JP2000286668A - Piezoelectric resonator - Google Patents
Piezoelectric resonatorInfo
- Publication number
- JP2000286668A JP2000286668A JP11091777A JP9177799A JP2000286668A JP 2000286668 A JP2000286668 A JP 2000286668A JP 11091777 A JP11091777 A JP 11091777A JP 9177799 A JP9177799 A JP 9177799A JP 2000286668 A JP2000286668 A JP 2000286668A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- piezoelectric
- film
- substrate
- resonator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は圧電共振子に関し、
圧電体薄膜の厚み縦振動の共振を利用した圧電共振子に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric resonator,
The present invention relates to a piezoelectric resonator utilizing resonance of thickness longitudinal vibration of a piezoelectric thin film.
【0002】[0002]
【従来技術】無線通信や電気回路に用いられる周波数の
高周波数化に伴い、これらの電気信号に対して用いられ
るフィルターも高周波数に対応したものが開発されてい
る。2. Description of the Related Art As the frequencies used for wireless communication and electric circuits have become higher, filters used for these electric signals have been developed to correspond to higher frequencies.
【0003】特に、最近注目されているのは、固体の表
面を伝わる音響波である表面弾性波の共振を用いる、S
AWレゾネーターを用いたフィルターである。このフィ
ルターは、固体表面上に形成した櫛形の電極間に印加さ
れる高周波電界と表面弾性波の共振を用いており、1G
Hz程度までの共振周波数を持つフィルターが作製され
ている。[0003] In particular, attention has recently been paid to an S-wave which uses the resonance of a surface acoustic wave, which is an acoustic wave transmitted on the surface of a solid.
This is a filter using an AW resonator. This filter uses the resonance of a high-frequency electric field applied between comb-shaped electrodes formed on a solid surface and surface acoustic waves, and
Filters having a resonance frequency up to about Hz have been manufactured.
【0004】しかしながら、SAWフィルターは、その
櫛形電極間距離が共振周波数に反比例するという関係に
あるため、1GHzを越える周波数領域では櫛形電極間
距離がサブミクロンオーダーとなり、電極作製が非常に
困難であった。However, in the SAW filter, the inter-electrode distance is inversely proportional to the resonance frequency. Therefore, in a frequency region exceeding 1 GHz, the inter-electrode distance is on the order of submicrons, and it is very difficult to manufacture electrodes. Was.
【0005】今後、無線通信に用いられる電磁波の周波
数は、ますます高くなるものと予想され、既に、数GH
z以上の規格策定の動きもあることから、それらの周波
数に対応した、安価で高性能なフィルターが求められて
いる。[0005] In the future, the frequency of electromagnetic waves used for wireless communication is expected to become higher and higher, and several GHs are already in use.
Since there is a movement to establish a standard of z or more, an inexpensive and high-performance filter corresponding to those frequencies is required.
【0006】こうした要求に対して、新たに、圧電性を
示す薄膜の共振を利用した共振子が提案されている。こ
れは、入力される高周波電気信号に対して、圧電体薄膜
が振動を起こし、その振動が、圧電体薄膜の厚さ方向に
おいて共振を起こすことを用いた共振子である。In response to such demands, a resonator utilizing the resonance of a piezoelectric thin film has been proposed. This is a resonator using the fact that the piezoelectric thin film causes vibration in response to an input high-frequency electric signal, and the vibration causes resonance in the thickness direction of the piezoelectric thin film.
【0007】この共振子は、表面弾性波ではなく固体中
を伝播する弾性波を用いることから、バルク・ アコース
ティック・ ウェーブ・ レゾネーター(以下、BAWRと
いう)と呼ばれている。このBAWRを構成する圧電体
薄膜の膜厚の制御は、サブミクロン以下の精度で可能で
あるため、SAWフィルターに比べて、より高い周波数
の共振周波数を持つレゾネーターの作製が可能となると
期待され、開発が進められてきた。[0007] Since this resonator uses an elastic wave propagating in a solid instead of a surface acoustic wave, it is called a bulk acoustic wave resonator (hereinafter referred to as BAWR). Since it is possible to control the thickness of the piezoelectric thin film constituting the BAWR with an accuracy of submicron or less, it is expected that a resonator having a higher resonance frequency than the SAW filter can be manufactured. Development has been advanced.
【0008】従来のBAWRとしては、図2に示すよう
に、基体11と、該基体11表面に形成された支持膜1
3と、該支持膜13上に形成されたバッファー層15
と、該バッファー層15上に形成された下側電極16
と、該下側電極16上に形成された圧電体薄膜17と、
該圧電体薄膜17上に形成された一対の上側電極18と
からなるものである(USP4,320,365参
照)。支持膜13は、振動空間Aを被覆するように基体
11上面に形成されている。As shown in FIG. 2, a conventional BAWR includes a base 11 and a support film 1 formed on the surface of the base 11.
3 and a buffer layer 15 formed on the support film 13
And a lower electrode 16 formed on the buffer layer 15
And a piezoelectric thin film 17 formed on the lower electrode 16;
It comprises a pair of upper electrodes 18 formed on the piezoelectric thin film 17 (see US Pat. No. 4,320,365). The support film 13 is formed on the upper surface of the base 11 so as to cover the vibration space A.
【0009】従来のBAWRでは、圧電体薄膜材料とし
てZnO、AlN、CdS等が用いられ、基体材料とし
て主にSiが用いられ、電極材料としてAl、Auが用
いられており、圧電体薄膜を支える支持膜としてはアモ
ルファスSiO2 が用いられてきた。In a conventional BAWR, ZnO, AlN, CdS, etc. are used as a piezoelectric thin film material, Si is mainly used as a base material, Al and Au are used as electrode materials, and the piezoelectric thin film is supported. Amorphous SiO 2 has been used as a support film.
【0010】例えば、特開昭60−68710号公報に
は、圧電体薄膜材料としてZnO、AlN、CdS、基
体材料としてSi、電極材料としてAl、Au、支持膜
材料としてアモルファスSiO2 が用いられている。For example, Japanese Patent Application Laid-Open No. 60-68710 discloses the use of ZnO, AlN, CdS as a piezoelectric thin film material, Si as a base material, Al and Au as electrode materials, and amorphous SiO 2 as a support film material. I have.
【0011】支持膜としてアモルファスSiO2 が用い
られているが、これはアモルファスSiO2 がSi基板
上に容易に作製できることと、文献(Electronics Lett
ersvol.17, No.14, pp507-509(1981))に報告されてい
るように、アモルファスSiO2 が圧電体薄膜の弾性的
温度係数と逆符号の温度係数を持つため、共振子の共振
周波数の変化を補償できるためである。[0011] Amorphous SiO 2 is used as a support film. This is because amorphous SiO 2 can be easily formed on a Si substrate and is described in the literature (Electronics Lett).
ersvol.17, No.14, pp.507-509 (1981)), amorphous SiO 2 has a temperature coefficient with the opposite sign to the elastic temperature coefficient of the piezoelectric thin film, so that the resonance frequency of the resonator This can compensate for the change in.
【0012】[0012]
【発明が解決しようとする課題】しかしながら、このB
AWRは、振動の伝播によって共振を得ているため、圧
電体薄膜の振動特性はもとより、この圧電体薄膜を支え
る支持膜の振動特性がレゾネーターの特性に大きく影響
する。However, this B
Since the AWR obtains resonance by the propagation of vibration, not only the vibration characteristics of the piezoelectric thin film but also the vibration characteristics of the support film supporting the piezoelectric thin film greatly affect the characteristics of the resonator.
【0013】現在主流になりつつある2GHzの周波数
で動作させるためには、共振周波数で規制される圧電体
薄膜の膜厚は1μm程度となり、この圧電体薄膜と支持
膜で構成される振動部に最も強く励振される2次の定在
波を発生させ、大きな電気機械結合係数を得るために
は、支持膜としてのアモルファスSiO2 も同様に1μ
m程度の膜厚が要求されるが、非晶質であるSiO2 は
強度が低いため、1μm以下で安定に形成するのは困難
であり、共振子構造の形成が困難であった。In order to operate at a frequency of 2 GHz, which is becoming mainstream at present, the thickness of the piezoelectric thin film regulated by the resonance frequency is about 1 μm, and the vibrating portion formed by the piezoelectric thin film and the supporting film has In order to generate a second-order standing wave that is most strongly excited and obtain a large electromechanical coupling coefficient, the amorphous SiO 2 as the supporting film is also 1 μm in size.
Although a film thickness of about m is required, amorphous SiO 2 has a low strength, so that it is difficult to stably form it at 1 μm or less, and it is difficult to form a resonator structure.
【0014】また、支持膜として強度を得るために、S
iO2 の膜厚を大きくして複合共振子として高次の共振
を用いる場合、例えば、3次の共振を用いる場合、Si
O2の膜厚は2μm程度となるが、共振子のQ値が大き
く減少するという問題があった。これは、アモルファス
SiO2 の超音波吸収の大きさが根本的に大きいこと
と、超音波吸収の大きさが周波数の2乗に比例して大き
くなる為、2GHzのような高周波ではSiO2 の大き
な超音波吸収能が共振のQ値を大きく低下させるためで
ある。Further, in order to obtain strength as a support film, S
When a higher-order resonance is used as a composite resonator by increasing the film thickness of iO 2 , for example, when a third-order resonance is used,
Although the thickness of O 2 is about 2 μm, there is a problem that the Q value of the resonator is greatly reduced. This includes that the size of the ultrasonic absorption of amorphous SiO 2 is fundamentally large, since the magnitude of the ultrasonic absorption increases in proportion to the square of the frequency, it size of SiO 2 is at a high frequency such as 2GHz This is because the ultrasonic absorption power greatly reduces the Q value of resonance.
【0015】例えば、超音波吸収の大きさを表す減衰定
数αで比較してみると、溶融石英の減衰定数αは水晶の
減衰定数αに比べ周波数に依らず2桁大きい。アモルフ
ァスのSiO2 膜は溶融石英に比べさらに減衰定数が大
きいためQ値の低下は必須である。For example, when comparing with the attenuation constant α representing the magnitude of ultrasonic absorption, the attenuation constant α of fused silica is larger by two orders of magnitude than the attenuation constant α of quartz regardless of the frequency. Since the amorphous SiO 2 film has a larger attenuation constant than that of fused quartz, a reduction in the Q value is essential.
【0016】また減衰定数は周波数の2乗に比例するた
め100MHzでの値に比べ2GHzでは2桁以上増大
する。このように膜厚が1μm程度の圧電体薄膜に対
し、圧電体薄膜の2倍以上の膜厚を有するアモルファス
SiO2 膜は、2GHzのような高周波では超音波の吸
収が大きく、共振子のQ値を大きく低下させるという問
題があった。Since the attenuation constant is proportional to the square of the frequency, it increases by two digits or more at 2 GHz as compared with the value at 100 MHz. As described above, an amorphous SiO 2 film having a film thickness twice or more that of a piezoelectric thin film having a thickness of about 1 μm has a large absorption of ultrasonic waves at a high frequency such as 2 GHz, and the Q There is a problem that the value is greatly reduced.
【0017】尚、従来、Siからなる基体にアモルファ
スSiO2 からなる支持膜を形成し、基体を、支持膜を
補強しうる厚みだけ残してエッチングした圧電共振子が
知られているが、この場合には、振動部が圧電体薄膜、
支持膜およびSi膜により構成され、支持膜、Si膜に
より強度は向上するものの、Si膜自体の強度が小さい
ために十分な機械的強度を得るためには、Siは10μ
m程度必要であり、非圧電体であるSiの厚さが大きく
なるため圧電振動を減衰させ、共振子のQ値が低くなる
という問題があった。Heretofore, there has been known a piezoelectric resonator in which a support film made of amorphous SiO 2 is formed on a base made of Si, and the base is etched while leaving the support film thick enough to reinforce the support film. The vibrating part has a piezoelectric thin film,
Although the strength is improved by the support film and the Si film, the strength of the support film and the Si film is improved.
m, and the thickness of Si, which is a non-piezoelectric material, becomes large, so that the piezoelectric vibration is attenuated and the Q value of the resonator is reduced.
【0018】[0018]
【課題を解決するための手段】本発明者は、上記課題に
ついて鋭意検討した結果、振動体が形成される基体薄層
部として、機械的強度がアモルファスSiO2 より大き
く、共振周波数の温度係数が極めて小さく、超音波吸収
が小さい水晶を用いることにより、製造が容易で高いQ
値を示す圧電共振子を作製できることを見出し、本発明
に至った。Means for Solving the Problems As a result of intensive studies on the above-mentioned problems, the present inventors have found that a thin base layer on which a vibrating body is formed has a mechanical strength larger than that of amorphous SiO 2 and a temperature coefficient of resonance frequency. By using a crystal which is extremely small and has low ultrasonic absorption, it is easy to manufacture and has a high Q
The present inventors have found that a piezoelectric resonator exhibiting a value can be produced, and have reached the present invention.
【0019】また、圧電体薄膜として、共振周波数の温
度係数を零にすることが可能で、かつ電気機械結合係数
が大きいため、広帯域化が可能なPb含有ペロブスカイ
ト酸化物強誘電体を用いることにより、共振子全体の共
振周波数の温度係数を小さく保ったまま高いQ値を示す
圧電共振子を作製できることを見出し、本発明に至っ
た。Further, since the temperature coefficient of the resonance frequency can be reduced to zero and the electromechanical coupling coefficient is large as the piezoelectric thin film, the use of a Pb-containing perovskite oxide ferroelectric material capable of broadening the bandwidth is achieved. The present inventors have found that a piezoelectric resonator exhibiting a high Q value can be manufactured while keeping the temperature coefficient of the resonance frequency of the entire resonator small, and have reached the present invention.
【0020】即ち、本発明の圧電共振子は、水晶からな
る基体に凹部を設け、該凹部底面に基体薄層部を形成
し、該基体薄層部の前記凹部と反対側の面に、圧電体薄
膜の両面に電極を形成した振動体を設けてなるものであ
る。ここで、圧電体薄膜は鉛を含有するペロブスカイト
型強誘電体であることが望ましい。That is, in the piezoelectric resonator of the present invention, a concave portion is provided in a substrate made of quartz, a thin substrate portion is formed on the bottom surface of the concave portion, and a piezoelectric thin film is formed on a surface of the thin substrate portion opposite to the concave portion. A vibrating body having electrodes formed on both surfaces of a body thin film is provided. Here, it is desirable that the piezoelectric thin film is a perovskite-type ferroelectric containing lead.
【0021】[0021]
【作用】本発明の圧電共振子では、一対の電極と圧電体
薄膜からなる振動体を支持する基体薄層部として、結晶
質のSiO2 である水晶を用いることにより、共振周波
数の温度特性を劣化させることなく、基体薄層部として
十分な強度を実現し、かつアモルファスSiO2 膜に比
べ、1GHzを越える高周波で大きなQ値を実現でき
る。[Action] In the piezoelectric resonator of the present invention, as the base thin-layer portion which supports a vibrating body consisting of a pair of electrodes and the piezoelectric thin film, by using a quartz crystal which is SiO 2 crystalline, the temperature characteristics of the resonance frequency Without deterioration, sufficient strength can be realized as a thin base layer portion, and a large Q value can be realized at a high frequency exceeding 1 GHz as compared with an amorphous SiO 2 film.
【0022】即ち、基体薄層部を結晶質のSiO2 であ
る水晶から構成したので、強度が大きく、2μm程度の
薄層部を形成できる。また、音速が圧電体薄膜の2〜3
倍であるため、2GHzの高周波用として用いる場合、
共振周波数から規定される圧電体薄膜の厚み0.7〜1
μmの2〜3倍の厚みとすることができ、基体薄層部と
圧電体薄膜により構成される振動部に最も強く励振され
る2次波を発生させることができる。また、水晶は超音
波の減衰が小さいため、電気機械結合係数を殆ど減少さ
せることがなく、従来のアモルファスSiO2 膜に比
べ、1GHzを越える高周波で大きなQ値を実現でき
る。That is, since the base thin layer portion is made of crystalline quartz, which is crystalline SiO 2 , the strength is high and a thin layer portion of about 2 μm can be formed. Also, the sound velocity is 2 to 3 of the piezoelectric thin film.
When used for high frequency of 2 GHz,
0.7 to 1 thickness of piezoelectric thin film defined from resonance frequency
The thickness can be 2 to 3 times the thickness of μm, and a secondary wave that is most strongly excited in the vibrating portion constituted by the base thin layer portion and the piezoelectric thin film can be generated. Further, quartz has a small attenuation of ultrasonic waves, so that the electromechanical coupling coefficient is hardly reduced, and a large Q value can be realized at a high frequency exceeding 1 GHz as compared with a conventional amorphous SiO 2 film.
【0023】また、従来では、基体に支持膜を形成し、
支持膜が形成されていない側から基体をエッチングして
薄膜圧電共振子を構成していたが、本発明では、基体を
水晶から構成し、基体薄層部を残すように基体をエッチ
ングして凹部を形成したため、基体と支持膜(基体薄層
部)が一体となっており、製造工程が簡略化される。Conventionally, a support film is formed on a substrate,
Although the thin film piezoelectric resonator was formed by etching the base from the side where the support film was not formed, in the present invention, the base was formed of quartz, and the recess was formed by etching the base so as to leave the base thin layer portion. Is formed, the base and the support film (base thin layer portion) are integrated, and the manufacturing process is simplified.
【0024】また水晶を基体表面に形成することが困難
であるため、本発明では基体と基体薄層部が一体となっ
た構造とした。これにより圧電共振子を容易に作製でき
る。Since it is difficult to form quartz on the surface of the substrate, the present invention employs a structure in which the substrate and the substrate thin layer are integrated. Thereby, the piezoelectric resonator can be easily manufactured.
【0025】また、本発明の圧電共振子では、水晶から
なる基体薄層部は共振周波数の温度特性が殆ど零に近い
ため、圧電体薄膜として鉛含有ペロブスカイト強誘電体
を用いることにより、振動体を支持する基体薄層部によ
る補償なしに、共振子の温度変化率を零にできる。鉛を
含有するペロブスカイト強誘電体は、MPBと呼ばれる
組成相境界で大きな圧電性を示すことが知られている
が、同時に2つの異なる結晶形態の境界であるため、組
成を制御することにより、マイナスの弾性的温度変化を
示すことが可能になる。この為、強誘電体膜自身の温度
係数を零にするだけでなく、ややプラスの温度係数を有
する、水晶からなる基体薄層部、電極の温度係数を補償
し、圧電共振子全体の温度係数を零とすることもでき
る。In the piezoelectric resonator of the present invention, since the temperature characteristic of the resonance frequency of the thin-film base portion made of quartz is almost zero, the vibrating body is formed by using a lead-containing perovskite ferroelectric material as the piezoelectric thin film. The temperature change rate of the resonator can be made zero without compensation by the base thin layer portion that supports. It is known that a perovskite ferroelectric containing lead exhibits large piezoelectricity at a composition phase boundary called MPB. However, since it is a boundary between two different crystal forms at the same time, by controlling the composition, a negative effect is obtained. Can be shown. For this reason, not only the temperature coefficient of the ferroelectric film itself is reduced to zero, but also the temperature coefficient of the thin-film base layer made of quartz and the electrode, which has a slightly positive Can be set to zero.
【0026】また、鉛含有ペロブスカイト強誘電体は大
きな電気機械結合係数を有することから、ZnO、Al
N等の従来の圧電体薄膜に比べ広帯域化が可能となる。Further, since the lead-containing perovskite ferroelectric has a large electromechanical coupling coefficient, ZnO, Al
A wider band can be achieved as compared with a conventional piezoelectric thin film such as N.
【0027】[0027]
【発明の実施の形態】本発明の圧電共振子は、図1に示
すように、基体1に凹部2を形成して基体薄層部3を形
成し、該基体薄層部3の凹部2と反対側の面には、圧電
体薄膜4の下面に下側電極5、上面に一対の上側電極6
を形成した振動体7を設けて構成されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In a piezoelectric resonator according to the present invention, as shown in FIG. 1, a concave portion 2 is formed in a substrate 1 to form a substrate thin layer portion 3, and the concave portion 2 of the substrate thin layer portion 3 is formed. On the opposite surface, a lower electrode 5 is provided on the lower surface of the piezoelectric thin film 4 and a pair of upper electrodes 6 is provided on the upper surface.
Is provided.
【0028】基体1は結晶質のSiO2 である水晶から
構成されており、エッチングすることにより凹部2が形
成され、振動空間Aが形成されている。The substrate 1 is made of crystalline quartz, which is crystalline SiO 2 , and the concave portion 2 is formed by etching, so that the vibration space A is formed.
【0029】圧電体薄膜4には、ZnO、AlN、Cd
S、PbTiO3 等が用いられるが、厚み縦振動の電気
機械結合係数が大きい等の理由からPbTiO3 を主成
分とすることが望ましい。例えば、圧電体薄膜4には、
Pb、Zr、Tiを含有するペロブスカイト型強誘電体
薄膜が用いられる。このPbTiO3 を主成分とする圧
電体薄膜4は、成膜時に結晶軸をc軸方向に配向させる
ことにより、大きな圧電性を示すことができ、圧電性が
弱い場合には直流電圧を印加して圧電性を付与しても良
い。The piezoelectric thin film 4 includes ZnO, AlN, Cd
S, although PbTiO 3 or the like is used, it is desirable that the main component PbTiO 3 for reasons such as electromechanical coupling coefficient of thickness longitudinal vibration is large. For example, in the piezoelectric thin film 4,
A perovskite ferroelectric thin film containing Pb, Zr, and Ti is used. The piezoelectric thin film 4 containing PbTiO 3 as a main component can exhibit large piezoelectricity by orienting the crystal axis in the c-axis direction at the time of film formation. When the piezoelectricity is weak, a DC voltage is applied. Alternatively, piezoelectricity may be imparted.
【0030】この圧電体薄膜4を挟持する電極5、6に
は、従来より多く用いられているAl、Pt、Au等比
較的反応性が低い金属材料が用いられる。圧電体薄膜4
との反応を考慮すると、電極材料としては反応性の低い
Ptが望ましい。また、振動体7への質量負荷が小さい
ことと抵抗率が小さいことから上側電極6としてAlが
望ましい。The electrodes 5 and 6 sandwiching the piezoelectric thin film 4 are made of a metal material having relatively low reactivity, such as Al, Pt, and Au, which are conventionally used. Piezoelectric thin film 4
Considering the reaction with Pt, Pt with low reactivity is desirable as the electrode material. Also, Al is desirable for the upper electrode 6 because the mass load on the vibrating body 7 is small and the resistivity is small.
【0031】以上のように構成された圧電共振子は、単
結晶である水晶の基体1の一部をエッチングして、振動
体7を支持しうる厚みの基体薄層部3を形成し、基体薄
層部3の表面に下側電極5、圧電体薄膜4、上側電極6
を順次形成して、振動体7を形成することにより作製さ
れる。In the piezoelectric resonator constructed as described above, a part of the single-crystal quartz base 1 is etched to form the base thin layer 3 having a thickness capable of supporting the vibrating body 7. Lower electrode 5, piezoelectric thin film 4, upper electrode 6 on the surface of thin layer portion 3.
Are sequentially formed to form the vibrating body 7.
【0032】尚、振動体は、圧電体薄膜と電極とを交互
に積層したものであっても良い。The vibrating body may be one in which piezoelectric thin films and electrodes are alternately laminated.
【0033】[0033]
【実施例】まず、水晶基体を反応性イオンエッチング法
によりエッチングする。C2 F6(60%)とAr(4
0%)の混合ガスを用い、Siマスクを用いて基体に凹
部を形成することにより、基体薄層部を形成した。基体
薄層部の厚さは2.3μmであった。First, a quartz substrate is etched by a reactive ion etching method. C 2 F 6 (60%) and Ar (4
(0%), and a concave portion was formed in the substrate using a Si mask to form a substrate thin layer portion. The thickness of the base thin layer portion was 2.3 μm.
【0034】次に、基体薄層部の表面に、マグネトロン
スパッタ法を用いて、500℃で100nm膜厚のPt
膜(下側電極)を形成し、その上に、ゾルゲル法によ
り、組成がPb1.06Ba0.09{( Co0.16Yb0.26Nb
0.58)0.1615 Cr0.0085}( Zr0.41Ti0.59)0.83 O
3 のPZT薄膜からなる圧電体薄膜を形成した。Next, a Pt film having a thickness of 100 nm and a thickness of 100 nm was formed on the surface of the base thin layer portion by magnetron sputtering at 500 ° C.
A film (lower electrode) was formed, and the composition was changed to Pb 1.06 Ba 0.09 {(Co 0.16 Yb 0.26 Nb) by the sol-gel method.
0.58 ) 0.1615 Cr 0.0085 } (Zr 0.41 Ti 0.59 ) 0.83 O
A PZT thin film of No. 3 was formed.
【0035】この圧電体薄膜は、先ず、上記組成からな
る溶液をスピンコート法を用いてPt膜に塗布し、次に
380℃で60秒熱処理を行う。溶液塗布と熱処理を6
回繰り返した後、700℃で15分間焼成し結晶化し
た。溶液塗布から結晶化に至る工程をもう一度繰り返
し、膜厚0.72μmの強誘電体薄膜からなる圧電体薄
膜を得た。The piezoelectric thin film is first coated with a solution having the above composition on a Pt film by spin coating, and then heat-treated at 380 ° C. for 60 seconds. 6 solution application and heat treatment
After repetition twice, it was baked at 700 ° C. for 15 minutes to crystallize. The process from solution application to crystallization was repeated once again to obtain a 0.72 μm thick ferroelectric thin film.
【0036】次に、圧電体薄膜の上面にRFマグネトロ
ンスパッタ法により、マスク法を用いて50nm膜厚の
Al電極(上側電極)を200℃でパターン形成した。Next, an Al electrode (upper electrode) having a thickness of 50 nm was formed on the upper surface of the piezoelectric thin film at 200 ° C. by RF magnetron sputtering using a mask method.
【0037】次に、マイクロプローブと直流電源を用い
て分極処理を施した。共振子構造は、図1に示すよう
に、共振子が2個直列に接続された構造と等価であるた
め、抗電界の2倍以上の電界を印可する必要がある。室
温で30Vの直流電圧を30秒間印可し、分極処理を行
い、図1に示すような薄膜圧電共振子を得た。Next, a polarization treatment was performed using a microprobe and a DC power supply. Since the resonator structure is equivalent to a structure in which two resonators are connected in series as shown in FIG. 1, it is necessary to apply an electric field that is at least twice the coercive electric field. A DC voltage of 30 V was applied at room temperature for 30 seconds to perform a polarization treatment to obtain a thin film piezoelectric resonator as shown in FIG.
【0038】インピーダンス測定により、圧電共振特性
を評価した。共振子の反共振Q値を、レジスタンス、リ
アクタンスを用いて求めた。共振周波数の温度係数は、
ホットチャックを組み込んだRFプローブを用いて行っ
た。温度係数は、25℃の共振周波数をfr25、85℃
の共振周波数をfr85とした時、(fr85−fr25)/
fr25・ΔT(ΔT=85℃−25℃)で定義した。The piezoelectric resonance characteristics were evaluated by impedance measurement. The anti-resonance Q value of the resonator was determined using resistance and reactance. The temperature coefficient of the resonance frequency is
The test was performed using an RF probe incorporating a hot chuck. The temperature coefficient is calculated by setting the resonance frequency at 25 ° C to fr 25
When the resonance frequency of is set to fr 85 , (fr 85 −fr 25 ) /
It was defined as fr 25 · ΔT (ΔT = 85 ° C.-25 ° C.).
【0039】上記作製した共振子は、室温で主共振(2
次の共振)の共振周波数fr=2.1GHz、反共振Q
=620、温度係数−2ppm/℃、および電気機械結
合係数Kt=0.25が得られた。The resonator thus manufactured has a main resonance (2
Resonance frequency fr = 2.1 GHz, anti-resonance Q
= 620, temperature coefficient -2 ppm / ° C, and electromechanical coupling coefficient Kt = 0.25.
【0040】比較例として、(100)面のSi基板上
に2.5μm膜厚のアモルファスSiO2 膜を形成し、
Si基板をSiO2 膜が露出するまでKOHでエッチン
グして凹部を形成した後、上記実施例と同様に、電極と
圧電体薄膜を形成して共振子を作製した結果、反共振Q
は230であった。As a comparative example, an amorphous SiO 2 film having a thickness of 2.5 μm was formed on a (100) plane Si substrate.
After the Si substrate was etched with KOH until the SiO 2 film was exposed to form a concave portion, an electrode and a piezoelectric thin film were formed in the same manner as in the above embodiment to form a resonator.
Was 230.
【0041】[0041]
【発明の効果】本発明の圧電共振子では、振動体を支持
する基体薄層部として、機械的強度が大きく、共振周波
数の温度係数が極めて小さく、かつ超音波減衰の小さい
水晶を用いたため、従来のアモルファスSiO2 支持膜
では得られなかった高いQ値を示す圧電共振子を得るこ
とができる。また、圧電体薄膜として電気機械結合係数
が大きく、共振周波数の温度係数が小さい鉛含有ペロブ
スカイト強誘電体を用いることにより、共振周波数と反
共振周波数の周波数差が大きく、温度変化率が小さい圧
電共振子を得ることができる。According to the piezoelectric resonator of the present invention, quartz is used as the base thin layer portion for supporting the vibrating body, because it has a high mechanical strength, a very small temperature coefficient of the resonance frequency, and a small ultrasonic attenuation. A piezoelectric resonator exhibiting a high Q value, which cannot be obtained with a conventional amorphous SiO 2 support film, can be obtained. In addition, by using a lead-containing perovskite ferroelectric material having a large electromechanical coupling coefficient and a small temperature coefficient of the resonance frequency as the piezoelectric thin film, a piezoelectric resonance having a large frequency difference between the resonance frequency and the antiresonance frequency and a small temperature change rate is used. You can get a child.
【図1】本発明の圧電共振子を示す断面図である。FIG. 1 is a cross-sectional view showing a piezoelectric resonator of the present invention.
【図2】従来の圧電共振子を示す断面図である。FIG. 2 is a cross-sectional view showing a conventional piezoelectric resonator.
1・・・基体 2・・・凹部 3・・・基体薄層部 4・・・圧電体薄膜 5・・・下側電極 6・・・上側電極 7・・・振動体 DESCRIPTION OF SYMBOLS 1 ... Base 2 ... Depression 3 ... Base thin layer part 4 ... Piezoelectric thin film 5 ... Lower electrode 6 ... Upper electrode 7 ... Vibrating body
Claims (2)
面に基体薄層部を形成するとともに、該基体薄層部の前
記凹部と反対側の面に、圧電体薄膜の両面に電極を形成
した振動体を設けてなることを特徴とする圧電共振子。A concave portion is formed in a substrate made of quartz, a thin substrate portion is formed on the bottom surface of the concave portion, and electrodes are formed on both surfaces of the piezoelectric thin film on a surface of the thin substrate portion opposite to the concave portion. A piezoelectric resonator comprising a formed vibrator.
型強誘電体であることを特徴とする請求項1記載の圧電
共振子。2. The piezoelectric resonator according to claim 1, wherein the piezoelectric thin film is a perovskite ferroelectric containing lead.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11091777A JP2000286668A (en) | 1999-03-31 | 1999-03-31 | Piezoelectric resonator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11091777A JP2000286668A (en) | 1999-03-31 | 1999-03-31 | Piezoelectric resonator |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000286668A true JP2000286668A (en) | 2000-10-13 |
Family
ID=14036027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11091777A Pending JP2000286668A (en) | 1999-03-31 | 1999-03-31 | Piezoelectric resonator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000286668A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100488615B1 (en) * | 2001-07-02 | 2005-05-11 | 가부시키가이샤 무라타 세이사쿠쇼 | Piezoelectric resonator, manufacturing method for the same, piezoelectric filter, manufacturing method for the same, duplexer, and electronic communication device |
US20080018775A1 (en) * | 2006-07-20 | 2008-01-24 | Canon Kabushiki Kaisha | Image pickup apparatus and image pickup unit having device for removing foreign substance deposited on surface of optical member |
-
1999
- 1999-03-31 JP JP11091777A patent/JP2000286668A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100488615B1 (en) * | 2001-07-02 | 2005-05-11 | 가부시키가이샤 무라타 세이사쿠쇼 | Piezoelectric resonator, manufacturing method for the same, piezoelectric filter, manufacturing method for the same, duplexer, and electronic communication device |
US20080018775A1 (en) * | 2006-07-20 | 2008-01-24 | Canon Kabushiki Kaisha | Image pickup apparatus and image pickup unit having device for removing foreign substance deposited on surface of optical member |
US20170131542A1 (en) * | 2006-07-20 | 2017-05-11 | Canon Kabushiki Kaisha | Image pickup apparatus and image pickup unit having device for removing foreign substance deposited on surface of optical member |
US9897802B2 (en) * | 2006-07-20 | 2018-02-20 | Canon Kabushiki Kaisha | Image pickup apparatus and image pickup unit having device for removing foreign substance deposited on surface of optical member |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11309861B2 (en) | Guided surface acoustic wave device providing spurious mode rejection | |
US5446330A (en) | Surface acoustic wave device having a lamination structure | |
US7322093B2 (en) | Method for producing a boundary acoustic wave device | |
JP3435789B2 (en) | Surface acoustic wave device | |
US4456850A (en) | Piezoelectric composite thin film resonator | |
JP4478910B2 (en) | Piezoelectric thin film resonator | |
US6243933B1 (en) | Piezoelectric resonator and method for fabricating the same | |
WO2004038914A1 (en) | Piezoelectric vibrator, filter using same, and method for adjusting piezoelectric vibrator | |
JPS6135716B2 (en) | ||
US7320164B2 (en) | Method of manufacturing an electronic component | |
JP2000278078A (en) | Piezoelectric resonator | |
JPS58153412A (en) | Piezo-electric thin film composite vibrator | |
JP2000165188A (en) | Piezoelectric resonator | |
JP2000312129A (en) | Piezoelectric resonator and filter | |
JPH06120416A (en) | Acoustoelectronic integrated circuit and manufacture thereof | |
Nakamura et al. | UHF bulk-acoustic-wave filters utilizing thin ZnO/SiO2-diaphragms on silicon | |
JP3493315B2 (en) | Piezoelectric resonator | |
JP2000286668A (en) | Piezoelectric resonator | |
Yoshino et al. | Control of temperature coefficient of frequency in zinc oxide thin film bulk acoustic wave resonators at various frequency ranges | |
JP3860698B2 (en) | Piezoelectric resonator | |
JP2003273691A (en) | Surface acoustic wave device | |
Sekimoto et al. | Polarity control of (0001) oriented AlN films by Si doping and applications to polarity inverted SiAlN/AlN film bulk acoustic wave resonators | |
JPH0356013B2 (en) | ||
JPH1051262A (en) | Piezoelectric vibrator and its production | |
JP2000165187A (en) | Piezoelectric resonator |