6, 7, 8, 10, 1
In Examples 1, 12, 14, and 17, it is also understood that chloride can be added to these preparations, so that high compressive strength can be exhibited. Further, by adding an alkali metal compound or an alkaline earth metal compound, it is possible to secure a stable compressive strength of the solidified body by promoting the carbonation reaction while reducing the degree of improvement in the compressive strength of the solidified body over time. Understand. It can also be seen that the addition of silicate or aluminate increases the degree of improvement in the compressive strength of the solidified body over time and ensures a stable solidified compressive strength by accelerating the hydration reaction.

【0030】測定した密度を表5及び図4に示す。The measured densities are shown in Table 5 and FIG.

【0031】[0031]

【表5】 [Table 5]

【0032】表5及び図4より、原料1に対して消石灰
の量が増すと、消石灰の真比重に起因して固化体の嵩比
重が低下することがわかる。また、原料1に10質量%
消石灰を混合した調合物による固化体では、28日間養
生することにより、嵩密度が1.97〜2.02g/c
3であり、消石灰を10質量%混合すれば、固化体の
嵩密度は1.95〜2.05g/cm3で落ち着くと思
われる。こうして消石灰を10質量%混合すれば固化体
の嵩密度にさほどの変化はないが、他の成分の含有、特
にAl(OH)3の添加により、固化体の強度が著しく
増加する。これにより、他の成分、特にAl(OH)3
が固体水和物の生成に起因する可能性がある。
From Table 5 and FIG. 4, it can be seen that when the amount of slaked lime with respect to the raw material 1 increases, the bulk specific gravity of the solidified body decreases due to the true specific gravity of slaked lime. Also, 10% by mass of raw material 1
In the solidified product obtained by mixing slaked lime, after curing for 28 days, the bulk density is 1.97 to 2.02 g / c.
m 3 , and if the slaked lime is mixed at 10% by mass, the bulk density of the solidified product seems to be settled at 1.95 to 2.05 g / cm 3 . If 10% by mass of slaked lime is mixed in this way, the bulk density of the solidified body does not change much, but the strength of the solidified body is significantly increased by the addition of other components, especially by the addition of Al (OH) 3 . Thereby, other components, in particular, Al (OH) 3
May be due to the formation of a solid hydrate.

【0033】生成相を確認したところ、全固化体1〜1
7において、Ca4Al26CO311H2Oの生成が確
認された。こうしてこれら固化体1〜17は、原料1か
らは本来生じ得ない新たな固体水和物を生じて高い強度
を発揮していると考えられる。また、固化体1、2、4
では、Ca(OH)2及びCaCO3のピーク強度が増加
していた。これは消石灰の含有割合が増加しているため
である。他方、固化体3、5、6、7、8、10、1
1、12、14、17では、Ca4Al26Cl210H
2Oの生成が確認された。これは塩化物を添加している
からである。また、これらCaCO3のピーク強度か
ら、塩化物の添加により定性的にCaCO3の生成が促
進されていると思われる。
When the formed phase was confirmed, the total solids 1 to 1
7, the formation of Ca 4 Al 2 O 6 CO 3 11H 2 O was confirmed. Thus, it is considered that these solidified bodies 1 to 17 exhibit a new solid hydrate that cannot be originally produced from the raw material 1 and exhibit high strength. In addition, solidified bodies 1, 2, 4
, The peak intensities of Ca (OH) 2 and CaCO 3 increased. This is because the content ratio of slaked lime is increasing. On the other hand, solidified bodies 3, 5, 6, 7, 8, 10, 1
In 1, 12, 14, and 17, Ca 4 Al 2 O 6 Cl 2 10H
Generation of 2 O was confirmed. This is because chloride is added. Further, the peak intensity of CaCO 3, appears to qualitatively generation of CaCO 3 by the addition of chloride is promoted.

【0034】したがって、各調合物1〜17によれば、
常温下で固化が進行して固化体1〜17を得ることがで
きることがわかる。このため、かかる調合物1〜17を
用いれば、高温に加熱する必要なく内装材等の固化体を
得ることができることから、固化体を得るためのエネル
ギーの消費を極力抑制することができ、優れた環境保全
性を発揮することができる。
Therefore, according to each of the formulations 1 to 17,
It can be seen that solidification proceeds at room temperature and solidified bodies 1 to 17 can be obtained. For this reason, by using such formulations 1 to 17, it is possible to obtain a solidified body such as an interior material without heating to a high temperature, and it is possible to suppress the consumption of energy for obtaining the solidified body as much as possible. Environmental protection can be demonstrated.

【0035】養生7日の固化体1、8について、CO2
定量(JIS R9011)を行い、添加物による炭酸
化促進の有無を評価した。CO2定量は各固化体1、8
のCO2質量含有率(%)で求めた。また、各固化体
1、8中のCO2が全てCaと反応していると仮定して
計算したCaとCO2とのモル反応率(%)も求めた。
結果を表6に示す。
The solids 1 and 8 on the 7th day of curing were subjected to CO 2
Quantification (JIS R9011) was performed to evaluate whether or not the additive promotes carbonation. The amount of CO 2 was determined for each solid 1, 8
Of CO 2 by mass (%). Further, the molar reaction rate (%) of Ca and CO 2 calculated on the assumption that all of the CO 2 in each of the solidified bodies 1 and 8 had reacted with Ca was also obtained.
Table 6 shows the results.

【0036】[0036]

【表6】 [Table 6]

【0037】表6等より、塩化物による固化体の強度発
現の傾向として、塩化物添加により固化体の強度が増強
し、塩化物の添加量を増すことで固化体の養生初期の強
度発現を促進できることがわかる。この理由として、調
合物への塩化物の添加により、固化体は炭酸化物の生成
が促進されることが考えられる。海中における炭酸化物
の生成は溶解しているアルカリ等が原因となってCO2
の溶解度が上昇するために起こると考えられているた
め、塩化物を添加した調合物中のNa、Mgにより、調
合物中でCO2の溶解度が上昇し、Ca2+とCO3 2-との
反応析出が促進されたものと考えられる。 (実施例2) 「調合物の調製」実施例1と同様、表7に示す割合(質
量%)で原料1と消石灰とを混合し、各調合物18〜2
3を得る。ここで、原料1は表1に組成を示す風化した
花崗岩の粉末である。
From Table 6 and the like, it can be seen that the strength of the solidified body due to chloride tends to be increased by adding chloride, and by increasing the amount of chloride added, the strength of solidified body in the early stage of curing is increased. It can be seen that it can be promoted. It is considered that the reason for this is that the addition of chloride to the preparation promotes the formation of carbonate in the solidified product. Generation of carbonate in the sea is caused alkali such as dissolved CO 2
Is believed to occur because of the increase in solubility of Na, Mg in the formulation to which chloride is added, so that the solubility of CO 2 in the formulation increases, and Ca 2+ and CO 3 2- It is considered that the reaction precipitation was promoted. (Example 2) "Preparation of preparation" As in Example 1, the raw material 1 and slaked lime were mixed at the ratio (% by mass) shown in Table 7, and each of the preparations 18 to 2 was prepared.
Get 3. Here, the raw material 1 is a weathered granite powder having a composition shown in Table 1.

【0038】[0038]

【表7】 [Table 7]

【0039】「混練物の調製」次いで、実施例1と同
様、各調合物18〜23に対して水が8質量%となるよ
うに調合物18〜23に水を添加し、各調合物18〜2
3に対応して各混練物18〜23を得る。 「混練物の成形・固化」また、実施例1と同様、各混練
物18〜23を1軸加圧成形し、各混練物18〜23に
対応して成形体18〜23を得る。
"Preparation of kneaded material" Then, as in Example 1, water was added to each of the preparations 18 to 23 so that water was 8% by mass with respect to each of the preparations 18 to 23. ~ 2
The respective kneaded materials 18 to 23 are obtained corresponding to 3. "Molding and solidification of kneaded material" Further, similarly to Example 1, the respective kneaded materials 18 to 23 are uniaxially press-molded to obtain molded bodies 18 to 23 corresponding to the respective kneaded materials 18 to 23.

【0040】そして、温度25°C、湿度(RH)80
%の恒温恒湿器中において、7日間、各成形体18〜2
3の養生を行う。こうして、各成形体18〜23に対応
して固化体18〜23を得る(n=3)。 「評価」各固化体18〜23により、消石灰の割合(質
量%)と圧縮強度(MPa)との関係を求めた。結果を
表7及び図5に示す。図5中のエラーバーはn=3にお
ける最大値及び最小値を示している。なお、圧縮強度の
測定は、電子式万能試験機(CATY YONEKUR
A)を用い、クロスヘッドスピード0.5mm/分で行
った。
Then, a temperature of 25 ° C. and a humidity (RH) of 80
% In a constant temperature / humidity chamber for 7 days.
Perform 3 curing. Thus, solidified bodies 18 to 23 are obtained corresponding to the respective molded bodies 18 to 23 (n = 3). "Evaluation" The relationship between the ratio (mass%) of slaked lime and the compressive strength (MPa) was determined from each of the solidified bodies 18 to 23. The results are shown in Table 7 and FIG. The error bars in FIG. 5 indicate the maximum value and the minimum value at n = 3. The compression strength was measured using an electronic universal tester (CATY YONEKUR).
A) was performed at a crosshead speed of 0.5 mm / min.

【0041】表7及び図5より、固化体18では圧縮強
度が非実用的な1.0MPaであるのに対し、固化体1
9〜23では圧縮強度が実用的な5MPa以上である。
また、消石灰が30重量%の固化体21付近で圧縮強度
がほぼ飽和状態となっている。このため、消石灰が5重
量%以上混合されてなる調合物で固化体を製造すること
が好ましいことがわかる。特に、消石灰は比較的高価で
あるため、消石灰が30重量%以下混合されてなる調合
物により固化体を製造することが好ましいことがわか
る。
As shown in Table 7 and FIG. 5, the compression strength of the solidified product 18 was 1.0 MPa, which was not practical, whereas the solidified product 1 had a compressive strength of 1.0 MPa.
In the case of 9 to 23, the compressive strength is 5 MPa or more which is practical.
The compressive strength is almost saturated near the solidified body 21 in which slaked lime is 30% by weight. For this reason, it turns out that it is preferable to manufacture a solidified body by using a formulation in which slaked lime is mixed at 5% by weight or more. In particular, since slaked lime is relatively expensive, it can be seen that it is preferable to produce a solidified body by using a mixture in which slaked lime is mixed at 30% by weight or less.

【図面の簡単な説明】[Brief description of the drawings]

【図1】風化した花崗岩の粉末の粒度分布に係り、
(A)は粒径と頻度との関係を示すグラフ、(B)は粒
径と積算量との関係を示すグラフである。
FIG. 1 shows the particle size distribution of weathered granite powder.
(A) is a graph showing the relationship between the particle size and the frequency, and (B) is a graph showing the relationship between the particle size and the integrated amount.

【図2】実施例1に係り、養生日数の増加に伴う固化体
の曲げ強度の変化を示すグラフである。
FIG. 2 is a graph showing a change in bending strength of a solidified body with an increase in the number of curing days according to Example 1.

【図3】実施例1に係り、養生日数の増加に伴う固化体
の圧縮強度の変化を示すグラフである。
FIG. 3 is a graph showing a change in compressive strength of a solidified body with an increase in the number of curing days in Example 1.

【図4】実施例1に係り、養生日数の増加に伴う固化体
の嵩密度の変化を示すグラフである。
FIG. 4 is a graph showing a change in bulk density of a solidified body with an increase in the number of curing days in Example 1.

【図5】実施例2に係り、消石灰の割合と固化体の圧縮
強度との関係を示すグラフである。
FIG. 5 is a graph showing a relationship between a ratio of slaked lime and a compressive strength of a solidified body according to Example 2.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 進 博人 愛知県常滑市鯉江本町5丁目1番地 株式 会社イナックス内 Fターム(参考) 4G012 PA04 PB03 PC01  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Hiroto Susumu 5-1-1 Koiehonmachi, Tokoname-shi, Aichi F-term in Inax Corporation (reference) 4G012 PA04 PB03 PC01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】消石灰と、風化した花崗岩の粉末とが混合
され、炭酸化反応と水和反応とにより固化されてなるこ
とを特徴とする無機材料固化体。
1. A solidified inorganic material obtained by mixing slaked lime and weathered granite powder and solidifying them by a carbonation reaction and a hydration reaction.
【請求項2】風化した花崗岩の粉末の組成は、Al23
が7〜17質量%、アルカリ金属酸化物又は/及びアル
カリ土類金属酸化物が2〜10質量%、灼熱減量が1〜
6質量%、SiO2が実質残部であることを特徴とする
請求項1記載の無機材料固化体。
2. The composition of weathered granite powder is Al 2 O 3
Is 7 to 17% by mass, alkali metal oxide or / and alkaline earth metal oxide is 2 to 10% by mass, and ignition loss is 1 to
6 wt%, the inorganic material solidified body according to claim 1, wherein SiO 2 is characterized by a substantially balance.
【請求項3】風化した花崗岩の粉末の組成は、Al23
が9〜15質量%、アルカリ金属酸化物又は/及びアル
カリ土類金属酸化物が3〜9質量%、灼熱減量が1〜3
質量%、SiO2が実質残部であることを特徴とする請
求項2記載の無機材料固化体。
3. The composition of the weathered granite powder is Al 2 O 3
Is 9 to 15% by mass, alkali metal oxide and / or alkaline earth metal oxide is 3 to 9% by mass, and ignition loss is 1 to 3%.
The solidified inorganic material according to claim 2 , wherein the mass% and SiO2 are substantially the balance.
【請求項4】風化した花崗岩の粉末の構成相は、石英、
ソーダ長石、正長石、雲母、カオリン鉱物及び緑泥石で
あることを特徴とする請求項1、2又は3記載の無機材
料固化体。
4. The constituent phase of the weathered granite powder is quartz,
The solidified inorganic material according to claim 1, 2 or 3, wherein the solid is soda feldspar, feldspar, mica, kaolin mineral and chlorite.
【請求項5】ブロック形状であることを特徴とする請求
項1、2、3又は4記載の無機材料固化体。
5. The solidified inorganic material according to claim 1, wherein the inorganic material has a block shape.
【請求項6】タイル形状であることを特徴とする請求項
1、2、3又は4記載の無機材料固化体。
6. The solidified inorganic material according to claim 1, wherein the inorganic material has a tile shape.
JP11098870A 1999-04-06 1999-04-06 Inorganic material caked body Pending JP2000290058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11098870A JP2000290058A (en) 1999-04-06 1999-04-06 Inorganic material caked body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11098870A JP2000290058A (en) 1999-04-06 1999-04-06 Inorganic material caked body

Publications (1)

Publication Number Publication Date
JP2000290058A true JP2000290058A (en) 2000-10-17

Family

ID=14231229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11098870A Pending JP2000290058A (en) 1999-04-06 1999-04-06 Inorganic material caked body

Country Status (1)

Country Link
JP (1) JP2000290058A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205010A (en) * 2006-02-01 2007-08-16 Inax Corp Mixture and construction method for soil-based pavement, and mixture and construction method for soil-based wall
WO2023006235A1 (en) * 2021-07-24 2023-02-02 Kolja Kuse Concrete component of which the filler is chemically weathered rock

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205010A (en) * 2006-02-01 2007-08-16 Inax Corp Mixture and construction method for soil-based pavement, and mixture and construction method for soil-based wall
WO2023006235A1 (en) * 2021-07-24 2023-02-02 Kolja Kuse Concrete component of which the filler is chemically weathered rock

Similar Documents

Publication Publication Date Title
EP0088587B1 (en) Hydraulic cement composition
CN107257778B (en) Binder of solid inorganic compounds rich in alkaline earth metal oxides with phosphate activators
US6264740B1 (en) Inorganic cementitious material
EP2504296B1 (en) Inorganic binder system for the production of chemically resistant construction chemistry products
EP2297062B1 (en) Binder composition
EP0650940B1 (en) Inorganic hardening composition
US8226763B2 (en) Single-phase hydraulic binder, methods for the production thereof and structural material produced therewith
HU224178B1 (en) Alkali activated supersulphated binder
US5073198A (en) Method of preparing building materials
CN105073681A (en) Composition for use as a two component back filled grout comprising extracted silicate
CN109987912A (en) Zeolite prepares iron tailings dry powder and mortar
KR20110053833A (en) Blast furnace slag cement synthetic method and blast furnace slag cement produced by this method
EP3535226B1 (en) Method for applying a non-portland cement-based material
KR100863139B1 (en) The manufacturing method of construction materials using waterworks sludge
US5284712A (en) Cement-containing ceramic articles and method for production thereof
JP2000290058A (en) Inorganic material caked body
JP2000001347A (en) Inorganic material formulation solidified at ordinary temperature
KR20160012296A (en) Organic-Inorganic Complex None-Cement Soil Concrete Composition and Secondary Products of Soil Concrete
JP3838793B2 (en) Room temperature solidified inorganic material formulation
JP4222692B2 (en) Solid inorganic material
JP4627120B2 (en) Hydraulic powder composition
KR20160072834A (en) Secondary Products of Soil Concrete
JP2004352596A (en) Manufacturing method of hydraulic material and hydraulic building material
JP2000203922A (en) Production of inorganic material caked body
CA2298328C (en) Hydrated calcium aluminate based expansive admixture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080408