JP2000287698A - Method for producing oligopeptide of high glutamine content - Google Patents

Method for producing oligopeptide of high glutamine content

Info

Publication number
JP2000287698A
JP2000287698A JP11100915A JP10091599A JP2000287698A JP 2000287698 A JP2000287698 A JP 2000287698A JP 11100915 A JP11100915 A JP 11100915A JP 10091599 A JP10091599 A JP 10091599A JP 2000287698 A JP2000287698 A JP 2000287698A
Authority
JP
Japan
Prior art keywords
gluten
glutamine
oligopeptide
porous
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11100915A
Other languages
Japanese (ja)
Inventor
Michiko Watanabe
道子 渡辺
Souichi Tanabe
創一 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gakugei University NUC
Original Assignee
Tokyo Gakugei University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gakugei University NUC filed Critical Tokyo Gakugei University NUC
Priority to JP11100915A priority Critical patent/JP2000287698A/en
Publication of JP2000287698A publication Critical patent/JP2000287698A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To establish a practical process for largely producing an oligopeptide of high glutamine content, which is expected the clinical application as a nutrient agent for intestinal administration, from porous dry glutene. SOLUTION: Porous gluten resulting from freeze-drying of gluten balls is suspended in a protease solution to effect the reaction in a shortened time and collect or fractionate the objective peptide of high glutamine content from the reaction mixture.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、腸管輸液素材とし
て有用なグルタミンを多く含有するオリゴペプチドを、
多孔質の乾燥グルテンより大量に生産する方法に関す
る。
TECHNICAL FIELD The present invention relates to an glutamine-rich oligopeptide useful as a material for intestinal infusion,
The present invention relates to a method for producing a large amount from porous dried gluten.

【0002】[0002]

【従来の技術】ヒトの血中遊離アミノ酸の中で最も濃度
の高いグルタミンは、従来の栄養学では非必須アミノ酸
とされており、その働きとしては、アンモニアの輸送、
貯蔵、解毒などが指摘されていたにすぎない。しかし近
年、グルタミンは生体において極めて重要な働きを担っ
ていることが明らかとなり、特に重要な機能として、グ
ルタミンの取り込み、消費臓器である腸管の主要なエネ
ルギー基質としての役割が指摘されている。このような
ことから、グルタミンを添加した輸液を臨床応用する試
みが考えられてきているが、グルタミンをアミノ酸輸液
に添加することは困難である。それは、グルタミンは難
溶性である上に、遊離型グルタミンは水溶液中で不安定
で、環化してピログルタミン酸に変化するためである。
BACKGROUND ART Glutamine, which has the highest concentration in human free amino acids in blood, is regarded as a non-essential amino acid in conventional nutrition, and its functions include transport of ammonia,
Only storage and detoxification were pointed out. However, in recent years, it has been clarified that glutamine plays a very important role in living organisms, and it has been pointed out that glutamine uptake and its role as a major energy substrate of the intestinal tract, which is a consuming organ, are particularly important functions. For these reasons, attempts to clinically apply an infusion containing glutamine have been considered, but it is difficult to add glutamine to an amino acid infusion. This is because glutamine is hardly soluble, and free glutamine is unstable in an aqueous solution and cyclizes into pyroglutamic acid.

【0003】[0003]

【発明が解決しようとする課題】以上のような背景か
ら、アミノ末端以外のグルタミンが環化しないために、
有効に利用されるペプチド型グルタミンの開発に対する
社会的要求が高まっている。ペプチド型であれば、アミ
ノ末端以外のグルタミンは環化せず、有効に利用され
る。本発明者らは、グルテンをモルシン及びアクチナー
ゼにより水解し、グルタミン含量の高いオリゴペプチド
(高グルタミンペプチド)を作製する方法を既に報告し
ている(J.Food Biochem.16:235-248(1993)) 。しか
し、上記既報による方法は、品質については十分満足の
いく製品が得られるものの、酵素との反応系を均質な液
状で行わせるため、基質濃度を1−5%という低濃度と
しなければならないことから、処理後の乾燥工程でエネ
ルギー資源を大量に使用する。また、反応時間も10時
間ないし48時間と、長時間を要する等の欠点があっ
た。本発明の課題は、既報の方法による製品と同一又は
それ以上の品質を有する高グルタミンペプチドを、グル
テンを原料として簡易な工程により大量生産する方法を
開発する事にある。
From the background described above, since glutamine other than the amino terminus does not cyclize,
There is a growing social demand for the development of peptide glutamine that can be effectively used. In the case of the peptide type, glutamine other than the amino terminus is not cyclized and is effectively used. The present inventors have already reported a method of hydrolyzing gluten with morphine and actinase to prepare an oligopeptide having a high glutamine content (high glutamine peptide) (J. Food Biochem. 16: 235-248 (1993)). ). However, although the method according to the above-mentioned report can obtain a product with satisfactory quality, the substrate concentration must be as low as 1-5% in order to make the reaction system with the enzyme a homogeneous liquid. Therefore, a large amount of energy resources are used in the drying process after the treatment. In addition, the reaction time is 10 hours to 48 hours, which is disadvantageous in that it requires a long time. An object of the present invention is to develop a method for mass-producing high-glutamine peptides having the same or higher quality as that of a product according to a previously reported method by using a simple process using gluten as a raw material.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者らは鋭
意研究を行い、小麦粉より多孔質の乾燥グルテンを調製
し、蛋白質分解酵素で処理し、酵素反応液から高グルタ
ミンペプチドを分取する事によりグルタミン含量の高い
オリゴペプチドを得る、という過程より構成される生産
方法を開発した。以下、本発明の実施の形態を具体的に
説明する。
Accordingly, the present inventors have conducted intensive studies, prepared porous dry gluten from wheat flour, treated with proteolytic enzyme, and fractionated high glutamine peptide from the enzyme reaction solution. We have developed a production method consisting of the process of obtaining oligopeptides with high glutamine content. Hereinafter, embodiments of the present invention will be specifically described.

【0005】[0005]

【発明の実施の形態】本発明ではグルテンを原料とする
が、これには通常市販されているいわゆる「バイタル・
グルテン」の如き粉末グルテンではなく、特に多孔質に
優れた特殊仕様の乾燥グルテンが必須となる。これは通
常の市販グルテンでは、酵素反応への分散性が悪く、分
散のために多量の水(緩衝液等を含む)を要する上、反
応に長時間を要しペプチドの収率も低下することがある
からである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, gluten is used as a raw material.
Instead of powdered gluten such as "gluten", dried gluten of special specifications having particularly excellent porosity is essential. This is because ordinary gluten has poor dispersibility in the enzyme reaction, requires a large amount of water (including buffer solution) for dispersion, requires a long time for the reaction, and lowers the peptide yield. Because there is.

【0006】本発明に好適な多孔質のグルテンの一例と
しては、小麦粉から常法により得たグルテン(湿グルテ
ン)を凍結乾燥または真空乾燥し、48メッシュ程度以
下に粉砕することにより調製することができる。焼成に
よって多孔質としたものでもよい。上記の多孔質のグル
テンは、該グルテン100重量部に対し、0.1ないし
5重量部に相当する量の蛋白質分解酵素を400ないし
1000重量部、より好ましくは400ないし500重
量部の水(緩衝液等を含む)に溶解した酵素溶液中に分
散懸濁させ、酵素反応を行わせる。反応系の水の量は、
基質に水が均等にゆきたわる程度の最小限でよく、必要
以上に増加させても特に良い効果が得られず、逆に次工
程の精製過程での処理コストを高めることとなる。
As an example of a porous gluten suitable for the present invention, it can be prepared by freeze-drying or vacuum-drying gluten (wet gluten) obtained from wheat flour and pulverizing it to about 48 mesh or less. it can. It may be made porous by firing. The porous gluten is prepared by adding 400 to 1000 parts by weight, more preferably 400 to 500 parts by weight, of a protease in an amount of 0.1 to 5 parts by weight with respect to 100 parts by weight of the gluten in water (buffer). (Including liquids and the like) in an enzyme solution. The amount of water in the reaction system
It is sufficient to minimize the amount of water evenly distributed on the substrate. Even if the amount is increased more than necessary, a particularly good effect is not obtained, and conversely, the processing cost in the purification process of the next step is increased.

【0007】本発明に使用する蛋白質分解酵素は、通常
市販されている食品添加物クラスの酵素製剤を用いるこ
とができるが、特に微酸性ないし微アルカリ性に至適p
Hを有する微生物あるいは植物起源の酵素製剤、例えば
アクチナーゼ(AS、科研製薬製)、プロテイナーゼN
「アマノ」(天野製薬製)、ビオプラーゼSP−4FG
(ナガセ生化学工業製)、AOプロテアーゼ(キッコー
マン製)、パパイン、ブロメライン(例えば天野製薬
製)等が好適である。これらの酵素は、必要により2種
以上を併用することも可能である。
As the proteolytic enzyme used in the present invention, a commercially available enzyme preparation of a food additive class can be used.
Enzymes of microorganism or plant origin having H, such as actinase (AS, manufactured by Kaken Pharmaceutical), proteinase N
"Amano" (manufactured by Amano Pharmaceutical Co., Ltd.), Bioprase SP-4FG
(Manufactured by Nagase Seikagaku Corporation), AO protease (manufactured by Kikkoman), papain, bromelain (manufactured by Amano Pharmaceutical) and the like are preferred. If necessary, two or more of these enzymes can be used in combination.

【0008】反応は、必要により反応液を攪拌しつつ、
使用する酵素の至適温度、至適pHで0.5ないし5時
間、より好ましくは1ないし2時間程度の比較的短時間
で行う。これは、本発明の方法ではかかる短時間で目的
とする高グルタミンペプチドが生成するものであり、い
たずらに反応時間を延ばしても、酵素製剤中のエキソペ
プチダーゼが作用し、遊離アミノ酸が増大する等の不都
合が生じることがあるからである。
The reaction is carried out while stirring the reaction solution if necessary.
The reaction is carried out at an optimum temperature and an optimum pH of the enzyme to be used in a relatively short time of 0.5 to 5 hours, more preferably about 1 to 2 hours. This is because the desired high glutamine peptide is produced in such a short time in the method of the present invention. Even if the reaction time is unnecessarily extended, exopeptidase in the enzyme preparation acts to increase free amino acids. This is because inconvenience may occur.

【0009】本発明により得られた酵素反応液には、乾
燥重量で約90%の高グルタミンペプチド(分子量分布
は概略500ー1000)を含む。このため、該反応液
をそのまま、除菌、濃縮、乾燥等の処理を行い高グルタ
ミンペプチド製品とすることができるが、更に必要によ
り限外濾過やセファデックス(ファルマシアバイオテク
社製)等の分子篩素材での分画等、公知の方法を用い
て、遊離アミノ酸等の低分子画分や分子量1000以上
の高分子量画分を除去し、分子量は500ー1000の
画分を濃縮することができる。かかる処理により、高グ
ルタミンペプチド製品中のグルタミン含有を、基質のグ
ルテンのそれよりも高める事ができる。
The enzyme reaction solution obtained by the present invention contains about 90% by dry weight of high glutamine peptide (molecular weight distribution is approximately 500-1000). For this reason, the reaction solution can be subjected to treatments such as sterilization, concentration, and drying as it is to obtain a high glutamine peptide product. However, if necessary, a molecular sieve material such as ultrafiltration or Sephadex (Pharmacia Biotech) can be used A low molecular fraction such as free amino acid and a high molecular weight fraction having a molecular weight of 1000 or more can be removed by a known method such as fractionation by using a conventional method, and the fraction having a molecular weight of 500 to 1,000 can be concentrated. By such a treatment, the glutamine content in the high glutamine peptide product can be higher than that of the gluten substrate.

【0010】本発明の高グルタミンペプチドをアミノ酸
輸液等に利用する場合には、除菌ないしは殺菌工程が必
須となるが、これにはポリオレフィン系等の合成高分子
膜処理による除菌が最適である。これは、グルタミンを
アミノ末端に含むペプチドを加熱すると、アミノ末端グ
ルタミンが環化し、難消化性のピログルタミンペプチド
が生成する可能性があるからである。本発明で得られる
高グルタミンペプチドは水への溶解性が高く、グルタミ
ン含量も原料グルテンよりも高められており、経腸栄養
剤としての臨床応用が大いに期待されるものである。以
下、実施例により本発明を具体的に説明するが、上述の
記載及び以下に述べる実施例は、本発明の実施の好まし
い例であり、本発明の有効範囲を限定または制限する事
を何ら意味するものではない。
When the high glutamine peptide of the present invention is used for amino acid infusion or the like, a sterilization or sterilization step is essential. For this purpose, sterilization by treatment with a synthetic polymer membrane such as polyolefin is the most suitable. . This is because, when a peptide containing glutamine at the amino terminus is heated, the amino-terminal glutamine may be cyclized to produce an indigestible pyroglutamine peptide. The high glutamine peptide obtained in the present invention has high solubility in water and has a higher glutamine content than the raw material gluten, so that clinical application as an enteral nutritional agent is greatly expected. Hereinafter, the present invention will be described in detail with reference to examples. However, the above description and the examples described below are preferable examples of the practice of the present invention, and mean that the effective range of the present invention is limited or limited. It does not do.

【0011】[0011]

【実施例】(多孔質グルテンの調製)強力小麦粉(15
kg)を水で混練し、澱粉等を水で洗い去り、グルテン
ボールを調製した。これを常法により凍結乾燥したとこ
ろ、グルテンボールには多くの空隙が認められた。グル
テンボールを粉砕した後、48メッシュのふるいにかけ
て多孔質のグルテンを調製して、アクチナーゼ反応の基
質とした。
EXAMPLES (Preparation of porous gluten) Strong flour (15
kg) was kneaded with water, and starch and the like were washed away with water to prepare gluten balls. When this was freeze-dried by a conventional method, many voids were found in the gluten ball. After crushing the gluten balls, the gluten balls were sieved through a 48 mesh sieve to prepare porous gluten, which was used as a substrate for the actinase reaction.

【0012】(アクチナーゼ反応)酵素アクチナーゼ
(AS、250チロシン単位/mg、化研製薬)100
gを溶解した水50Lに、基質10kgを懸濁した。反
応中、1M NaOHでpHを7に合わせ、攪拌しなが
ら40℃で反応を行った。
(Actinase reaction) Enzyme actinase (AS, 250 tyrosine units / mg, Kaken Pharmaceutical) 100
The substrate (10 kg) was suspended in 50 L of water in which g was dissolved. During the reaction, the pH was adjusted to 7 with 1M NaOH, and the reaction was carried out at 40 ° C. with stirring.

【0013】(グルテン溶解の経時変化)反応溶液中の
可溶性タンパク質の経時変化を検討した。酵素反応液の
一部に9倍量の4M尿素含有Tris−HCl緩衝液
(pH8.6)を加え、市販のタンパク質定量キット
(プロテインアッセイキット、バイオラッド)を用いて
全タンパク質を定量した。別に、酵素反応液の一部を5,
000 ×gで15分間分離し、同様に上清中の抽出液中の
可溶化タンパク質を定量した。その結果、全タンパク質
に対する可溶性タンパク質の割合は、反応開始1時間で
ほぼプラトーに達し、約90%の基質が可溶化している
ことが明らかとなった。グルテンの溶解性の経時変化を
表1に示す。
(Change over time in dissolution of gluten) The change over time of the soluble protein in the reaction solution was examined. A 9-fold amount of 4 M urea-containing Tris-HCl buffer (pH 8.6) was added to a part of the enzyme reaction solution, and the total protein was quantified using a commercially available protein quantification kit (protein assay kit, Bio-Rad). Separately, a part of the enzyme reaction solution was
Separation was performed at 000 xg for 15 minutes, and the amount of solubilized protein in the extract in the supernatant was similarly determined. As a result, the ratio of the soluble protein to the total protein almost reached a plateau one hour after the start of the reaction, and it was revealed that about 90% of the substrate was solubilized. Table 1 shows changes over time in the solubility of gluten.

【0014】[0014]

【表1】 [Table 1]

【0015】(ゲル濾過による分取)アクチナーゼを1
時間反応させて得た酵素反応液を、5,000 ×gで15分
間遠心分離し、その上清(150mL)をセファデック
スG−15カラム(ファルマシアバイオテック、20×
60cm)を用いてゲル濾過した。溶出には10%エタ
ノールを用い、流速は100mL/分、検出は260n
mの吸収とした。排除体積は5Lであった。タンパク質
分離のクロマトグラムを図1に示す。図1において、溶
出液量を横軸に、260nmにおける吸光度を縦軸に示
す。
(Preparation by gel filtration)
The reaction mixture was centrifuged at 5,000 × g for 15 minutes, and the supernatant (150 mL) was separated with a Sephadex G-15 column (Pharmacia Biotech, 20 ×).
(60 cm). 10% ethanol was used for elution, the flow rate was 100 mL / min, and the detection was 260 n.
m. The excluded volume was 5L. The chromatogram of the protein separation is shown in FIG. In FIG. 1, the amount of eluate is shown on the horizontal axis, and the absorbance at 260 nm is shown on the vertical axis.

【0016】(膜濾過)グルタミンをアミノ末端に含む
ペプチドを加熱すると、アミノ末端にピログルタミン酸
が生成する可能性があるので、ここで作製した高グルタ
ミンペプチドを濾過滅菌した。即ち、ゲル濾過で得られ
た画分につき減圧でエタノールを除去してから、孔径
0.25μmのポリオレフィン系合成高分子膜(旭化
成、PMP−113)を通し、除菌した。減圧下でエタ
ノールを除去して8.2kgの高グルタミンペプチド製
品を得た。
(Membrane filtration) When a peptide containing glutamine at the amino terminal is heated, pyroglutamic acid may be generated at the amino terminal. Therefore, the high glutamine peptide prepared here was sterilized by filtration. That is, ethanol was removed from the fraction obtained by gel filtration under reduced pressure, and the bacteria were passed through a polyolefin-based synthetic polymer membrane having a pore size of 0.25 μm (Asahi Kasei, PMP-113) to remove bacteria. Ethanol was removed under reduced pressure to obtain 8.2 kg of high glutamine peptide product.

【0017】(高グルタミンペプチドのアミノ酸分析)
滅菌製品を凍結乾燥した後、以下の方法によりアミノ酸
組成を分析した。試料(1mg)を6N HCl(1m
L)に溶解し、脱気後、110℃で24時間加水分解
し、アミノ酸自動分析計(日立835型)により構成ア
ミノ酸を定量した。過ギ酸酸化法によって試料を酸化し
た後、6N HClで110℃、24時間水解し、1/
2システイン(1/2 Cys)を分析した。試料を3
N メルカプトエタンスルホン酸で水解し、トリプトフ
ァン(Trp)を分析した。アミノ酸組成は重量%で表
した。別に、試料(5mg)を20mMトリス緩衝液
(0.5mL)に溶かし、アクチナーゼE、アミノペプ
チダーゼ、カルボキシペプチダーゼA、カルボキシペプ
チダーゼWを用いた一連の酵素反応で試料を加水分解
後、生体成分分析用プログラムで上述のアミノ酸分析計
を用いてグルタミン(Gln)を定量した。アミノ酸分
析を行った結果を表2に示す。
(Amino acid analysis of high glutamine peptide)
After freeze-drying the sterilized product, the amino acid composition was analyzed by the following method. A sample (1 mg) was added to 6N HCl (1 m
L), degassed, hydrolyzed at 110 ° C. for 24 hours, and the constituent amino acids were quantified by an automatic amino acid analyzer (Hitachi 835). After oxidizing the sample by the formic acid oxidation method, it was hydrolyzed with 6N HCl at 110 ° C. for 24 hours,
Two cysteines (1/2 Cys) were analyzed. 3 samples
Hydrolysis was performed with N mercaptoethanesulfonic acid, and tryptophan (Trp) was analyzed. Amino acid composition was expressed in weight%. Separately, a sample (5 mg) is dissolved in 20 mM Tris buffer (0.5 mL), and the sample is hydrolyzed by a series of enzymatic reactions using actinase E, aminopeptidase, carboxypeptidase A, and carboxypeptidase W. Glutamine (Gln) was quantified using the amino acid analyzer described above in the program. Table 2 shows the results of the amino acid analysis.

【0018】[0018]

【表2】 [Table 2]

【0019】製品中のGlx(Gln+Glu)含量は
50.6%であり、原料グルテンのGlx含量(41.
8%)の1.2倍であった。また、Glxの大部分はグ
ルタミン(Gln)であった。即ち、ここで用いた原料
グルテンは原料として得られる最もグルタミン含量が高
いものであるが、それと比較して更にグルタミン含量が
1.2倍も増加しており、高グルタミンペプチドが得ら
れたと認められる。以上より、凍結乾燥したグルテンボ
ールを出発材料として、1時間の酵素反応及びゲル濾過
クロマトグラフィーにより、高グルタミンペプチドが大
量に、かつ簡便に生産できることが明らかとなった。今
後、高グルタミンペプチドが経腸栄養剤として臨床応用
されることが期待される。
The Glx (Gln + Glu) content in the product was 50.6%, and the Glx content of the raw gluten (41.
8%). Most of Glx was glutamine (Gln). That is, although the raw material gluten used here has the highest glutamine content obtained as a raw material, the glutamine content is further increased by 1.2 times as compared with that, and it is recognized that a high glutamine peptide was obtained. . From the above, it has been clarified that high-glutamine peptides can be easily produced in large quantities and easily by enzymatic reaction for one hour and gel filtration chromatography using lyophilized gluten balls as a starting material. In the future, high glutamine peptides are expected to be clinically applied as enteral nutritional supplements.

【0020】[0020]

【発明の効果】本発明により、多孔質の乾燥グルテンか
らグルタミン含量の高いオリゴペプチドを大量に生産す
る実用的工程が確立された。
Industrial Applicability According to the present invention, a practical process for producing a large amount of oligopeptide having a high glutamine content from porous dried gluten has been established.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、アクチナーゼで処理したグルテンの、
ゲル濾過クロマトグラフィーのパターンを示す図であ
る。
FIG. 1 shows gluten treated with actinase.
It is a figure which shows the pattern of a gel filtration chromatography.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 オリゴペプチドを生産するための方法で
あって、(1)小麦粉から多孔質の乾燥グルテンを調製
し、(2)多孔質の乾燥グルテンを蛋白質分解酵素によ
り分解し、(3)分解生成物よりオリゴペプチドを採取
する過程より構成される、オリゴペプチドを生産する方
法。
1. A method for producing an oligopeptide, comprising: (1) preparing porous dry gluten from wheat flour; (2) decomposing the porous dry gluten with a protease; A method for producing an oligopeptide, comprising a step of collecting an oligopeptide from a degradation product.
【請求項2】 原料小麦粉から、凍結乾燥、真空乾燥又
は焼成により多孔質の乾燥グルテンを調製する事を特徴
とする、請求項1記載のオリゴペプチドを生産する方
法。
2. The method for producing an oligopeptide according to claim 1, wherein a porous dried gluten is prepared from the raw wheat flour by freeze drying, vacuum drying or baking.
【請求項3】 100重量部の多孔質の乾燥グルテン
を、0.1ないし5重量部の蛋白質分解酵素を400な
いし1000重量部の水に溶解した溶液中の蛋白質分解
酵素により分解する事を特徴とする、請求項1記載のオ
リゴペプチドを生産する方法。
3. The method according to claim 1, wherein 100 parts by weight of porous dry gluten is decomposed by a protease in a solution of 0.1 to 5 parts by weight of protease in 400 to 1000 parts by weight of water. The method for producing an oligopeptide according to claim 1, wherein
【請求項4】 多孔質の乾燥グルテンを、蛋白質分解酵
素により1ないし5時間分解する事を特徴とする、請求
項1記載のオリゴペプチドを生産する方法。
4. The method for producing an oligopeptide according to claim 1, wherein the porous dried gluten is decomposed with a protease for 1 to 5 hours.
JP11100915A 1999-04-08 1999-04-08 Method for producing oligopeptide of high glutamine content Pending JP2000287698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11100915A JP2000287698A (en) 1999-04-08 1999-04-08 Method for producing oligopeptide of high glutamine content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11100915A JP2000287698A (en) 1999-04-08 1999-04-08 Method for producing oligopeptide of high glutamine content

Publications (1)

Publication Number Publication Date
JP2000287698A true JP2000287698A (en) 2000-10-17

Family

ID=14286644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11100915A Pending JP2000287698A (en) 1999-04-08 1999-04-08 Method for producing oligopeptide of high glutamine content

Country Status (1)

Country Link
JP (1) JP2000287698A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005001106A1 (en) * 2003-06-25 2005-01-06 Fuji Oil Company, Limited Polypeptide mixture of high glutamine/glutaminic acid content and process for producing the same
WO2009011253A1 (en) 2007-07-13 2009-01-22 Fuji Oil Company, Limited Dispersion improver for gluten, and dispersion solution of gluten

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005001106A1 (en) * 2003-06-25 2005-01-06 Fuji Oil Company, Limited Polypeptide mixture of high glutamine/glutaminic acid content and process for producing the same
JPWO2005001106A1 (en) * 2003-06-25 2006-10-26 不二製油株式会社 High glutamine / glutamic acid-containing polypeptide mixture and process for producing the same
JP4548339B2 (en) * 2003-06-25 2010-09-22 不二製油株式会社 High glutamine / glutamic acid-containing polypeptide mixture and process for producing the same
WO2009011253A1 (en) 2007-07-13 2009-01-22 Fuji Oil Company, Limited Dispersion improver for gluten, and dispersion solution of gluten

Similar Documents

Publication Publication Date Title
CN108998488B (en) Active royal jelly OCO polypeptide freeze-dried powder and preparation method thereof
CN107779489B (en) Silkworm pupa protein peptide with oxidation resistance and ACE (angiotensin converting enzyme) inhibition functions
AU666531B2 (en) Processes for the preparation of amylase inhibitor
US4016147A (en) Method for preparation of low-phenylalanine plastein
CN113088548A (en) Preparation method of oyster antioxidant active peptide
JP2020534022A (en) Gliadin decomposition process to obtain gluten-free flour
CN112795611B (en) Method for preparing walnut protein polypeptide from insoluble protein
JP2000287698A (en) Method for producing oligopeptide of high glutamine content
JP4278831B2 (en) Enzyme solution and its production method, enzyme agent, proteolytic enzyme agent, proteolytic enzyme producing bacterium
US20220248737A1 (en) Oyster peptide with effect of improving sexual function and preparation method thereof
CN105734103B (en) The preparation method of casein hydrolysate peptides
WO2022032803A1 (en) Extraction method for edible bird's nest, and extract and product thereof
JPH08140585A (en) Production of low-molecular potato protein
JP2631202B2 (en) Peptide production method
CN103989707B (en) Detached Sanguis sus domestica antibacterial and preparation method thereof after a kind of Sanguis sus domestica limited enzymolysis extraction
JPH06245790A (en) Oligopeptide mixture and its production
CN111707756A (en) Method for evaluating stability of debitterized and decolored soybean peptide production process
EP1613662B1 (en) Novel method of obtaining chondroitin sulphuric acid and uses thereof
JP2010248134A (en) Peptide composition
Piot et al. Preparation of decolorized peptides from slaughter-house blood
JPS62224245A (en) Production of easily soluble hydrolyzed milk protein free from unagreeable taste
JPH03123484A (en) Enzymatic agent for production of peptide and peptide-production process
JPH0427388A (en) Modified protease and production thereof
JP2936519B2 (en) Method for producing powdered α-amylase inhibitor
CN116590274A (en) Method for preparing high F value whey peptide based on magnetic DQTP co-immobilized enzyme and adsorption dearomatization

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050111