JP2000289700A - Heat-resisting structure and its manufacture - Google Patents

Heat-resisting structure and its manufacture

Info

Publication number
JP2000289700A
JP2000289700A JP11105750A JP10575099A JP2000289700A JP 2000289700 A JP2000289700 A JP 2000289700A JP 11105750 A JP11105750 A JP 11105750A JP 10575099 A JP10575099 A JP 10575099A JP 2000289700 A JP2000289700 A JP 2000289700A
Authority
JP
Japan
Prior art keywords
heat
resistant structure
cloth
laminated portion
central
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11105750A
Other languages
Japanese (ja)
Other versions
JP4236328B2 (en
Inventor
Masahisa Honda
田 雅 久 本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP10575099A priority Critical patent/JP4236328B2/en
Publication of JP2000289700A publication Critical patent/JP2000289700A/en
Application granted granted Critical
Publication of JP4236328B2 publication Critical patent/JP4236328B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat-resisting structure which is made in a light weight, as well as can obtain the ablation function and the strength sufficiently, and its manufacturing method, in a heat-resisting structure made of a fiber-reinforced compound material having the outer side of almost a spherical form. SOLUTION: A heat-resisting structure A having the center lamination part 1 made by laminating a cross C1 in the direction orthogonal to the axial line B is provided at the center part of almost a spherical surface, and a good gas removal is carried out without generating the peeling between layers of the cross C1, as well as realizing the reduction of the heat conductivity at the center part, and the light weight of the full body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、宇宙機類に用いら
れる繊維強化複合材料製の耐熱構造体に関し、とくに、
アブレーション機能を有する耐熱構造体およびその製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant structure made of fiber-reinforced composite material used for spacecraft,
The present invention relates to a heat-resistant structure having an ablation function and a method for manufacturing the same.

【0002】[0002]

【従来の技術】この種の耐熱構造体は、例えば、大気圏
に突入する宇宙カプセルの底部を構成すると共に、大気
圏突入時の空力加熱に対する防御手段として用いられて
おり、アブレーション機能、すなわち熱により固体を気
化してその潜熱で冷却を行う機能を有している。このよ
うなアブレーション材料は、昭和58年4月25日に丸
善が発行した『増補版・航空宇宙工学便覧』の第506
頁〜第508頁、第528頁および第529頁などに記
載されている。
2. Description of the Related Art A heat-resistant structure of this type constitutes, for example, the bottom of a space capsule that enters the atmosphere and is used as a means for protecting against aerodynamic heating when entering the atmosphere. And has a function of cooling by the latent heat. Such ablation material is described in No. 506 of “Augmented Edition Aerospace Engineering Handbook” published by Maruzen on April 25, 1983.
Pp. 508, 528, 529, etc.

【0003】近年において、宇宙カプセルの底部に用い
る耐熱構造体としては、強化材として炭素繊維製のクロ
スを積層し、この積層体に熱硬化性樹脂を含浸して硬化
処理を施したものがある。この耐熱構造体は、軸線に対
して斜めになるようにクロスを積層し、その外側を概略
球面に成形して外側にクロスの層が現れるようにするこ
とにより、外側が空力加熱を受けた際に、樹脂の気化に
よって発生したガスがクロスの層間から良好に抜けるよ
うにしていた。
In recent years, as a heat-resistant structure used for the bottom of a space capsule, there is a heat-resistant structure obtained by laminating a carbon fiber cloth as a reinforcing material, impregnating the laminate with a thermosetting resin, and performing a hardening treatment. . In this heat-resistant structure, a cloth is laminated so as to be oblique to the axis, and the outside is formed into a substantially spherical surface so that a layer of the cloth appears on the outside, so that the outside is subjected to aerodynamic heating. In addition, the gas generated by the vaporization of the resin is desirably released from between the layers of the cloth.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記したよ
うな宇宙機類に用いられる耐熱構造体は、その機能を高
めるだけでなく軽量化を図ることも非常に重要である。
例えば、軽量化を実現するとともに熱伝導率を下げるに
は、軸線に対して斜めのクロスを積層した構造よりも、
軸線に対して直交するクロスを積層した構造とした方が
有利である。しかしながら、軸線に対して直交するクロ
スを積層した構造にすると、空力加熱を受けた際にクロ
スの層間剥離が生じやすくなるという不具合があった。
また、クロスチョップや繊維チョップを用いて、チョッ
プモールド成形する方法もあるが、この場合、クロスの
積層構造に比べて強度が低下するという不具合があっ
た。したがって、従来の耐熱構造体にあっては、機能の
向上ならびに軽量化を図るうえでさらなる改善が要望さ
れていた。
By the way, it is very important for the heat-resistant structure used in the spacecraft as described above not only to improve its function but also to reduce its weight.
For example, to reduce weight and reduce thermal conductivity, it is better to use a structure in which diagonal crosses are stacked with respect to the axis.
It is advantageous to adopt a structure in which crosses perpendicular to the axis are stacked. However, when a structure in which cloths orthogonal to the axis are laminated is used, there is a problem that delamination of cloths easily occurs when subjected to aerodynamic heating.
In addition, there is a method of performing chop molding using a cross chop or a fiber chop. However, in this case, there is a problem that strength is reduced as compared with a laminated structure of cloth. Therefore, in the conventional heat-resistant structure, further improvement has been demanded in order to improve the function and reduce the weight.

【0005】[0005]

【発明の目的】本発明は、上記従来の状況に鑑みて成さ
れたもので、外側が概略球面状を成す繊維強化複合材料
製の耐熱構造体において、アブレーション機能や強度を
充分に得ることができると共に、軽量化も実現すること
ができる耐熱構造体およびその製造方法を提供すること
を目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional circumstances, and is intended to provide a heat-resistant structure made of fiber-reinforced composite material having a substantially spherical outer surface so as to sufficiently obtain an ablation function and strength. It is an object of the present invention to provide a heat-resistant structure capable of realizing weight reduction as well as a method of manufacturing the same.

【0006】[0006]

【課題を解決するための手段】本発明に係わる耐熱構造
体は、請求項1として、外側が概略球面状を成す繊維強
化複合材料製の耐熱構造体であって、概略球面の中央部
分に、軸線に対して直交する方向のクロスを積層して成
る中央積層部を備えた構成とし、請求項2として、中央
積層部の外周側に、中心から外周側に至る方向におい
て、その外側面に対して鋭角に交差する方向のクロスを
積層して成る外周積層部を備えた構成とし、請求項3と
して、外周積層部の内周側に、中央積層部の内側に係合
する段部を設けた構成とし、請求項4として、中央積層
部の中央部分に、スリットを有し且つ軸線に対して直交
する方向のクロスを積層して成る先端積層部を備えた構
成とし、請求項5として、概略球面の中心部にガス抜き
通路を設けた構成としており、上記の構成をもって従来
の課題を解決するための手段としている。
According to a first aspect of the present invention, there is provided a heat-resistant structure made of a fiber-reinforced composite material having a substantially spherical outer surface. A structure having a central laminated portion formed by laminating crosses in a direction orthogonal to the axis, and as a second aspect, on the outer peripheral side of the central laminated portion, in the direction from the center to the outer peripheral side, with respect to the outer surface thereof And an outer peripheral laminated portion formed by laminating cloths in a direction intersecting at an acute angle. As a third aspect, a step portion is provided on the inner peripheral side of the outer peripheral laminated portion to engage with the inside of the central laminated portion. According to a fourth aspect of the present invention, there is provided a configuration in which a central laminated portion is provided with a leading end laminated portion having a slit and a cross in a direction orthogonal to an axis laminated in a central portion. A configuration in which a gas vent path is provided in the center of the spherical surface And has a means for solving the conventional problems with the configuration described above.

【0007】また、本発明に係わる耐熱構造体の製造方
法は、請求項6として、請求項4または5に記載の耐熱
構造体を製造するに際し、所定の間隔で複数のスリット
を形成したクロスを用い、スリットが順に交差する状態
にクロスを積層して先端積層部を形成する構成とし、請
求項7として、クロスにおけるスリットが、クロスの中
央で且つクロスの縦横寸法のそれぞれ1/2の範囲内に
形成してある構成としており、上記の構成をもって従来
の課題を解決するための手段としている。
According to a sixth aspect of the present invention, there is provided a method for manufacturing a heat-resistant structure, wherein a cross-section having a plurality of slits formed at predetermined intervals is used for manufacturing the heat-resistant structure according to the fourth or fifth aspect. The tip is formed by laminating cloths in a state in which the slits intersect in order, and the slits in the cloth are located at the center of the cloth and each in a range of 縦 of the vertical and horizontal dimensions of the cloth. The above configuration is used as means for solving the conventional problems.

【0008】[0008]

【発明の作用】本発明の請求項1に係わる耐熱構造体で
は、外側が概略球面状を成す繊維強化複合材料製の耐熱
構造体において、中央部分に、軸線に対して直交する方
向のクロスを積層して成る中央積層部を備えているの
で、空力加熱を受けた際に最も高温となる中央部分の熱
伝導率が中央積層部によって下げられると共に、中央部
分の限られた範囲に中央積層部を設けることで、クロス
の層間剥離も発生しにくいものとなり、しかも、中央積
層部の外側にはクロスの層が現れるので、空力加熱によ
り発生したガスがクロスの層間から良好に抜けることと
なる。
In the heat-resistant structure according to the first aspect of the present invention, in the heat-resistant structure made of a fiber-reinforced composite material having a substantially spherical outer surface, a cross in a direction perpendicular to the axis is formed at the central portion. Since the central laminated portion is provided, the thermal conductivity of the central portion, which becomes the highest temperature when subjected to aerodynamic heating, is reduced by the central laminated portion, and the central laminated portion is limited to a limited area of the central portion. By providing the cloth, delamination of the cloth is less likely to occur, and the cloth layer appears outside the central laminated portion, so that the gas generated by the aerodynamic heating can escape well from the layers of the cloth.

【0009】本発明の請求項2に係わる耐熱構造体で
は、中央積層部の外周側に外周積層部が設けてあって、
この外周積層部のクロスが、中心から外周側に至る方向
において、その外側面に対して鋭角に交差する方向、す
なわち空力加熱を受けた際に中央積層部で発生したガス
の流れに沿う方向となっているので、クロスの層間剥離
が防止されるうえに良好なガス抜きが行われる。
In the heat resistant structure according to claim 2 of the present invention, an outer peripheral laminated portion is provided on an outer peripheral side of the central laminated portion,
In the direction from the center to the outer peripheral side, the cross of the outer peripheral laminated portion crosses at an acute angle to the outer surface, that is, the direction along the flow of gas generated in the central laminated portion when subjected to aerodynamic heating. As a result, delamination of the cloth is prevented, and good degassing is performed.

【0010】本発明の請求項3に係わる耐熱構造体で
は、外周積層部の内周側に、中央積層部の内側に係合す
る段部が設けてあるので、空気抵抗による中央積層部へ
の負荷が段部により抑止される。
[0010] In the heat-resistant structure according to claim 3 of the present invention, since the step portion engaging with the inside of the central laminated portion is provided on the inner peripheral side of the outer peripheral laminated portion, the step to the central laminated portion due to air resistance is provided. The load is suppressed by the step.

【0011】本発明の請求項4に係わる耐熱構造体で
は、空力加熱を受けた際に最も高温となる中央積層部の
さらに中央部分に、スリットを有し且つ軸線に対して直
交する方向のクロスを積層して成る先端積層部を備えて
いるので、スリットに充填されていた樹脂が空力加熱に
よりガス化して放出されると共に、同スリットによって
ガス抜きが一層良好なものとなる。
The heat-resistant structure according to claim 4 of the present invention has a slit at a further central portion of the central laminated portion, which is heated to the highest temperature when subjected to aerodynamic heating, and has a cross in a direction perpendicular to the axis. Is provided, the resin filled in the slit is gasified and released by aerodynamic heating, and the slit further improves degassing.

【0012】本発明の請求項5に係わる耐熱構造体で
は、概略球面の中心部にガス抜き通路が設けてあるの
で、空力加熱を受けた際に中心からもガス抜きが行わ
れ、外側面全体から良好なガス抜きが行われる。
In the heat-resistant structure according to the fifth aspect of the present invention, since the gas vent path is provided in the center of the substantially spherical surface, the gas is vented even from the center when subjected to aerodynamic heating, and the entire outer surface is formed. Good degassing is performed.

【0013】本発明の請求項6に係わる耐熱構造体の製
造方法では、請求項4に記載の耐熱構造体、すなわち外
側が概略球面状を成し且つ中央積層部の中央部分に先端
積層部を備えた耐熱構造体、または中心部にガス抜き通
路を設けた耐熱構造体を製造するに際し、所定の間隔で
複数のスリットを形成したクロスを用いるので、後に空
力加熱を受けた際に充分な量のガスが発生し得るよう
に、硬化材であると同時にガスの発生源でもある樹脂が
スリットに充填されることとなり、また、スリットが順
に交差する状態にクロスを積層して先端積層部を形成す
るので、クロスの面に沿う方向の強度が確保されると共
に、クロスの積層方向にスリットの一部が連続してガス
抜き通路が形成される。
According to a sixth aspect of the present invention, there is provided a method for manufacturing a heat-resistant structure according to the fourth aspect, that is, a heat-resistant structure having a substantially spherical outer surface and a top laminated portion at a central portion of the central laminated portion. When fabricating a heat-resistant structure equipped with or a heat-resistant structure provided with a gas vent passage in the center, a cross formed with a plurality of slits at predetermined intervals is used, so that a sufficient amount will be obtained when subsequently subjected to aerodynamic heating. The resin, which is both a hardening material and a gas generation source, is filled into the slits so that the gas can be generated. Therefore, the strength in the direction along the surface of the cloth is ensured, and a part of the slit is continuous in the lamination direction of the cloth to form a gas vent passage.

【0014】本発明の請求項7に係わる耐熱構造体の製
造方法では、クロスにおけるスリットが、クロスの中央
で且つクロスの縦横寸法のそれぞれ1/2の範囲内に形
成してあるので、積層する際に、クロスの平面状態およ
びスリットの形状が損なわれるのが防止される。
In the method for manufacturing a heat-resistant structure according to claim 7 of the present invention, the slits in the cloth are formed at the center of the cloth and within the respective half-width and width-dimensions of the cloth. At this time, it is possible to prevent the planar state of the cloth and the shape of the slit from being impaired.

【0015】[0015]

【発明の効果】本発明の請求項1に係わる耐熱構造体に
よれば、外側が概略球面状を成す繊維強化複合材料製の
耐熱構造体において、中央積層部により、充分な強度を
確保し得ると共に、クロスを斜めに積層したものに比べ
て、空力加熱を受けた際に最も高温となる中央部分の熱
伝導率が小さくなり、この熱伝導率の低下に伴って構造
体の薄肉化ならびに軽量化を実現することができる。ま
た、構造体の中央部分の限られた範囲に中央積層部を設
けたことにより、空力加熱を受けた際のクロスの層間剥
離を防止することができると共に、中央積層部の外側に
おいてクロスの層間から良好なガス抜きを行うことがで
き、優れたアブレーション機能を得ることができる。
According to the heat-resistant structure according to the first aspect of the present invention, in the heat-resistant structure made of a fiber-reinforced composite material having a substantially spherical outer surface, sufficient strength can be ensured by the central laminated portion. At the same time, the thermal conductivity of the central part, which becomes the hottest when subjected to aerodynamic heating, is smaller than that obtained by diagonally laminating the cloth, and the structure becomes thinner and lighter as the thermal conductivity decreases. Can be realized. In addition, by providing the central laminated portion in a limited area of the central portion of the structure, delamination of the cloth when subjected to aerodynamic heating can be prevented, and the interlayer of the cloth outside the central laminated portion can be prevented. Therefore, good degassing can be performed, and an excellent ablation function can be obtained.

【0016】本発明の請求項2に係わる耐熱構造体によ
れば、請求項1と同様の効果を得ることができるうえ
に、中央積層部の外周側に設けた外周積層部において、
空力加熱を受けた際のクロスの層間剥離を防止すること
ができると共に、外周積層部の外側ににおいてクロスの
層間から良好なガス抜きを行うことができ、優れたアブ
レーション機能を得ることができる。
According to the heat-resistant structure of the second aspect of the present invention, the same effect as that of the first aspect can be obtained, and in addition, in the outer peripheral laminated portion provided on the outer peripheral side of the central laminated portion,
It is possible to prevent delamination of the cloth when subjected to aerodynamic heating, to perform good degassing between the cloth layers outside the outer peripheral laminated portion, and to obtain an excellent ablation function.

【0017】本発明の請求項3に係わる耐熱構造体によ
れば、請求項2と同様の効果を得ることができるうえ
に、外周積層部の内周側に設けた段部により、空気抵抗
による中央積層部への負荷が抑止され、中央積層部にお
けるクロスの層間剥離をより確実に防止することができ
る。
According to the heat-resistant structure according to the third aspect of the present invention, the same effect as that of the second aspect can be obtained, and the stepped portion provided on the inner peripheral side of the outer peripheral laminated portion can reduce the air resistance. The load on the central laminated portion is suppressed, and delamination of the cloth in the central laminated portion can be more reliably prevented.

【0018】本発明の請求項4に係わる耐熱構造体によ
れば、請求項1〜3と同様の効果を得ることができるう
えに、先端積層部において、空力加熱を受けた際に、ス
リットに充填された樹脂により充分なガス発生量を得る
ことができると共に、スリットによってガス抜きが一層
良好なものとなり、アブレーション機能をさらに高める
ことができる。
According to the heat-resistant structure according to the fourth aspect of the present invention, the same effects as those of the first to third aspects can be obtained. A sufficient amount of gas generation can be obtained by the filled resin, and the slits can further improve the gas release and the ablation function can be further enhanced.

【0019】本発明の請求項5に係わる耐熱構造体によ
れば、請求項1〜4と同様の効果を得ることができるう
えに、概略球面の中心部に設けたス抜き通路により、空
力加熱を受けた際に中心からもガス抜きを良好に行うこ
とができ、外側面全体から良好なガス抜きを行ってアブ
レーション機能をさらに高めることができる。
According to the heat-resistant structure according to the fifth aspect of the present invention, the same effects as those of the first to fourth aspects can be obtained. When receiving the gas, the gas can be satisfactorily vented from the center, and the ablation function can be further enhanced by satisfactorily degassing the entire outer surface.

【0020】本発明の請求項6に係わる耐熱構造体の製
造方法によれば、請求項3または請求項4に記載の耐熱
構造体を製造するに際し、複数のスリットを有するクロ
スを用い、スリットが順に交差する状態にクロスを積層
して先端積層部を形成することから、樹脂を充填するた
めの穴あけ加工等を全く必要とせずに、硬化材であると
同時にガスの発生源でもある樹脂を充分に充填すること
ができ、積層後においても樹脂の充填を容易に行うこと
ができ、しかも、クロスの面に沿う方向の強度を確保し
得ると共に、クロスの積層方向にガス抜き通路をきわめ
て簡単に形成することができ、請求項3または4と同様
の効果をもたらす耐熱構造体を得ることができる。
According to the method for manufacturing a heat-resistant structure according to claim 6 of the present invention, in manufacturing the heat-resistant structure according to claim 3 or 4, a cloth having a plurality of slits is used, and Since the cloths are laminated in a state of intersecting in order to form the top laminated part, there is no need to perform any drilling or the like to fill the resin, and the resin that is both a hardening material and a gas generation source is sufficient. The resin can be easily filled even after lamination, and the strength in the direction along the cloth surface can be secured. Thus, a heat-resistant structure having the same effect as that of the third or fourth aspect can be obtained.

【0021】本発明の請求項7に係わる耐熱構造体の製
造方法によれば、請求項6と同様の効果を得ることがで
きるうえに、クロスにおけるスリットの形成範囲を限定
したことにより、クロスを積層する際に、クロスの平面
状態やスリットの形状が損なわれるのを防止することが
でき、クロスの取扱いを容易に行うことができ、クロス
を規則的に且つ正確に積層し得るようにして、高品質の
先端積層部を備えた耐熱構造体を得ることができる。
According to the method of manufacturing a heat-resistant structure according to claim 7 of the present invention, the same effect as in claim 6 can be obtained, and the formation range of the slit in the cloth is limited. When laminating, it is possible to prevent the planar state of the cloth and the shape of the slit from being impaired, to facilitate the handling of the cloth, and to laminate the cloth regularly and accurately, A heat-resistant structure provided with a high-quality tip laminated portion can be obtained.

【0022】[0022]

【実施例】以下、図面に基づいて本発明に係わる耐熱構
造体の一実施例および耐熱構造体の製造方法を説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a heat-resistant structure according to the present invention and a method of manufacturing the heat-resistant structure will be described below with reference to the drawings.

【0023】図1に示す耐熱構造体Aは、大気圏に再突
入する宇宙カプセルの底部を構成するものであって、外
側の面が下方に突出した概略球面状を成しており、繊維
強化複合材料で形成してある。
The heat-resistant structure A shown in FIG. 1 constitutes the bottom of the space capsule which re-enters the atmosphere, has an approximately spherical outer surface projecting downward, and has a fiber-reinforced composite structure. Made of material.

【0024】繊維強化複合材料は、強化繊維として炭素
繊維を使用し、この炭素繊維を縦横に織ったクロスを積
層して成るものである。また、繊維強化複合材料は、予
め熱硬化性樹脂を含浸したクロスを使用し、あるいはク
ロスの積層とともに熱硬化性樹脂し、あるいはクロスの
積層後に熱硬化性樹脂を含浸し、その後、加圧および加
熱の硬化処理を施すことによってCFRP(炭素繊維強
化プラスチック)化したものとなる。
The fiber reinforced composite material is formed by using carbon fibers as reinforcing fibers and laminating cloths woven with the carbon fibers vertically and horizontally. In addition, the fiber reinforced composite material, using a cloth previously impregnated with a thermosetting resin, or a thermosetting resin with the lamination of the cloth, or impregnating the thermosetting resin after lamination of the cloth, then pressurized and By performing a heating hardening process, it becomes CFRP (carbon fiber reinforced plastic).

【0025】耐熱構造体Aは、概略球面の中央部分に中
央積層部1を備えると共に、中央積層部1の外周側に外
周積層部2を備え、さらに中央積層部1の中央部分に、
先端積層部3を備えた構成になっており、内側には搭載
機器の収容空間4を形成している。このとき、中央積層
部1は、概略円盤状に形成され、その内側には断熱材5
が設けてある。他方、外周積層部2は、環状に形成さ
れ、その外周端部には宇宙カプセルの上部カバー(図示
せず)の取付けるためのフランジ部6が設けてある。
The heat-resistant structure A is provided with a central laminated portion 1 at a central portion of a substantially spherical surface, an outer peripheral laminated portion 2 on an outer peripheral side of the central laminated portion 1, and a central portion of the central laminated portion 1,
It has a configuration in which the front end lamination part 3 is provided, and forms a housing space 4 for mounted equipment inside. At this time, the central laminated portion 1 is formed in a substantially disk shape, and a heat insulating material 5 is provided inside the central laminated portion 1.
Is provided. On the other hand, the outer peripheral laminated portion 2 is formed in an annular shape, and a flange portion 6 for attaching an upper cover (not shown) of the space capsule is provided at an outer peripheral end thereof.

【0026】中央積層部1は、当該構造体Aの軸線Bに
対して直交する方向のクロスC1を積層して成るもので
ある。外周積層部2は、当該構造体の中心から外周側に
至る方向において、その外側面に対して鋭角な角度θで
交差する方向のクロスC2を積層して成るものである。
先端積層部3は、スリットを有し且つ軸線Bに対して直
交する方向のクロスC3を積層して成るものである。こ
のとき、各積層部1〜3は、それぞれ外側にクロスC1
〜C3の層が現れた状態になっている。
The central laminated portion 1 is formed by laminating crosses C1 in a direction orthogonal to the axis B of the structure A. The outer peripheral laminated portion 2 is formed by laminating a cross C2 in a direction crossing at an acute angle θ with respect to the outer surface in a direction from the center of the structure to the outer peripheral side.
The leading end laminated portion 3 has a slit and is formed by laminating a cross C3 in a direction orthogonal to the axis B. At this time, each of the lamination parts 1 to 3 has a cross C1 on the outside.
To C3 appear.

【0027】また、外周積層部2は、その内周側に、中
央積層部1の内側に係合する段部7を全周にわたって有
している。さらに、先端積層部3は、概略球面の中心部
にガス抜き通路8を有している。これらの積層部1〜3
は、それぞれ別体で成形して硬化処理したものを組合わ
せることも可能であるし、それぞれ別体で成形したもの
を組合わせてから硬化処理することも可能であり、外側
が所定の概略球面となるように切削加工等も施される。
The outer laminated portion 2 has a stepped portion 7 which engages with the inside of the central laminated portion 1 over the entire periphery on the inner peripheral side. Further, the front end laminated portion 3 has a gas vent passage 8 at the center of the substantially spherical surface. These laminated parts 1 to 3
It is also possible to combine those that are molded and cured separately from each other, or it is also possible to perform the curing treatment after combining each molded separately, and the outside is a predetermined roughly spherical surface. Cutting and the like are also performed so that

【0028】ここで、先端積層部3は、図2に示す要領
で製造される。この製造には、所定の間隔で複数のスリ
ットSを形成したクロスC3を用いる。このとき、クロ
スC3は、その中央で且つ縦横寸法a,bのそれぞれ1
/2の範囲(x,y)内にスリットSが形成してある。
このようにスリットSを形成する範囲を限定することに
より、クロスC3は、積層する際に、平面状態およびス
リットSの形状が損なわれることがなく、取扱いが容易
になり、規則的に且つ正確に積層し得る。
Here, the tip laminated portion 3 is manufactured in the manner shown in FIG. In this manufacturing, a cloth C3 having a plurality of slits S formed at predetermined intervals is used. At this time, the cross C3 is located at the center thereof and each of the vertical and horizontal dimensions a and b is 1
The slit S is formed in the range (x, y) of / 2.
By limiting the range in which the slits S are formed in this way, the cloth C3 can be easily handled without laminating the planar state and the shape of the slits S during lamination, and can be regularly and accurately formed. Can be laminated.

【0029】そして、先端積層部3は、スリットSが順
に交差する状態にクロスC3を積層することで形成され
る。このように積層することにより、スリットSによっ
てクロスC3の面に沿う方向の強度が損なわれることも
なく、また、図3に示すように、クロスC3を積層する
だけで各スリットSの一部が連続し、クロスC3の積層
方向にガス抜き通路8が簡単に形成できる。なお、図で
はスリットSが直交するように積層する場合を示した
が、例えば、スリットSが順に45度で交差するように
積層しても良い。
The leading end laminated portion 3 is formed by laminating cloths C3 in a state where the slits S intersect in order. By laminating in this way, the strength in the direction along the surface of the cloth C3 is not impaired by the slits S. Further, as shown in FIG. The gas vent passage 8 can be easily formed continuously in the stacking direction of the cloth C3. Although the figure shows a case in which the slits S are stacked so as to be orthogonal, for example, the slits S may be stacked so as to intersect at 45 degrees in order.

【0030】このようにして製造された先端積層部3
は、硬化材であると同時に空力加熱を受けた際のガス発
生源でもある樹脂がスリットSに充分に充填され、且つ
クロスC3の積層後に樹脂を充填することも容易であっ
て、樹脂を充填するための穴あけ加工等は一切不要であ
る。
The tip laminated portion 3 thus manufactured
The resin which is a hardening material and also a gas generating source when subjected to aerodynamic heating is sufficiently filled in the slit S, and it is easy to fill the resin after laminating the cloth C3. There is no need for drilling or the like.

【0031】上記構成を備えた耐熱構造体Aは、強化材
としてクロスC1〜C3を用いたことにより、全体とし
て充分な強度が確保されているうえに、軸線Bに直交す
るクロスC1,C3を積層して成る中央積層部1および
先端積層部3により、クロスを斜めに積層したものに比
べて、空力加熱を受けた際に最も高温となる中央部分の
熱伝導率が小さくなり、この熱伝導率の低下に伴って構
造体の薄肉化ならびに軽量化を実現している。
In the heat-resistant structure A having the above-described structure, since the cloths C1 to C3 are used as the reinforcing material, sufficient strength is secured as a whole, and the cloths C1 and C3 perpendicular to the axis B can be secured. Due to the central laminated portion 1 and the distal laminated portion 3 formed by lamination, the heat conductivity of the central portion, which becomes the highest temperature when subjected to aerodynamic heating, is smaller than that obtained by obliquely laminating the cloth. Along with the decrease in the rate, the structure has been made thinner and lighter.

【0032】そして、耐熱構造体Aは、宇宙カプセルが
大気圏に再突入した際に、空力加熱に対する防御手段と
して働いて高熱から搭載機器を保護する。つまり、耐熱
構造体Aは、空力加熱によって各積層部1〜3における
樹脂が気化し、その潜熱で冷却を行うアブレーション機
能を有している。
Then, when the space capsule re-enters the atmosphere, the heat-resistant structure A serves as a defense against aerodynamic heating to protect the mounted equipment from high heat. That is, the heat-resistant structure A has an ablation function in which the resin in each of the stacked portions 1 to 3 is vaporized by aerodynamic heating and cooled by the latent heat.

【0033】このとき、当該耐熱構造体Aは、最も高温
となる中央部分に、軸線Bに直交するクロスC1,C3
を積層して成る中央積層部1および先端積層部3を採用
しているが、これら積層部1,3の範囲を中央部分に限
定しており、且つ空気抵抗による中央積層部1への負荷
が外周積層部2の段部7によって抑止されるので、中央
積層部1および先端積層部3におけるクロスC1,C3
の層間剥離が確実に防止されることになる。
At this time, the heat-resistant structure A has crosses C1, C3 orthogonal to the axis B at the center where the temperature is highest.
Are adopted, the range of these laminated portions 1 and 3 is limited to the central portion, and the load on the central laminated portion 1 due to air resistance is reduced. Since it is suppressed by the step 7 of the outer peripheral laminated portion 2, the crosses C <b> 1, C <b> 3
Is surely prevented from being delaminated.

【0034】また、中央積層部1および先端積層部3に
おいては、その外側のクロスC1,C3の層間からガス
抜きが行われ、とくに、先端積層部3においては、スリ
ットSに充填されていた樹脂の気化によって充分なガス
発生量が得られると共に、同スリットSによってガス抜
きがより円滑に行われ、しかも、中心に設けたガス抜き
通路8からもガス抜きが行われる。
In the center lamination portion 1 and the tip lamination portion 3, degassing is performed between the outer layers of the cloths C 1 and C 3. In particular, in the tip lamination portion 3, the resin filled in the slit S is filled. As a result, a sufficient amount of gas can be obtained, and the slit S allows the gas to be released more smoothly, and also allows the gas to be released from the gas release passage 8 provided at the center.

【0035】さらに、外周積層部2においては、中央積
層部1側から放出されたガスが外面に沿って高速で流れ
ることになるが、当該構造体Aの中心から外周側に至る
方向すなわちガスの流れ方向に対して、クロスC2が鋭
角な角度θで交差する方向となっているので、クロスC
2の層間剥離が生じることもなく、同クロスC2の層間
からガス抜きが行われる。
Further, in the outer peripheral laminated portion 2, the gas discharged from the central laminated portion 1 flows at a high speed along the outer surface. Since the cross C2 intersects the flow direction at an acute angle θ, the cross C2
Degassing is performed between the layers of the cloth C2 without delamination of the cloth C2.

【0036】このようにして、耐熱構造体Aは、空力加
熱を受けた際に、中心を含む外側面全体からガス抜きが
行われることになり、良好なアブレーション機能を得る
ことができる。
In this way, when the heat-resistant structure A is subjected to aerodynamic heating, gas is vented from the entire outer surface including the center, and a good ablation function can be obtained.

【0037】なお、本発明に係わる耐熱構造体は、その
構成の細部が上記実施例に限定されるものではなく、ま
た、中央積層部や先端積層部の直径や厚さなどは、全体
の大きさや外面の曲率などによって適宜選択される。
The details of the structure of the heat-resistant structure according to the present invention are not limited to those of the above-described embodiment, and the diameter and thickness of the central laminated portion and the laminated portion at the end are all large. It is appropriately selected according to the curvature of the outer surface and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる耐熱構造体の一実施例を説明す
る断面図である。
FIG. 1 is a sectional view illustrating an embodiment of a heat-resistant structure according to the present invention.

【図2】本発明に係わる耐熱構造体の製造方法によって
先端積層部を形成する要領を説明する斜視図である。
FIG. 2 is a perspective view for explaining a method of forming a tip end laminated portion by a method of manufacturing a heat-resistant structure according to the present invention.

【図3】図2に示すクロスの積層によって形成されたガ
ス抜き通路を説明する断面図である。
FIG. 3 is a cross-sectional view illustrating a gas vent passage formed by stacking cloths shown in FIG. 2;

【符号の説明】[Explanation of symbols]

A 耐熱構造体 B 軸線 C1〜C3 クロス S スリット 1 中央積層部 2 外周積層部 3 先端積層部 7 段部 8 ガス抜き通路 Reference Signs List A Heat-resistant structure B Axis C1-C3 Cross S Slit 1 Central laminated part 2 Outer peripheral laminated part 3 Tip laminated part 7 Stepped part 8 Gas release passage

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 外側が概略球面状を成す繊維強化複合材
料製の耐熱構造体であって、概略球面の中央部分に、軸
線に対して直交する方向のクロスを積層して成る中央積
層部を備えたことを特徴とする耐熱構造体。
1. A heat-resistant structure made of a fiber-reinforced composite material having a substantially spherical outer surface, wherein a central laminated portion formed by laminating a cross in a direction orthogonal to an axis is provided at a central portion of the substantially spherical surface. A heat-resistant structure comprising:
【請求項2】 中央積層部の外周側に、中心から外周側
に至る方向において、その外側面に対して鋭角に交差す
る方向のクロスを積層して成る外周積層部を備えたこと
を特徴とする請求項1に記載の耐熱構造体。
2. An outer peripheral laminated portion formed by laminating a cross in a direction intersecting at an acute angle with respect to an outer surface thereof in a direction from the center to the outer peripheral side on the outer peripheral side of the central laminated portion. The heat-resistant structure according to claim 1.
【請求項3】 外周積層部の内周側に、中央積層部の内
側に係合する段部を設けたことを特徴とする請求項2に
記載の耐熱構造体。
3. The heat-resistant structure according to claim 2, wherein a step portion is provided on the inner peripheral side of the outer peripheral laminated portion so as to engage inside the central laminated portion.
【請求項4】 中央積層部の中央部分に、スリットを有
し且つ軸線に対して直交する方向のクロスを積層して成
る先端積層部を備えたことを特徴とする請求項1〜3の
いずれかに記載の耐熱構造体。
4. A central stacking portion comprising a tip stacking portion having a slit and having a cross in a direction perpendicular to an axis line stacked at a central portion of the center stacking portion. A heat-resistant structure according to any one of the above.
【請求項5】 概略球面の中心部にガス抜き通路を設け
たことを特徴とする請求項1〜4のいずれかに記載の耐
熱構造体。
5. The heat-resistant structure according to claim 1, wherein a gas vent path is provided at a central portion of the substantially spherical surface.
【請求項6】 請求項4または5に記載の耐熱構造体を
製造するに際し、所定の間隔で複数のスリットを形成し
たクロスを用い、スリットが順に交差する状態にクロス
を積層して先端積層部を形成することを特徴とする耐熱
構造体の製造方法。
6. When manufacturing the heat-resistant structure according to claim 4 or 5, a cloth having a plurality of slits formed at a predetermined interval is used, and the cloths are stacked in a state where the slits intersect in order, and a tip laminated portion is formed. Forming a heat-resistant structure.
【請求項7】 クロスにおけるスリットが、クロスの中
央で且つクロスの縦横寸法のそれぞれ1/2の範囲内に
形成してあることを特徴とする請求項6に記載の耐熱構
造体の製造方法。
7. The method for manufacturing a heat-resistant structure according to claim 6, wherein the slit in the cloth is formed at the center of the cloth and within each half of the vertical and horizontal dimensions of the cloth.
JP10575099A 1999-04-13 1999-04-13 Heat-resistant structure and manufacturing method thereof Expired - Fee Related JP4236328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10575099A JP4236328B2 (en) 1999-04-13 1999-04-13 Heat-resistant structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10575099A JP4236328B2 (en) 1999-04-13 1999-04-13 Heat-resistant structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000289700A true JP2000289700A (en) 2000-10-17
JP4236328B2 JP4236328B2 (en) 2009-03-11

Family

ID=14415932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10575099A Expired - Fee Related JP4236328B2 (en) 1999-04-13 1999-04-13 Heat-resistant structure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4236328B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010023240A (en) * 2008-07-15 2010-02-04 Institute Of National Colleges Of Technology Japan Manufacturing method of heat-defensive composite material
JP2013023079A (en) * 2011-07-21 2013-02-04 Sadayuki Amiya Spaceship
KR101384685B1 (en) 2012-08-13 2014-04-18 조금원 Method for blasting the vast hole using blast pressure effusion inhibition device
JP2017081285A (en) * 2015-10-26 2017-05-18 三菱重工業株式会社 Missile

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110509492A (en) * 2019-09-05 2019-11-29 航天特种材料及工艺技术研究所 A kind of heat-barrier material and metal bay section interphase match formed in situ method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010023240A (en) * 2008-07-15 2010-02-04 Institute Of National Colleges Of Technology Japan Manufacturing method of heat-defensive composite material
JP2013023079A (en) * 2011-07-21 2013-02-04 Sadayuki Amiya Spaceship
KR101384685B1 (en) 2012-08-13 2014-04-18 조금원 Method for blasting the vast hole using blast pressure effusion inhibition device
JP2017081285A (en) * 2015-10-26 2017-05-18 三菱重工業株式会社 Missile

Also Published As

Publication number Publication date
JP4236328B2 (en) 2009-03-11

Similar Documents

Publication Publication Date Title
US10024173B2 (en) CMC blade with integral 3D woven platform
CA2889366C (en) Cylindrical case and manufacturing method of cyclindrical case
TWI531695B (en) Woven preform, composite, and method of making thereof
US11193630B2 (en) High pressure tank and method for manufacturing the same
KR20220138401A (en) Impact-resistant structure
US10562269B2 (en) Polymer matrix-ceramic matrix hybrid composites for high thermal applications
CN103975142B (en) Installation boss and fan hub
US9488056B2 (en) Propeller blade with modified spar layup
CN105899765B (en) The flameproof protection for the blower-casting being made up of compound
JP2018187775A (en) Method of producing pressure tank
EP3024640B1 (en) Part made from a composite material, comprising a thermally and electrically conductive portion, and method for producing such a part
JP2000289700A (en) Heat-resisting structure and its manufacture
TW201321702A (en) Method of manufacturing a heat transfer system for aircraft structures
RU2717931C1 (en) Low-temperature reservoir and method of its production
JP6122377B2 (en) Heat-resistant composite material with enhanced surface and method for producing the same
JP6696789B2 (en) Tank manufacturing method
US10717109B2 (en) Nanotube enhancement of interlaminar performance for a composite component
JP4835410B2 (en) Superconducting coil
JP7517303B2 (en) High pressure tank and its manufacturing method
JP2004291265A (en) Fiber recinforced plastic molded product and its manufacturing method
US20100148394A1 (en) Method for making a thermoplastic composite part by molding
JP5814845B2 (en) Fishing line guide and fishing rod provided with the fishing line guide
US11339924B2 (en) Method for producing high-pressure tank
JP3784658B2 (en) Manufacturing method of thermal protection material
JP7253986B2 (en) Resin structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081216

R150 Certificate of patent or registration of utility model

Ref document number: 4236328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees