JP2000285875A - Manufacture of cylindrical battery - Google Patents

Manufacture of cylindrical battery

Info

Publication number
JP2000285875A
JP2000285875A JP11092638A JP9263899A JP2000285875A JP 2000285875 A JP2000285875 A JP 2000285875A JP 11092638 A JP11092638 A JP 11092638A JP 9263899 A JP9263899 A JP 9263899A JP 2000285875 A JP2000285875 A JP 2000285875A
Authority
JP
Japan
Prior art keywords
battery case
diameter
outer diameter
battery
reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11092638A
Other languages
Japanese (ja)
Other versions
JP3751765B2 (en
Inventor
Mizuo Iwasaki
瑞夫 岩崎
Yasuhiko Yamazaki
康彦 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP09263899A priority Critical patent/JP3751765B2/en
Publication of JP2000285875A publication Critical patent/JP2000285875A/en
Application granted granted Critical
Publication of JP3751765B2 publication Critical patent/JP3751765B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a cylindrical battery of high energy density of power generating element per unit volume excellent in reliability, sealing pressure resistance and liquid leakage resistance. SOLUTION: In this manufacturing method, an electrode 2 is stored in a battery case 1 having an outer diameter D larger than a predetermined outer diameter (d) when completed, and the electrode 2 is formed by spirally winding positive and negative electrodes interposing a separator 7 therebetween. Then, an upper part is reduced in the diameter to have the predetermined outer diameter (d) respective to the electrode 2 storing part in the battery 1. An electrolyte is injected into the battery case 1. A seal 8 is inserted into the upper part having the predetermined outer diameter (d) for the battery case 1 and the opening is sealed. Finally, all the parts not yet to be in the diameter in the battery case 1 are reduced to have the predetermined outer diameter (d).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有底円筒型の電池
ケース内に発電要素が収納されてなる円筒型電池を製造
する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a cylindrical battery having a power generating element housed in a bottomed cylindrical battery case.

【0002】[0002]

【従来の技術】ノート型パソコン、携帯電話機およびビ
デオカメラなどの様々な携帯用電子機器の普及と進歩に
伴い、それらの駆動用電源としては高性能、安全性およ
び信頼性の高い電池が望まれており、このような要件を
満たす電池として、特に、ニッケル水素電池やリチウム
イオン二次電池が注目されている。すなわち、これらの
電池は、高エネルギ密度を有するとともに自己放電が少
なく、極めて長い貯蔵寿命を有するなどの特長を備えて
いるため、携帯用電子機器の小型軽量化に大きく寄与で
きるからである。
2. Description of the Related Art With the spread and progress of various portable electronic devices such as notebook personal computers, portable telephones and video cameras, batteries having high performance, high safety and high reliability are desired as power sources for driving them. As batteries satisfying such requirements, nickel-metal hydride batteries and lithium-ion secondary batteries have attracted particular attention. That is, since these batteries have features such as high energy density, low self-discharge, and extremely long storage life, they can greatly contribute to the reduction in size and weight of portable electronic devices.

【0003】このような電池は、例えば、図4に示すよ
うな構造になっている。すなわち、同図には、有底円筒
型の電池ケース1で外装された円筒型電池を図示してあ
り、電池ケース1は負極端子を兼ねている。この電池ケ
ース1内には、正極活物質を有する帯状の正極板3と負
極活物質を有する帯状の負極板4との間にセパレータ7
を介在して重ね合わせた積層物を、負極板4を正極板3
に対し外側に配して渦巻き状に巻回してなる電極体2が
収納されている。この電極体2は電池ケース1内に注液
された電解液(図示せず)と共に発電要素を構成する。
[0003] Such a battery has, for example, a structure as shown in FIG. That is, FIG. 1 shows a cylindrical battery externally covered with a bottomed cylindrical battery case 1, and the battery case 1 also serves as a negative electrode terminal. In the battery case 1, a separator 7 is interposed between a strip-shaped positive electrode plate 3 having a positive electrode active material and a strip-shaped negative electrode plate 4 having a negative electrode active material.
The negative electrode plate 4 and the positive electrode plate 3
The electrode body 2 which is arranged outside and is spirally wound is housed. The electrode body 2 forms a power generating element together with an electrolyte (not shown) injected into the battery case 1.

【0004】電池ケース1の上端開口部は、閉塞蓋板
9、安全弁のゴム弁体10、外部端子板(通常は正極端
子を兼ねる)11により構成された封口体8を、電池ケ
ース1の外周面に形成した環状溝13により内方に膨出
した環状支持部14に、絶縁ガスケット12介在して載
置支持させるとともに、電池ケース1の上端の開口周縁
部を内方に折り曲げてかしめ加工することにより、液密
に封止されている。
An opening at the upper end of the battery case 1 is provided with a sealing body 8 composed of a closing lid plate 9, a rubber valve body 10 of a safety valve, and an external terminal plate 11 (usually also serving as a positive electrode terminal). An annular gasket 12 is interposed between the annular support portion 14 bulged inward by the annular groove 13 formed on the surface, and is placed and supported. The peripheral edge of the opening at the upper end of the battery case 1 is bent inward and caulked. Thereby, it is sealed in a liquid-tight manner.

【0005】上述のような円筒型電池の製造に際して、
渦巻き状の電極体2の外径は、電池ケース1内に円滑に
挿入できるように、電池ケース1の内径よりも若干小さ
く設定される。これは、渦巻き状であることから必然的
に外形が真円とならない電極体2を電池ケース1内に挿
入するときに、電極体2の外周部が電池ケース1の内周
面にこすれて極板崩れが生じるのを防止するためであ
る。この場合、電池ケース1の内周面と電極体2との間
には小さな隙間が生じるので、電極体2には、ゆるみが
生じて正,負極板3,4の緊縛度が低下する。そのた
め、単位体積当たりの発電要素の収納容量が低下してエ
ネルギ密度が低下する。これに対して、渦巻き状に巻回
した電極体2の外周部をテーピングして緊縛度を保持す
る方法も提案されているが、この場合には、電池ケース
1の内周面と電極体2との間の隙間がそのまま維持され
るため、電極体2が電池ケース1内で揺動してリード片
のちぎれなどの別の問題が生じ、電池としての信頼性が
低下する。
[0005] In manufacturing the above-mentioned cylindrical battery,
The outer diameter of the spiral electrode body 2 is set slightly smaller than the inner diameter of the battery case 1 so that it can be smoothly inserted into the battery case 1. This is because the outer peripheral portion of the electrode body 2 is rubbed against the inner peripheral surface of the battery case 1 when inserting the electrode body 2 into the battery case 1 whose outer shape is not necessarily a perfect circle because of the spiral shape. This is to prevent the collapse of the board. In this case, since a small gap is formed between the inner peripheral surface of the battery case 1 and the electrode body 2, the electrode body 2 is loosened, and the degree of tightness between the positive and negative electrode plates 3 and 4 is reduced. Therefore, the storage capacity of the power generation element per unit volume is reduced, and the energy density is reduced. On the other hand, a method of taping the outer peripheral portion of the spirally wound electrode body 2 to maintain the degree of tightness has been proposed. In this case, however, the inner circumferential surface of the battery case 1 and the electrode body 2 Is maintained as it is, the electrode body 2 swings in the battery case 1 to cause another problem such as tearing of a lead piece, and the reliability as a battery is reduced.

【0006】そこで、従来では、上述のような問題を解
消するものとして、スウェージ方式(回転しながら互い
に接離する方向に往復動する一対の金型で電池ケース1
の外周面を両側から間欠的に叩打して絞る方式)により
電池ケース1を縮径して円筒型電池を製造する技術(特
開平10-27584号公報参照)が提案されている。この円筒
型電池は、電池ケース1を、電池完成時の所定の外径よ
りも僅かに大きな外径に形成しておき、この電池ケース
1内に所要量の電極体2を収納したのちに、電池ケース
1における電極体2の収納箇所のみを所定の外径に縮径
することにより、電池ケース1の内周面と電極体2との
間の隙間を無くし、続いて、電池ケース1に対して、環
状溝13の形成、電解液の注液および封口体8の挿入を
順次行い、この封口体8で電池ケース1の上端開口部を
密閉しない状態において、電池ケース1の封口体8を収
納している開口部近傍箇所を所定の外径に縮径し、最後
に、電池ケース1の縮径した開口周縁部を内方に折り曲
げてかしめ加工することにより、電池ケース1を封止す
る工程を経て製造される。
In order to solve the above-mentioned problem, a conventional swaging method (a pair of dies that reciprocate in a direction of coming and going while rotating) has been proposed.
A method of manufacturing a cylindrical battery by reducing the diameter of the battery case 1 by intermittently tapping and squeezing the outer peripheral surface from both sides (see JP-A-10-27584). In this cylindrical battery, the battery case 1 is formed to have an outer diameter slightly larger than a predetermined outer diameter when the battery is completed, and after a required amount of the electrode body 2 is stored in the battery case 1, The gap between the inner peripheral surface of the battery case 1 and the electrode body 2 is eliminated by reducing the diameter of only the storage location of the electrode body 2 in the battery case 1 to a predetermined outer diameter. The formation of the annular groove 13, the injection of the electrolytic solution and the insertion of the sealing body 8 are sequentially performed, and the sealing body 8 of the battery case 1 is housed in a state where the upper end opening of the battery case 1 is not sealed by the sealing body 8. Sealing the battery case 1 by reducing the diameter of the vicinity of the opening to a predetermined outside diameter, and finally bending and crimping the peripheral edge of the reduced diameter of the battery case 1 inward. It is manufactured through

【0007】上記の円筒型電池では、電池完成時の所定
の外径よりも大きな外径に形成した電池ケース1内に電
極体2を挿入するので、電極体2を可及的に大きな径と
しながらも電池ケース1内に円滑に挿入でき、また、電
池ケース1の縮径によって電池ケース1の内周面と電極
体2との間の隙間を無くしているので、電極体2にゆる
みによる緊縛度の低下が生じない効果を得られる。とこ
ろが、電池ケース1における電極体2の収納箇所を所定
の外径に縮径して電池ケース1の内周面と電極体2との
間の隙間が無くなった状態として電解液を注入するの
で、所要量の電解液を注入することが困難となる。これ
に対して、電解液に圧力を付与して注入する手段などを
用いて所要量の電解液を強制的に注入したとしても、電
池ケース1の上端開口部を封口体8で密閉しない状態に
おいて電池ケース1の開口近傍箇所を縮径する際に、電
解液が電池ケース1の開口部から飛び出してしまう。し
たがって、上記の製造方法で得られる円筒型電池は、電
解液の不足によって充放電サイクルの寿命が低下すると
いう問題がある。
In the above cylindrical battery, since the electrode body 2 is inserted into the battery case 1 formed to have an outer diameter larger than a predetermined outer diameter at the time of completion of the battery, the diameter of the electrode body 2 is made as large as possible. However, the battery case 1 can be smoothly inserted into the battery case 1, and the gap between the inner peripheral surface of the battery case 1 and the electrode body 2 is eliminated by reducing the diameter of the battery case 1. The effect that the degree does not decrease can be obtained. However, since the storage location of the electrode body 2 in the battery case 1 is reduced to a predetermined outer diameter, and the gap between the inner peripheral surface of the battery case 1 and the electrode body 2 is eliminated, the electrolytic solution is injected. It becomes difficult to inject the required amount of electrolyte. On the other hand, even if the required amount of the electrolyte is forcibly injected by using a means for applying pressure to the electrolyte and injecting the electrolyte, the opening at the upper end of the battery case 1 is not sealed by the sealing body 8. When the diameter near the opening of the battery case 1 is reduced, the electrolytic solution jumps out of the opening of the battery case 1. Therefore, the cylindrical battery obtained by the above manufacturing method has a problem that the life of the charge / discharge cycle is shortened due to the shortage of the electrolyte.

【0008】また、上述のスウェージ方式で電池ケース
1を縮径する場合には、例えば、約50mmの長さの電池
ケース1を0.6 mm縮径するのに約4秒の加工時間を必
要とし、生産性が低い難点がある上に、電池ケース1の
外周面全体に圧力を均等に付加するのが難しいことか
ら、縮径後の電池ケース1の真円度が低く、電池として
の品位が低下する欠点もある。
In the case where the diameter of the battery case 1 is reduced by the above-mentioned swaging method, for example, it takes approximately 4 seconds to reduce the diameter of the battery case 1 having a length of about 50 mm by 0.6 mm. The productivity is low, and it is difficult to apply pressure evenly to the entire outer peripheral surface of the battery case 1. Therefore, the roundness of the battery case 1 after diameter reduction is low, and the quality as a battery deteriorates. There is also the disadvantage of doing.

【0009】上記とは別に、従来では、図5および図6
に示すような工程を経て円筒型電池を製造する方法(特
公昭62-409818 号公報参照)も提案されており、以下
に、その製造方法について説明する。
Apart from the above, conventionally, FIGS.
(Japanese Patent Publication No. 62-409818) has also been proposed. A method for producing a cylindrical battery through the steps shown in FIG.

【0010】同図(a),(b)は電池ケース1の外周
面の所定箇所に環状溝13を形成する溝入れ工程を示
す。電池ケース1は電池完成時の所定の外径dよりも若
干大きな外径Dに形成されており、この電池ケース1内
に電極体2が収納される。したがって、電極体2は、上
記外径Dに対応する可及的に大きな径となるように渦巻
き状に巻回しながらも、電池ケース1内に極板崩れが生
じることのないように容易に挿入できる。このとき、電
池ケース1の内周面と電極体2との間には僅かな寸法s
の隙間20が存在する。
FIGS. 1A and 1B show a groove forming step for forming an annular groove 13 at a predetermined position on the outer peripheral surface of the battery case 1. FIG. The battery case 1 is formed to have an outer diameter D slightly larger than a predetermined outer diameter d when the battery is completed, and the electrode body 2 is housed in the battery case 1. Accordingly, while the electrode body 2 is spirally wound so as to have a diameter as large as possible corresponding to the outer diameter D, it is easily inserted so that the electrode plate does not collapse in the battery case 1. it can. At this time, there is a small dimension s between the inner peripheral surface of the battery case 1 and the electrode body 2.
Gap 20 exists.

【0011】電極体2を収納した電池ケース1は、その
下部を回転自在のホルダ基台17に嵌め込んで支持さ
れ、その電池ケース1の上端開口部には中型18が
(b)に示すように嵌め込まれる。つぎに、電池ケース
1の外周面の所定箇所には溝形成用ローラ19が回転し
ながら押し付けられるとともに、(b)に示すように、
電池ケース1がホルダ基台17及び中型18によって回
転される。これにより、電池ケース1の外周面には環状
溝13が形成され、且つ電池ケース1の内周面には環状
溝13の形成によって膨出した環状支持部14が形成さ
れる。
The battery case 1 accommodating the electrode body 2 is supported by fitting a lower part of the battery case 1 into a rotatable holder base 17, and a middle die 18 is provided at an upper end opening of the battery case 1 as shown in FIG. Fit into. Next, a groove forming roller 19 is pressed against a predetermined portion of the outer peripheral surface of the battery case 1 while rotating, and as shown in FIG.
The battery case 1 is rotated by the holder base 17 and the middle die 18. Accordingly, an annular groove 13 is formed on the outer peripheral surface of the battery case 1, and an annular support portion 14 swelled by the formation of the annular groove 13 is formed on the inner peripheral surface of the battery case 1.

【0012】続いて、(c)に示すように、電池ケース
1内には注液管26によって電解液21が注入される。
このとき、電池ケース1は大きな外径Dのままに保持さ
れているから、所要量の電解液21を容易に注入するこ
とができる。
Subsequently, as shown in FIG. 1C, an electrolyte 21 is injected into the battery case 1 through an injection tube 26.
At this time, since the battery case 1 is held at the large outer diameter D, a required amount of the electrolyte solution 21 can be easily injected.

【0013】つぎに、(d),(e)に示す封口工程が
行われる。先ず、電池ケース1内には、図4に示した封
口体8が挿入されて環状支持部14上に載せられる。続
いて、封口用金型22が電池ケース1の上端部に向けて
下動されると、電池ケース1の開口周縁部は、封口用金
型22の傾斜面となった加工ガイド面22aに沿いなが
ら内方に折り曲げられていくとともに、封口用金型22
のかしめ加工面22bによって封口体8上にかしめ加工
され、電池ケース1の開口部が封口体8によって仮封口
される。すなわち、ここで、電池ケース1における封口
体8を収納する箇所は、大きな外径Dを有した状態でか
しめ加工されるから、電池ケース1と封口体8との間に
は僅かな隙間が存在しており、電池ケース1の開口部は
完全な封止状態とならない仮封口される。
Next, a sealing step shown in (d) and (e) is performed. First, the sealing body 8 shown in FIG. 4 is inserted into the battery case 1 and placed on the annular support portion 14. Subsequently, when the sealing mold 22 is moved downward toward the upper end of the battery case 1, the peripheral edge of the opening of the battery case 1 extends along the processing guide surface 22 a which is the inclined surface of the sealing mold 22. While being bent inward, the sealing mold 22
The sealing body 8 is swaged by the swaging surface 22b, and the opening of the battery case 1 is temporarily sealed by the sealing body 8. That is, since the portion of the battery case 1 for storing the sealing body 8 is caulked with a large outer diameter D, there is a slight gap between the battery case 1 and the sealing body 8. Thus, the opening of the battery case 1 is temporarily sealed so as not to be completely sealed.

【0014】最後に、図6(f),(g)に示す縮径工
程が行われる。封口体8で上端開口部を仮封口された電
池ケース1は、その封口体8を含む上端部を押さえ支持
具23によって吊り下げ状態に支持された状態で、上動
してくるほぼ円筒状の縮径装置24の内部に挿通され
る。縮径装置24におけるほぼ円筒形の外体ボックス2
5の内周面には、(f)に示すように、電池ケース1を
所定の外径dに縮径するための縮径用金型27が着脱自
在に嵌め込まれ、この縮径用金型27が固定具28によ
って固定されている。したがって、電池ケース1は、縮
径用金型27の内部を通過し終えたときに、(g)に示
すように、長手方向の全体が縮径用金型27によって所
定の外径dに縮径される。このように電池ケース1を所
定の外径dに縮径することにより、電池ケース1の内周
面と電極体2との間の隙間20を無くして、電極体2に
ゆるみによる緊縛度の低下が生じないようにしている。
Finally, a diameter reduction step shown in FIGS. 6F and 6G is performed. The battery case 1 whose upper end opening is temporarily sealed by the sealing body 8 is a substantially cylindrical shape that moves upward while the upper end including the sealing body 8 is supported by the holding support 23 in a suspended state. It is inserted inside the diameter reducing device 24. A substantially cylindrical outer body box 2 in the diameter reducing device 24
As shown in (f), a diameter reducing mold 27 for reducing the diameter of the battery case 1 to a predetermined outer diameter d is removably fitted into the inner peripheral surface of the inner peripheral surface of the inner diameter surface of the inner diameter surface of the inner diameter surface of the inner diameter surface of the mold 5 as shown in FIG. 27 is fixed by a fixture 28. Therefore, when the battery case 1 has passed through the inside of the diameter reducing mold 27, the entire lengthwise direction of the battery case 1 is reduced to a predetermined outer diameter d by the diameter reducing mold 27 as shown in (g). Diameter. By reducing the diameter of the battery case 1 to a predetermined outer diameter d in this manner, the gap 20 between the inner peripheral surface of the battery case 1 and the electrode body 2 is eliminated, and the looseness of the electrode body 2 reduces the degree of tightness. Is prevented from occurring.

【0015】[0015]

【発明が解決しようとする課題】しかしながら、上述の
円筒型電池の製造方法では、図7(a)に示すように、
所定の外径dよりも大きな外径Dとした電池ケース1内
に必要量の電極体2および電解液を収納したのちに上端
開口部を封口体8で仮封口した状態において、電池ケー
ス1の全体をその長手方向に沿って所定の外径dに縮径
するので、縮径寸法〔(D−d)÷2〕を0.2 mm以上
に比較的大きく設定した場合には、図7(b)に示すよ
うに、電池ケース1における環状溝13の形成箇所が、
縮径の際の圧力を受けて座屈し、垂れ下がる状態に変形
してしまう。この変形に伴って、絶縁ガスケット12は
封口体8から離れる状態に変形してしまう不都合が生じ
る。
However, in the above-described method for manufacturing a cylindrical battery, as shown in FIG.
After a required amount of the electrode body 2 and the electrolytic solution are accommodated in the battery case 1 having the outer diameter D larger than the predetermined outer diameter d, the upper end opening is temporarily closed with the sealing body 8. Since the whole is reduced to a predetermined outer diameter d along its longitudinal direction, if the reduced diameter [(D−d) ÷ 2] is set relatively large to 0.2 mm or more, FIG. As shown in the figure, the location of the annular groove 13 in the battery case 1 is
It buckles under the pressure at the time of diameter reduction and transforms into a hanging state. Along with this deformation, there is a disadvantage that the insulating gasket 12 is deformed away from the sealing body 8.

【0016】そのため、電池ケース1の内周面と電極体
2との隙間20に存在していた電解液21は、電池ケー
ス1が底部から上方に向けて縮径されるのに伴い上方に
押し出されたときに、その一部が封口体8とこれから離
れるように変形した絶縁ガスケット12との間、或いは
電池ケース1の内周面と絶縁ガスケット12との間に存
在する隙間内に侵入し、その侵入した電解液21が漏液
の通路になってしまうので、耐漏液性が著しく低下す
る。
Therefore, the electrolytic solution 21 existing in the gap 20 between the inner peripheral surface of the battery case 1 and the electrode body 2 is pushed upward as the diameter of the battery case 1 is reduced upward from the bottom. When it is removed, a part thereof enters the gap existing between the sealing body 8 and the insulating gasket 12 deformed away from the sealing body 8 or between the inner peripheral surface of the battery case 1 and the insulating gasket 12, Since the infiltrated electrolyte solution 21 becomes a passage for leakage, the leakage resistance is significantly reduced.

【0017】一方、電池ケース1における封口体8を保
持している開口周縁部は、封口体8に対しかしめ加工が
終了した状態で縮径され、封口体8も縮径の際の圧力を
受けて変形してしまので、封口体8による封口耐圧機能
が劣化し、ひいては耐漏液性の低下を招く。したがっ
て、上記の製造方法によって製造された円筒型電池に
は、封口耐圧および耐漏液性が著しく低下するという問
題がある。
On the other hand, the periphery of the opening of the battery case 1 which holds the sealing body 8 is reduced in diameter after the caulking of the sealing body 8 is completed, and the sealing body 8 also reduces the pressure at the time of diameter reduction. Since it is deformed by receiving, the pressure-resistant function of the sealing member 8 for sealing is deteriorated, and as a result, the leakage resistance is reduced. Therefore, the cylindrical battery manufactured by the above manufacturing method has a problem that the sealing pressure resistance and the liquid leakage resistance are significantly reduced.

【0018】そこで本発明は、上記従来の課題に鑑みて
なされたもので、単位体積当たりの発電要素のエネルギ
密度が高く、信頼性、封口耐圧および耐漏液性にそれぞ
れ優れた円筒型電池を製造することのできる方法を提供
することを目的とするものである。
Accordingly, the present invention has been made in view of the above-mentioned conventional problems, and is intended to produce a cylindrical battery having a high energy density of a power generating element per unit volume, and excellent in reliability, sealing pressure resistance, and liquid leakage resistance. It is an object of the present invention to provide a method capable of performing such operations.

【0019】[0019]

【課題を解決するための手段】上記目的を達成するため
に、本発明の円筒型電池の製造方法は、正極板と負極板
との間にセパレータを介在して渦巻き状に巻回した電極
板を、電池完成時の所定の外径よりも大きな外径に形成
した電池ケース内に収納する電極体収納工程と、前記電
池ケースにおける前記電極体の収納箇所に対し上部箇所
を所定の外径に縮径する上部縮径工程と、前記電池ケー
ス内に電解液を注入する注液工程と、前記電池ケースの
所定の径とした上部箇所に封口体を挿入して開口部を封
口する封口工程と、前記電池ケースにおける未縮径箇所
の全体を所定の外径に縮径する縮径工程とを有すること
を特徴としている。
In order to achieve the above object, a method of manufacturing a cylindrical battery according to the present invention comprises an electrode plate wound spirally with a separator interposed between a positive electrode plate and a negative electrode plate. Is stored in a battery case formed with an outer diameter larger than a predetermined outer diameter at the time of completion of the battery; and An upper diameter reducing step of reducing the diameter, an injecting step of injecting an electrolytic solution into the battery case, and a sealing step of inserting a sealing body into an upper part having a predetermined diameter of the battery case to seal the opening. And a step of reducing the diameter of the entire unreduced diameter portion of the battery case to a predetermined outer diameter.

【0020】この円筒型電池の製造方法では、電池完成
時の所定の外径よりも大きな外径とした電池ケース内
に、可及的に大きな径とした電極体を極板崩れを生じる
ことなく容易に収納でき、且つ所要量の電解液を容易を
注入でき、さらに、電池ケースを所定の外径に縮径して
電池ケースの内周面と電極体との間の隙間を無くすの
で、単位体積当たりのエネルギ密度および信頼性が共に
高い円筒型電池を得ることができる。
According to this method of manufacturing a cylindrical battery, an electrode body having a diameter as large as possible can be accommodated in a battery case having an outer diameter larger than a predetermined outer diameter at the time of completion of the battery without causing collapse of the electrode plate. It can be easily stored and easily injected with a required amount of electrolyte, and the battery case is reduced in diameter to a predetermined outer diameter to eliminate the gap between the inner peripheral surface of the battery case and the electrode body. A cylindrical battery with high energy density per volume and high reliability can be obtained.

【0021】また、電池ケースにおける電極体の収納箇
所に対し上部箇所を所定の外径に縮径した状態として、
電池ケースの開口部を封口体により正規の封止状態に封
口したのちに、電池ケースにおける電極体の収納箇所を
所定の外径に縮径するので、電池ケースにおける封口体
の収納箇所や封口体は、何ら外力を受けないことから、
変形などが生じることがなく、電池ケースの開口周縁部
をかしめ加工して封口したときの高い封口耐圧をそのま
ま維持する。
In addition, the upper part of the battery case is reduced in diameter to a predetermined outer diameter with respect to the storage part of the electrode body.
After the opening of the battery case is sealed in a regular sealed state by the sealing body, the storage location of the electrode body in the battery case is reduced to a predetermined outer diameter. Has no external force,
There is no deformation or the like, and a high sealing pressure when the opening peripheral portion of the battery case is swaged and sealed is maintained as it is.

【0022】さらに、縮径工程において封口体が変形し
ないことから、環状溝は縮径時の外力を受けて内方に向
けて膨らむ状態に変形するが、電池ケースにおける絶縁
ガスケットとの接触箇所は、縮径加工前の接触角度を維
持して絶縁ガスケットに密着する状態をそのまま保持す
る。したがって、この製造方法により製造した円筒型電
池は、高い封口耐圧と耐漏液性とを共に確保できる優れ
たものとなる。
Further, since the sealing body is not deformed in the diameter reduction step, the annular groove is deformed to expand inward due to the external force at the time of diameter reduction, but the contact point with the insulating gasket in the battery case is reduced. Then, the contact angle before the diameter reduction processing is maintained, and the state of being in close contact with the insulating gasket is maintained as it is. Therefore, the cylindrical battery manufactured by this manufacturing method is an excellent one that can ensure both high sealing pressure resistance and liquid leakage resistance.

【0023】上記発明において、上部縮径工程ののち
に、縮径によって所定の外径とした上部箇所の外周面に
環状溝を形成して前記電池ケースの内周面に封口体を支
持する環状支持部を形成する溝入れ工程を行うことが好
ましい。
In the above invention, after the upper diameter reducing step, an annular groove is formed in an outer peripheral surface of an upper portion having a predetermined outer diameter by the diameter reduction, and an annular groove is supported on an inner peripheral surface of the battery case. It is preferable to perform a grooving step for forming the support.

【0024】これにより、環状溝は、電池ケースにおけ
る所定の外径に縮径した箇所に形成するので、電池ケー
スの大きな外径の箇所に環状溝を形成したのちに電池ケ
ースを所定の外径に縮径する場合のような座屈によって
垂れ下がる形状に変形するといったことが生じない。
Thus, since the annular groove is formed at a portion of the battery case where the diameter is reduced to a predetermined outer diameter, after the annular groove is formed at a portion of the battery case having a large outer diameter, the battery case is moved to the predetermined outer diameter. The buckling does not cause the shape to hang down as in the case where the diameter is reduced.

【0025】また、上記発明における電池ケースの縮径
工程において、電池ケースの未縮径箇所に対し複数回の
縮径を繰り返して外径を徐々に小さく縮径しながら所定
の外径とすることが好ましい。
Further, in the battery case diameter reducing step according to the above invention, the outer diameter is reduced to a predetermined outer diameter while the outer diameter is gradually reduced by repeating a plurality of times for the unreduced diameter portion of the battery case. Is preferred.

【0026】これにより、電池ケースを極めて円滑に所
定の外径に縮径することができるとともに、電池ケース
における環状溝の形成箇所の変形をさらに低減でき、電
池ケースと絶縁ガスケットの接触箇所を封口加工時の密
着状態に一層確実に保持することができるから、封口耐
圧と耐漏液性とをさらに高めることができる。
Thus, the diameter of the battery case can be extremely smoothly reduced to a predetermined outer diameter, the deformation of the annular groove in the battery case can be further reduced, and the contact area between the battery case and the insulating gasket can be sealed. Since the contact state during processing can be more reliably maintained, the sealing pressure resistance and liquid leakage resistance can be further improved.

【0027】[0027]

【発明の実施の形態】以下、本発明の好ましい実施の形
態について図面を参照しながら詳細に説明する。図1お
よび図2は本発明の円筒型電池の製造方法における製造
工程を順に示した工程図で、図1(a),(b)は上部
縮径工程、同図(c),(d)は溝入れ工程、同図
(e)は注液工程、図2(f),(g)は封口工程、同
図(h),(i)は縮径工程をそれぞれ示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the drawings. 1 and 2 are process diagrams sequentially showing the manufacturing steps in the method for manufacturing a cylindrical battery of the present invention. FIGS. 1 (a) and 1 (b) show an upper diameter reduction step, and FIGS. 1 (c) and 1 (d). 2 (e) shows a liquid filling step, FIGS. 2 (f) and 2 (g) show a sealing step, and FIGS. 2 (h) and 2 (i) show a diameter reduction step.

【0028】先ず、図1(a)に示すように、電池ケー
ス1は電池完成時の所定の外径dよりも若干大きな外径
Dに形成されており、この電池ケース1内に電極体2が
挿入して収納される。したがって、電極体2は、上記外
径Dに対応する可及的に大きな径となるよう渦巻き状に
巻回して容量アップを図りながらも、電池ケース1内に
極板崩れが生じることなく容易に挿入できる。このと
き、電池ケース1の内周面と電極体2との間には僅かな
寸法sの隙間20が存在する。
First, as shown in FIG. 1A, the battery case 1 is formed to have an outer diameter D slightly larger than a predetermined outer diameter d when the battery is completed. Is inserted and stored. Therefore, the electrode body 2 is wound spirally so as to have a diameter as large as possible corresponding to the outer diameter D to increase the capacity, but easily without the electrode plate collapsing in the battery case 1. Can be inserted. At this time, a gap 20 having a small dimension s exists between the inner peripheral surface of the battery case 1 and the electrode body 2.

【0029】そして、電池ケース1における開口部近傍
の上部箇所を縮径するに際して、電極体2を収納した電
池ケース1は、その下部を回転自在のホルダ基台17に
嵌め込んで支持される。その電池ケース1の上部の開口
部近傍箇所は、上部縮径装置29が矢印で示すように下
動して嵌まり込むことによって、(b)に示すように、
電池完成時の所定の外形dに縮径される。
When the diameter of the upper portion near the opening of the battery case 1 is reduced, the battery case 1 containing the electrode body 2 is supported by fitting the lower portion thereof to a rotatable holder base 17. As shown in (b), the upper part of the battery case 1 near the opening is lowered and fitted by the upper diameter reducing device 29 as shown by the arrow, as shown in FIG.
The diameter is reduced to a predetermined outer shape d when the battery is completed.

【0030】すなわち、上部縮径装置29は、有頭円筒
状の外体ボックス30の内周面に、電池ケース1の上部
を所定の外径dに縮径する口径を有する絞り加工部31
aと傾斜面となった加工ガイド面31bとを有する縮径
用金型31が嵌め込み固定されているとともに、外径d
とほぼ同じ径の円径に形成された押さえ面32aを下部
に備えた押さえ中子32が外体ボックス30内に摺動自
在に収納され、外体ボックス30の内部における押さえ
中子32の上方箇所にコイルスプリング33が収納され
た構成になっている。
That is, the upper diameter reducing device 29 is provided on the inner peripheral surface of a headed cylindrical outer body box 30 with a drawing portion 31 having a diameter to reduce the upper portion of the battery case 1 to a predetermined outer diameter d.
a and a diameter reducing mold 31 having an inclined processing guide surface 31b is fitted and fixed, and has an outer diameter d.
A pressing core 32 having a pressing surface 32a formed at a lower portion having a diameter substantially the same as that of the pressing core 32 is slidably housed in the outer body box 30 and is located above the pressing core 32 inside the outer body box 30. The configuration is such that the coil spring 33 is housed in the location.

【0031】したがって、電池ケース1の上部は、上部
縮径装置29の下動に伴い外体ボックス30内に挿入し
たのち、縮径用金型31の加工ガイド面31bに沿って
内方に折り曲げられていき、上端部が絞り加工部31a
によって規制された所定の外径dに縮径される。上部縮
径装置29が下限位置まで下動した時点では(b)に示
すように、電池ケース1の上部は、その開口端面に押さ
え中子32の押さえ面32aがコイルスプリング33の
付勢力により下方向に押し付けられている。そして、上
部縮径装置29が上昇する際、コイルスプリング33の
付勢力により押さえ中子32が電池ケース1の上端部を
下方向に押しつけることにより、電池ケース1が金型3
1より離脱される。
Accordingly, the upper part of the battery case 1 is inserted into the outer body box 30 with the downward movement of the upper diameter reducing device 29, and then bent inward along the processing guide surface 31b of the diameter reducing mold 31. And the upper end portion is drawn part 31a.
The diameter is reduced to a predetermined outer diameter d regulated by the above. When the upper diameter reducing device 29 moves down to the lower limit position, as shown in (b), the upper surface of the battery case 1 has its open end face pressed by the pressing surface 32 a of the pressing core 32 by the urging force of the coil spring 33. Pressed in the direction. When the upper diameter reducing device 29 rises, the pressing core 32 presses the upper end of the battery case 1 downward by the urging force of the coil spring 33, and the battery case 1
Departed from 1.

【0032】つぎに、上部箇所を所定の外径dに縮径さ
れた電池ケース1には、(c),(d)に示す工程を経
て環状溝13が形成される。すなわち、電池ケース1に
おける所定の外径dに縮径された上端開口部には中型1
8が(c)に示すように嵌め込まれる。つぎに、電池ケ
ース1の外周面における所定箇所には溝形成用ローラ9
が回転しながら押し付けられるとともに、(d)に示す
ように、電池ケース1がホルダ基台17及び中型18に
よって回転される。これにより、電池ケース1の外周面
には環状溝13が形成され、且つ電池ケース1の内周面
には環状溝13の形成によって膨出した環状支持部14
が形成される。ここで、環状溝13は、電池ケース1に
おける所定の外径dに縮径された上部箇所と大きな外径
Dの箇所との中間箇所に、封口体8に対応する所定形状
に形成される。
Next, an annular groove 13 is formed in the battery case 1 whose upper part is reduced in diameter to a predetermined outer diameter d through the steps shown in FIGS. That is, the middle die 1 is inserted into the upper end opening of the battery case 1 whose diameter is reduced to a predetermined outer diameter d.
8 is fitted as shown in FIG. Next, a groove forming roller 9 is provided at a predetermined location on the outer peripheral surface of the battery case 1.
Is pressed while rotating, and the battery case 1 is rotated by the holder base 17 and the middle mold 18 as shown in FIG. Thus, an annular groove 13 is formed on the outer peripheral surface of the battery case 1, and an annular support portion 14 swelled by the formation of the annular groove 13 on the inner peripheral surface of the battery case 1.
Is formed. Here, the annular groove 13 is formed in a predetermined shape corresponding to the sealing body 8 at an intermediate portion between an upper portion reduced in diameter to a predetermined outer diameter d and a portion having a large outer diameter D in the battery case 1.

【0033】続いて、(e)に示すように、電池ケース
1内には注液管26によって電解液21が注入される。
このとき、電池ケース1における電極体2の収納箇所は
大きな外径Dのままに保持されているから、所要量の電
解液21を容易に注入することができる。
Subsequently, the electrolyte 21 is injected into the battery case 1 through the injection tube 26 as shown in FIG.
At this time, since the storage location of the electrode body 2 in the battery case 1 is maintained at the large outer diameter D, a required amount of the electrolyte 21 can be easily injected.

【0034】つぎに、図2(f),(g)に示す封口工
程が行われる。先ず、(f)に示すように、電池ケース
1における所定の外径dに縮径された開口近傍箇所の内
部には、図4に示した封口体8が嵌め込まれて環状支持
部14上に載せられる。続いて、封口用金型34が電池
ケース1の上端部に向けて下動されると、電池ケース1
の開口周縁部は、封口用金型34の傾斜面となった加工
ガイド面34aに沿いながら内方に折り曲げられていく
とともに、封口用金型34のかしめ加工面34bによっ
て封口体8上にかしめ加工され、電池ケース1の開口部
が封口体8によって封止される。この封口工程は、電池
ケース1における封口体8によって封口する上部箇所の
みが電池完成時の所定の外径dに縮径されて、その所定
の外径dとなった箇所に形成された環状支持部14に封
口体8を支持させた状態で行うから、従来方法における
図5(d),(e)の封口工程での仮封口とは異なり、
電池ケース1の開口部は電池完成時の正規の封口状態に
封止される。
Next, a sealing step shown in FIGS. 2F and 2G is performed. First, as shown in (f), the sealing body 8 shown in FIG. Put on. Subsequently, when the sealing mold 34 is moved down toward the upper end of the battery case 1, the battery case 1
Is bent inward along the processing guide surface 34a which is the inclined surface of the closing mold 34, and is swaged on the sealing body 8 by the swaging surface 34b of the closing mold 34. It is processed and the opening of the battery case 1 is sealed by the sealing body 8. In this sealing step, only the upper portion of the battery case 1 that is sealed by the sealing body 8 is reduced in diameter to a predetermined outer diameter d when the battery is completed, and the annular support formed in the portion having the predetermined outer diameter d is formed. Since the sealing is performed while the sealing member 8 is supported by the part 14, unlike the temporary sealing in the sealing step of FIGS. 5 (d) and 5 (e) in the conventional method,
The opening of the battery case 1 is sealed in a regular closed state when the battery is completed.

【0035】最後に、(h),(i)に示す縮径工程が
行われる。封口体8で上端開口部を封口された電池ケー
ス1は、その封口体8を含む上端部を押さえ支持具37
によって吊り下げ状態に支持された状態で、上動してく
るほぼ円筒状の縮径装置24の内部に挿通される。縮径
装置24におけるほぼ円筒形の外体ボックス25の内周
面には、(h)に示すように、電池ケース1を所定の外
径dに縮径するための縮径用金型27が嵌め込まれ、こ
の縮径用金型27が固定具28によって固定されてい
る。縮径用金型27は、電池ケース1を所定の外径dに
縮径する口径を有する絞り加工部27aと傾斜面となっ
た加工ガイド面27bとを一体に備えている。したがっ
て、電池ケース1は、縮径用金型27の内部を通過し終
えたときに、(i)に示すように、長手方向における上
部を除く全体が絞り加工部27aによって所定の外径d
に縮径される。このように電池ケース1が所定の外径d
に縮径されることにより、電池ケース1の内周面と電極
体2との間の隙間20が無くなり、電極体2にゆるみに
よる緊縛度の低下が生じない。
Finally, a diameter reduction step shown in (h) and (i) is performed. The battery case 1 whose upper end opening is sealed by the sealing member 8 holds the upper end portion including the sealing member 8 and supports 37.
While being supported in a suspended state by the above, it is inserted into the inside of a generally cylindrical diameter reducing device 24 that moves upward. As shown in (h), a diameter reducing mold 27 for reducing the diameter of the battery case 1 to a predetermined outer diameter d is provided on the inner peripheral surface of the substantially cylindrical outer body box 25 in the diameter reducing device 24. The diameter-reducing mold 27 is fixed by a fixture 28. The diameter reducing mold 27 integrally includes a drawing portion 27a having a diameter for reducing the diameter of the battery case 1 to a predetermined outer diameter d and a processing guide surface 27b which is an inclined surface. Therefore, when the battery case 1 has passed through the inside of the diameter reducing mold 27, as shown in FIG.
The diameter is reduced to Thus, the battery case 1 has a predetermined outer diameter d.
By reducing the diameter, the gap 20 between the inner peripheral surface of the battery case 1 and the electrode body 2 is eliminated, so that the looseness of the electrode body 2 does not reduce the degree of tightness.

【0036】上記の縮径工程は、図3(a)に示すよう
に、電池ケース1の上部が所定の外径dに縮径されて開
口部が封口体8で封口された状態において、電池ケース
1における電極体2の収納箇所についてのみ行われるだ
けである。したがって、電池ケース1における封口体8
による封口箇所は縮径用金型27の絞り加工部27aに
対し単に挿通するだけあるから、電池ケース1における
封口体8の収納箇所や封口体8は、何ら外力を受けない
ことから、変形などが生じることがなく、前述の封口工
程において電池ケース1の開口周縁部をかしめ加工して
封口したときの高い封口耐圧をそのまま維持する。
As shown in FIG. 3 (a), the above-described step of reducing the diameter of the battery case is performed in a state where the upper portion of the battery case 1 is reduced in diameter to a predetermined outer diameter d and the opening is sealed by the sealing body 8. It is only performed for the storage location of the electrode body 2 in the case 1. Therefore, the sealing body 8 in the battery case 1
Is simply inserted into the drawn portion 27a of the diameter reducing mold 27, and the storage location of the sealing body 8 and the sealing body 8 in the battery case 1 are not subjected to any external force, and thus may be deformed. And the high sealing pressure resistance when the peripheral edge of the opening of the battery case 1 is sealed by caulking in the above-described sealing step is maintained.

【0037】また、この縮径工程では、電池ケース1に
おける封口体8による封口箇所が何ら外力を受けないの
で、電池ケース1における電極体2の収納箇所が縮径さ
れたときに、図3(b)に示すように、環状溝13が縮
径時の外力を受けて内方に向けて膨らむ状態に変形する
が、電池ケース1における絶縁ガスケット12との接触
箇所は、(a)との比較から明らかなように、縮径加工
前の180 °の接触角度を維持して絶縁ガスケット12に
密着する状態をそのまま保持する。したがって、この製
造方法により製造した円筒型電池は、所要量の電極体2
と電解液21とを電池ケース1内に収納し、且つ電池ケ
ース1の内周面と電極体2との間に隙間20を無くして
単位体積当たりのエネルギ密度を高めながらも、高い封
口耐圧と耐漏液性とを共に確保できる優れたものとな
る。
Also, in this diameter reducing step, since the sealing portion of the battery case 1 with the sealing member 8 is not subjected to any external force, when the housing portion of the electrode body 2 in the battery case 1 is reduced in diameter, FIG. As shown in b), the annular groove 13 is deformed so as to expand inward due to the external force when the diameter is reduced, but the contact portion of the battery case 1 with the insulating gasket 12 is different from that in FIG. As is clear from FIG. 2, the contact angle of 180 ° before the diameter reduction processing is maintained, and the state of being in close contact with the insulating gasket 12 is maintained. Therefore, the cylindrical battery manufactured by this manufacturing method has a required amount of the electrode body 2.
And the electrolyte solution 21 are housed in the battery case 1, and the gap 20 is eliminated between the inner peripheral surface of the battery case 1 and the electrode body 2 to increase the energy density per unit volume, while maintaining high sealing pressure resistance. It is an excellent material that can secure both the liquid leakage resistance.

【0038】なお、上記縮径工程において電池ケース1
の内圧が上昇するが、その内圧は、ゴム弁体10などに
より構成された安全弁の作動圧力よりも十分に小さいも
のであり、縮径工程での電池ケース1の内圧上昇によっ
て安全弁が作動することがない。例えば、実測による
と、外径が10mmの単4形の円筒型電池の製造に際し
ては、0.3 mm〜0.6 mmの縮径(したがって、縮径前
の電池ケース1の外径Dは10.3mm〜10.6mm)を行う
が、この縮径工程において上昇する電池ケース1の内圧
は4kg/cm2〜5kg/cm2程度であり、安全弁の作動圧力は
15kg/cm2〜20kg/cm2程度に設定されている。
In the above diameter reduction step, the battery case 1
The internal pressure of the battery case 1 is sufficiently lower than the operating pressure of the safety valve constituted by the rubber valve body 10 or the like. There is no. For example, according to actual measurements, when manufacturing a AAA cylindrical battery having an outer diameter of 10 mm, the outer diameter D of the battery case 1 before reduction is 0.3 mm to 0.6 mm. While performing mm), the internal pressure of the battery case 1 to rise in the reduced diameter step is 4kg / cm 2 ~5kg / cm 2 or so, the operating pressure of the safety valve
It is set to about 15kg / cm 2 ~20kg / cm 2 .

【0039】また、上記実施の形態における図2
(h),(i)の縮径工程では、単一の縮径装置24を
用いて電池ケース1における電極体2の収納箇所を一工
程で縮径する場合について説明しているが、複数回の縮
径工程を繰り返して電池ケース1を縮径前の外径Dから
を徐々に縮径していき、最終回の縮径工程によって所定
の外径dまで縮径するように構成すると好適である。こ
の各縮径工程では、絞り加工部27aの口径が順次小さ
くなった複種類の縮径用金型27を縮径装置24に対し
その都度取り替え装着して行うか、或いは絞り加工部2
7aの口径が順次小さくなった複種類の縮径用金型27
を個々に装着した複数の縮径装置24を用いて行う。こ
のように複数回に分割した縮径工程を行って電池ケース
1の大きな外径Dを所定の外径dに縮径することによ
り、電池ケース1における環状溝13の形成箇所の変形
を一層低減でき、電池ケース1と絶縁ガスケット12と
の接触箇所を封口加工時の密着状態のまま保持すること
ができ、封口耐圧と耐漏液性とを一層高めることができ
る。
FIG. 2 in the above embodiment.
In the diameter reduction steps (h) and (i), the case where the storage location of the electrode body 2 in the battery case 1 is reduced in one step by using a single diameter reduction device 24 is described. It is preferable that the battery case 1 is gradually reduced in diameter from the outer diameter D before the diameter reduction by repeating the diameter reduction step, and is reduced to a predetermined outer diameter d in the final diameter reduction step. is there. In each of the diameter reducing steps, a plurality of types of diameter reducing dies 27 in which the diameter of the drawing section 27a is sequentially reduced are replaced and mounted on the diameter reducing apparatus 24 each time.
Multiple kinds of diameter reducing dies 27 whose diameter of 7a is gradually reduced
Using a plurality of diameter reducing devices 24 individually mounted. By reducing the large outer diameter D of the battery case 1 to a predetermined outer diameter d by performing the diameter reducing step divided into a plurality of times in this manner, the deformation of the location where the annular groove 13 is formed in the battery case 1 is further reduced. As a result, the contact portion between the battery case 1 and the insulating gasket 12 can be kept in a close contact state during the sealing process, and the sealing pressure resistance and the liquid leakage resistance can be further improved.

【0040】[0040]

【発明の効果】以上のように、本発明の円筒型電池の製
造方法によれば、電池ケースにおける電極体の収納箇所
に対し上部箇所を所定の外径に縮径した状態として、電
池ケースの開口部を封口体により正規の封止状態に封口
したのちに、電池ケースにおける電極体の収納箇所を所
定の外径に縮径するようにしたので、電池ケースにおけ
る封口体の収納箇所や封口体は、何ら外力を受けないこ
とから、変形などが生じることがなく、電池ケースの開
口周縁部をかしめ加工して封口したときの高い封口耐圧
をそのまま維持する。
As described above, according to the method of manufacturing a cylindrical battery according to the present invention, the upper part of the battery case is reduced in diameter to a predetermined outer diameter with respect to the storage location of the electrode body in the battery case. Since the opening of the electrode body in the battery case is reduced to a predetermined outer diameter after the opening is sealed in a regular sealed state by the sealing body, the storage location of the sealing body in the battery case and the sealing body are reduced. Since there is no external force, no deformation or the like occurs, and the high sealing pressure resistance when the opening edge of the battery case is swaged and sealed is maintained.

【0041】また、縮径工程において封口体が変形しな
いことから、環状溝は縮径時の外力を受けて内方に向け
て膨らむ状態に変形して、電池ケースにおける絶縁ガス
ケットとの接触箇所は、縮径加工前の接触角度を維持し
て絶縁ガスケットに密着する状態をそのまま保持する。
したがって、この製造方法により製造した円筒型電池
は、高い封口耐圧と耐漏液性とを共に確保できる優れた
ものとなる。
In addition, since the sealing body does not deform in the diameter reducing step, the annular groove is deformed to expand inward due to the external force at the time of diameter reduction, and the contact point with the insulating gasket in the battery case is reduced. Then, the contact angle before the diameter reduction processing is maintained, and the state of being in close contact with the insulating gasket is maintained as it is.
Therefore, the cylindrical battery manufactured by this manufacturing method is an excellent one that can ensure both high sealing pressure resistance and liquid leakage resistance.

【0042】さらに、電池完成時の所定の外径よりも大
きな外径とした電池ケース内に、可及的に大きな径とし
た電極体を極板崩れを生じることなく容易に収納でき、
且つ所要量の電解液を容易に注入でき、さらに、電池ケ
ースを所定の外径に縮径して電池ケースの内周面と電極
体との間の隙間を無くすので、単位体積当たりのエネル
ギ密度および信頼性が共に高い円筒型電池を得ることが
できる。
Further, an electrode body having a diameter as large as possible can be easily accommodated in a battery case having an outer diameter larger than a predetermined outer diameter at the time of completion of the battery without collapse of the electrode plate.
In addition, the required amount of electrolyte can be easily injected, and the battery case is reduced in diameter to a predetermined outer diameter to eliminate the gap between the inner peripheral surface of the battery case and the electrode body. In addition, a cylindrical battery having high reliability can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の円筒型電池の製造方法における前半の
製造工程を順に示した工程図で、(a),(b)は上部
縮径工程、(c),(d)は溝入れ工程、(e)は注液
工程。
FIGS. 1A and 1B are process diagrams sequentially showing a first half of a manufacturing process in a method for manufacturing a cylindrical battery of the present invention, wherein FIGS. 1A and 1B show an upper diameter reducing process, and FIGS. , (E) is the injection step.

【図2】同上の製造方法における後半の製造工程を順に
示した工程図で、(f),(g)は封口工程、(h),
(i)は縮径工程。
FIG. 2 is a process chart sequentially showing the latter half of the manufacturing steps in the above manufacturing method, wherein (f) and (g) show a sealing step, and (h),
(I) is a diameter reduction step.

【図3】(a)は同上製造方法における封口工程後の要
部の縦断面図、(b)は縮径工程後の完成電池の要部の
縦断面図。
FIG. 3A is a longitudinal sectional view of a main part after a sealing step in the manufacturing method, and FIG. 3B is a longitudinal sectional view of a main part of the completed battery after a diameter reducing step.

【図4】本発明の方法により製造される円筒型電池を示
す縦断面図。
FIG. 4 is a longitudinal sectional view showing a cylindrical battery manufactured by the method of the present invention.

【図5】従来の円筒型電池の製造方法における前半の製
造工程を順に示した工程図で、(a),(b)は溝入れ
工程、(c)は注液工程、(d),(e)は封口工程。
FIGS. 5A and 5B are process diagrams sequentially showing the first half of a manufacturing process of a conventional cylindrical battery manufacturing method, wherein FIGS. 5A and 5B show a grooving process, FIG. 5C shows a pouring process, and FIGS. e) Sealing step.

【図6】同上の製造方法における最後の製造工程である
縮径工程の工程図。
FIG. 6 is a process chart of a diameter reducing step which is the last manufacturing step in the manufacturing method of the above.

【図7】(a)は同上製造方法における封口工程後の要
部の縦断面図、(b)は縮径工程後の完成電池の要部の
縦断面図。
FIG. 7A is a longitudinal sectional view of a main part after a sealing step in the above manufacturing method, and FIG. 7B is a longitudinal sectional view of a main part of the completed battery after a diameter reducing step.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 電極体 3 正極板 4 負極板 7 セパレータ 8 封口体 13 環状溝 14 環状支持部 21 電解液 d 所定の外径 D 大きな外径 DESCRIPTION OF SYMBOLS 1 Battery case 2 Electrode body 3 Positive electrode plate 4 Negative electrode plate 7 Separator 8 Sealing body 13 Annular groove 14 Annular support part 21 Electrolyte d Predetermined outer diameter D Large outer diameter

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H011 AA01 AA17 CC06 DD01 DD05 DD06 DD15 DD26 5H028 AA01 AA07 BB00 BB01 BB03 BB04 BB14 BB19 HH05  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H011 AA01 AA17 CC06 DD01 DD05 DD06 DD15 DD26 5H028 AA01 AA07 BB00 BB01 BB03 BB04 BB14 BB19 HH05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極板と負極板との間にセパレータを介
在して渦巻き状に巻回した電極板を、電池完成時の所定
の外径よりも大きな外径に形成した電池ケース内に収納
する電極体収納工程と、 前記電池ケースにおける前記電極体の収納箇所に対し上
部箇所を所定の外径に縮径する上部縮径工程と、 前記電池ケース内に電解液を注入する注液工程と、 前記電池ケースの所定の径とした上部箇所に封口体を挿
入して開口部を封口する封口工程と、 前記電池ケースにおける未縮径箇所の全体を所定の外径
に縮径する縮径工程とを有することを特徴とする円筒型
電池の製造方法。
1. A spirally wound electrode plate with a separator interposed between a positive electrode plate and a negative electrode plate is housed in a battery case formed with an outer diameter larger than a predetermined outer diameter when the battery is completed. An electrode body storing step, an upper diameter reducing step of reducing an upper part to a predetermined outer diameter with respect to a storing part of the electrode body in the battery case, and a pouring step of injecting an electrolytic solution into the battery case. A sealing step of inserting a sealing body into an upper portion having a predetermined diameter of the battery case to seal the opening, and a diameter reducing step of reducing the entire non-reduced diameter portion of the battery case to a predetermined outer diameter. And a method for producing a cylindrical battery.
【請求項2】 電極体収納工程ののち、上部縮径工程を
経て、縮径によって所定の外径とした上部個所の外周面
に環状溝を形成して前記電池ケースの内周面に封口体を
支持する環状支持部を形成する溝入れ工程を行い、その
後注液工程、封口工程を経て、縮径工程により円筒形電
池を製造することを特徴とする円筒型電池の製造方法。
2. An electrode body receiving step, an upper diameter reducing step, an annular groove is formed on an outer peripheral surface of an upper portion having a predetermined outer diameter by reducing the diameter, and a sealing member is formed on an inner peripheral surface of the battery case. A grooving step of forming an annular support portion for supporting the fins, and thereafter, a liquid injection step and a sealing step, and then a cylindrical cell is manufactured by a diameter reducing step.
【請求項3】 電池ケースの縮径工程において、電池ケ
ースの未縮径箇所に対し複数回の縮径を繰り返して外径
を徐々に小さく縮径しながら所定の外径とするようにし
た請求項1または2に記載の円筒型電池の製造方法。
3. The battery case according to claim 1, wherein, in the step of reducing the diameter of the battery case, the outer diameter is reduced to a predetermined outer diameter while the outer diameter is gradually reduced by repeating a plurality of times of reducing the diameter of the unreduced portion of the battery case. Item 3. The method for producing a cylindrical battery according to Item 1 or 2.
JP09263899A 1999-03-31 1999-03-31 Method for manufacturing cylindrical battery Expired - Fee Related JP3751765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09263899A JP3751765B2 (en) 1999-03-31 1999-03-31 Method for manufacturing cylindrical battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09263899A JP3751765B2 (en) 1999-03-31 1999-03-31 Method for manufacturing cylindrical battery

Publications (2)

Publication Number Publication Date
JP2000285875A true JP2000285875A (en) 2000-10-13
JP3751765B2 JP3751765B2 (en) 2006-03-01

Family

ID=14060002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09263899A Expired - Fee Related JP3751765B2 (en) 1999-03-31 1999-03-31 Method for manufacturing cylindrical battery

Country Status (1)

Country Link
JP (1) JP3751765B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001059856A1 (en) * 2000-02-09 2001-08-16 Ngk Insulators, Ltd. Lithium secondary cell and method for producing the same
JP2002245987A (en) * 2001-02-21 2002-08-30 Hitachi Maxell Ltd Sealed battery
WO2014156002A1 (en) * 2013-03-25 2014-10-02 パナソニック株式会社 Method for manufacturing circular cylinderical battery
JP2016072102A (en) * 2014-09-30 2016-05-09 株式会社Gsユアサ Power storage element, and method of manufacturing the same
CN112542640A (en) * 2020-11-19 2021-03-23 深圳市豪鹏科技有限公司 Diameter reducing process of battery shell, manufacturing process of battery and diameter reducing die
CN115207448A (en) * 2022-06-20 2022-10-18 江西华立源锂能科技股份有限公司 Mechanically sealed cylindrical lithium ion battery and injection molding manufacturing process thereof after sealing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6202337B2 (en) 2014-03-31 2017-09-27 株式会社Gsユアサ Electric storage element and method for manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001059856A1 (en) * 2000-02-09 2001-08-16 Ngk Insulators, Ltd. Lithium secondary cell and method for producing the same
US6884541B2 (en) 2000-02-09 2005-04-26 Ngk Insulators, Ltd. Lithium secondary battery and manufacturing method thereof
JP2002245987A (en) * 2001-02-21 2002-08-30 Hitachi Maxell Ltd Sealed battery
WO2014156002A1 (en) * 2013-03-25 2014-10-02 パナソニック株式会社 Method for manufacturing circular cylinderical battery
CN104885253A (en) * 2013-03-25 2015-09-02 松下知识产权经营株式会社 Method for manufacturing circular cylinderical battery
JPWO2014156002A1 (en) * 2013-03-25 2017-02-16 パナソニックIpマネジメント株式会社 Method for manufacturing cylindrical battery
JP2016072102A (en) * 2014-09-30 2016-05-09 株式会社Gsユアサ Power storage element, and method of manufacturing the same
CN112542640A (en) * 2020-11-19 2021-03-23 深圳市豪鹏科技有限公司 Diameter reducing process of battery shell, manufacturing process of battery and diameter reducing die
CN115207448A (en) * 2022-06-20 2022-10-18 江西华立源锂能科技股份有限公司 Mechanically sealed cylindrical lithium ion battery and injection molding manufacturing process thereof after sealing

Also Published As

Publication number Publication date
JP3751765B2 (en) 2006-03-01

Similar Documents

Publication Publication Date Title
CN100517851C (en) Cylindrical lithium secondary battery
EP3432405A1 (en) Cylindrical battery cell manufacturing device comprising secondary crimping mold
JP3740048B2 (en) Battery can and battery using the same
JP7493010B2 (en) Battery canister
JP3738230B2 (en) Battery manufacturing method
JP3709134B2 (en) Square battery
JP2003208876A (en) Square battery can and manufacturing method thereof, and square battery using the same
JP3751765B2 (en) Method for manufacturing cylindrical battery
WO2007142270A1 (en) Battery can and method of producing the same
JP3811617B2 (en) Battery and manufacturing method thereof
JP2002216709A (en) Sealed battery and manufacturing method of the same
JP2007066835A (en) Manufacturing method of cylindrical secondary battery
CN101752515B (en) Method of manufacturing case for battery and case for battery manufactured by the same
JP2002324523A (en) Method for sealing opening of sealed cell
WO1999035699A1 (en) Sealed battery and its manufacture
JPH11354083A (en) Manufacture of cylindrical alkaline secondary battery
JP4214455B2 (en) battery
KR101075879B1 (en) Process for Preparing Cylindrical Battery to Prevent Deformation of Beading Portion
JP2009043584A (en) Bottomed cylindrical battery, manufacturing method therefor, and manufacturing device thereof
JP4556387B2 (en) Method for manufacturing cylindrical battery
JPH04144054A (en) Manufacture of cylindrical battery
JPH11354084A (en) Manufacture of cylindrical nonaqueous electrolyte battery
JPH0696748A (en) Elliptical sealed battery
JP2004228035A (en) Method of manufacturing sealed battery, and sealed battery
JP4064642B2 (en) Battery can manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051208

R150 Certificate of patent or registration of utility model

Ref document number: 3751765

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees