JP2000284762A - Liquid crystal display device and electronic equipment - Google Patents

Liquid crystal display device and electronic equipment

Info

Publication number
JP2000284762A
JP2000284762A JP11094068A JP9406899A JP2000284762A JP 2000284762 A JP2000284762 A JP 2000284762A JP 11094068 A JP11094068 A JP 11094068A JP 9406899 A JP9406899 A JP 9406899A JP 2000284762 A JP2000284762 A JP 2000284762A
Authority
JP
Japan
Prior art keywords
liquid crystal
mos transistor
crystal display
capacitor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11094068A
Other languages
Japanese (ja)
Inventor
Makoto Katase
誠 片瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP11094068A priority Critical patent/JP2000284762A/en
Publication of JP2000284762A publication Critical patent/JP2000284762A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a multi-gradation display which requires only a low power consumption, a short arithmetic calculation time, and a small circuit scale, and is, moreover, of high picture quality, by obtaining a correction amount of a voltage to be needed when a gradation display data is an intermediate value by an analog arithmetic circuit using a voltage-current characteristic of a MOS transistor. SOLUTION: A voltage, which brings a MOS transistor NREF1 into a saturated area operation and is equivalent to an input absolute value 1, is applied to a working point control terminal REF. Then, the MOS transistor NREF1 is put into a saturated area decided by a drain current flowing into the MOS transistor NREF1 by the short across the gate and the drain. And, a correction amount of a voltage required when a gradation display data is an intermediate value is determined by an arithmetic calculating circuit using a voltage-current characteristic of the MOS transistor PREF1. Therefore, an analog calculation is completed at the latest when the whole circuit is charged and a current source is stabilized, and the device requires only low power consumption, a short arithmetic calculation time, and a small scale circuit, and it is possible to realize a high quality multi-gradation display.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子機器の表示装
置として使用されている液晶装置に関し、さらに、この
液晶装置を搭載したOA機器や計測機器等の電子機器に
関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a liquid crystal device used as a display device of an electronic device, and further to an electronic device such as an OA device or a measuring device equipped with the liquid crystal device.

【0002】[0002]

【従来の技術】近年、単純マトリックスパネルを使用し
た液晶装置にあってはフレーム変調方式(以下FRCと
いう)と呼ばれるフレーム毎にONデータOFFデータ
の比率を変化させて表示する階調方法やパルス幅変調
(以下PWMという)と呼ばれる選択期間内のONデー
タとOFFデータの比率を変化させて表示する階調方法
が用いられている。また階調表示として表示データ電極
のパルス高さを変化させるパルス高さ変調(以下PHM
という)と呼ばれる方式も考えられてはいた。
2. Description of the Related Art In recent years, in a liquid crystal device using a simple matrix panel, a gradation method or a pulse width in which the ratio of ON data to OFF data is changed for each frame and displayed by a frame modulation method (hereinafter referred to as FRC). A gray scale method called modulation (hereinafter referred to as PWM) for displaying by changing the ratio of ON data to OFF data within a selection period is used. Pulse height modulation (hereinafter referred to as PHM) for changing the pulse height of the display data electrode as gradation display
Was also considered.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の液晶装置にあっては、FRCがフリッカーと呼ばれ
るちらつきによって画質が低下する欠点を持っていた。
またPWMにはクロストークと呼ばれる影を生じて画質
が低下する欠点をもっていた。そのためFRCもPWM
も実用レベルでは4〜16階調程度が回路規模や画質の
面で限界であった。一方PHMは階調数に制限がなく無
段階まで表示できる方式であり画質がもっともよいこと
は周知の事実であった。しかし、階調補正演算が必要で
あり、画素単位で二乗及び平方根のデジタル演算を行う
ことは回路規模大・演算時間大・消費電力大の欠点で非
現実的であった。そこで、本発明はフリッカーやクロス
トークを生じることのないPHMによる単純マトリック
スパネルで多階調表示を可能とする現実的な液晶装置を
提供することを目的とする。また本発明は、画質劣化を
解消した自然画を表示できる電子機器を提供することを
目的とする。
However, the above-mentioned conventional liquid crystal device has a drawback that the image quality is degraded by the FRC flicker called flicker.
Further, PWM has a drawback that shadows called crosstalk occur and image quality deteriorates. Therefore FRC is also PWM
However, at a practical level, about 4 to 16 tones are the limits in terms of circuit scale and image quality. On the other hand, the PHM is a well-known fact that the number of gradations is not limited and can be displayed in a stepless manner and the image quality is the best. However, a tone correction operation is required, and performing a square and square root digital operation on a pixel-by-pixel basis is impractical due to the disadvantages of a large circuit scale, a large operation time, and a large power consumption. Accordingly, it is an object of the present invention to provide a realistic liquid crystal device capable of performing multi-gradation display with a simple matrix panel using PHM without causing flicker or crosstalk. Another object of the present invention is to provide an electronic device capable of displaying a natural image in which image quality degradation has been eliminated.

【0004】[0004]

【課題を解決するための手段】請求項1の発明は、単純
マトリックスパネルで1ライン選択駆動方法を用い、階
調表示データに対応した実効値を画素に与えるために信
号電極のパルス高さを可変させ、階調表示データが中間
値(ONでもOFFでもない状態)の際に必要とされる
階調補正演算をMOSトランジスタの電圧−電流特性を
利用したアナログ演算回路により求めることを特徴とす
る。
According to a first aspect of the present invention, a simple matrix panel uses a one-line selection driving method, and a pulse height of a signal electrode is set to give an effective value corresponding to gradation display data to a pixel. It is characterized in that a gradation correction operation required when the gradation display data is an intermediate value (a state that is neither ON nor OFF) is obtained by an analog operation circuit utilizing the voltage-current characteristic of a MOS transistor. .

【0005】請求項2の発明は、請求項1記載の液晶表
示装置の駆動方法が複数同時選択駆動方法であることを
特徴とする。
According to a second aspect of the present invention, the method of driving the liquid crystal display device according to the first aspect is a method of simultaneously selecting and driving a plurality of liquid crystal display devices.

【0006】請求項3の発明は、単純マトリックスパネ
ルを複数同時選択駆動方法で駆動する際のベクトル演算
をコンデンサに保持したアナログ電荷量のベクトル演算
で行うことを特徴とする。
A third aspect of the present invention is characterized in that a vector operation for driving a simple matrix panel by a plurality of simultaneous selection driving methods is performed by a vector operation of an analog charge amount held in a capacitor.

【0007】請求項4の発明は、請求項2記載の液晶表
示装置の駆動方法で使用するベクトル演算をコンデンサ
に保持したアナログ電荷量のベクトル演算で行うことを
特徴とする。
According to a fourth aspect of the present invention, a vector operation used in the driving method of the liquid crystal display device according to the second aspect is performed by a vector operation of an analog charge amount held in a capacitor.

【0008】請求項5の発明は、請求項3記載および請
求項4記載のコンデンサに保持したアナログ電荷量のベ
クトル演算を、各コンデンサの電位差を表示データとし
て各コンデンサの電位差を保ちベクトル演算を行うこと
を特徴とする。
According to a fifth aspect of the present invention, the vector operation of the analog charge amount held in the capacitors according to the third and fourth aspects is performed by using the potential difference of each capacitor as display data while maintaining the potential difference of each capacitor. It is characterized by the following.

【0009】請求項6の発明は、請求項3記載および請
求項4記載のコンデンサに保持したアナログ電荷量のベ
クトル演算を、各コンデンサの電荷を表示データとして
各コンデンサの電荷のベクトル演算の総和電位を演算結
果とすることを特徴とする。
According to a sixth aspect of the present invention, a vector operation of the amount of analog electric charge held in the capacitor according to the third and fourth aspects is performed by using the electric charge of each capacitor as display data and a total sum potential of the vector operation of the electric charge of each capacitor. Is the calculation result.

【0010】[0010]

【作用】請求項1〜請求項2記載の発明では、MOSト
ランジスタの電圧−電流特性を利用したアナログ演算回
路により階調補正量を求めて駆動することでパルス高さ
に対応した階調表示を行うことができる。
According to the first and second aspects of the present invention, a gradation display corresponding to the pulse height is obtained by obtaining and driving a gradation correction amount by an analog arithmetic circuit utilizing a voltage-current characteristic of a MOS transistor. It can be carried out.

【0011】請求項3〜請求項6記載の発明では、コン
デンサに保持したアナログ電荷量のベクトル演算をする
ことで複数同時選択駆動方法で必要なベクトル演算をア
ナログ量のまま行うことができる。
According to the third to sixth aspects of the present invention, the vector operation of the analog charge amount held in the capacitor is performed, so that the vector operation required by the multiple simultaneous selection driving method can be performed with the analog amount.

【0012】[0012]

【発明の実施の形態】以下本発明を図面に基づいて説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.

【0013】[実施例1]図1は請求項1記載の発明に
係る液晶装置の第1実施例の前段部を示す図である。M
OSトランジスタの飽和領域の電圧−電流特性はよく知
られている次式で現される。
[Embodiment 1] FIG. 1 is a diagram showing a front part of a first embodiment of the liquid crystal device according to the first aspect of the present invention. M
The voltage-current characteristic in the saturation region of the OS transistor is expressed by the following well-known equation.

【0014】[0014]

【数1】 (Equation 1)

【0015】ここでIDはドレイン電流、βはMOSト
ランジスタの利得係数であり、VGSはゲート−ソース
間の電圧,Vthはしきい値電圧である。本発明はこの
電圧と電流の2乗の関係を累積応答効果で実効値応答表
示する単純マトリックスパネルの階調補正演算のアナロ
グ演算に利用したものである。しきい値電圧が0以上の
エンハンストメント型として以下説明するがしきい値電
圧が0以下のデプレション型でも応用可能である。また
MOSトランジスタのNchとPchは極性を入れ替え
て使用すればどちらを使用してもよい。
Here, ID is a drain current, β is a gain coefficient of a MOS transistor, VGS is a gate-source voltage, and Vth is a threshold voltage. In the present invention, the relationship between the square of the voltage and the current is used for the analog operation of the gradation correction operation of the simple matrix panel which displays the effective value response by the cumulative response effect. The following description is based on the enhancement type having a threshold voltage of 0 or more, but a depletion type having a threshold voltage of 0 or less is also applicable. Either of the Nch and the Pch of the MOS transistor may be used as long as the polarity is switched.

【0016】まず信号の流れを説明する。表示データ入
力I1はONを−1としてOFFを1として定義した場
合にその階調レベルは絶対値に加工されて出力X1から
取り出される。次に回路の各部の機能を説明する。MO
SトランジスタNREF0の機能はしきい値電圧を電位
GRAY0として取り出すことである。この電位は表示
データとしては−1と+1の中間濃度の値である0を意
味する。コンパレータCOMPAは表示データI1が正
であればvdd電位の「H」が、負であればvss電位
の「L」が出力端子POLに出力されるようになってい
る。X1端子にはPOLによってI1そのままか、反転
増幅された出力のどちらかが選択されて絶対値が出力さ
れるようにアナログスイッチSWLVが接続されてい
る。
First, the signal flow will be described. When the display data input I1 is defined as ON being -1 and OFF being set to 1, the gradation level is processed into an absolute value and taken out from the output X1. Next, the function of each part of the circuit will be described. MO
The function of the S transistor NREF0 is to take out the threshold voltage as the potential GRAY0. This potential means 0 which is a value of an intermediate density between -1 and +1 as display data. The comparator COMPA outputs “H” of the vdd potential to the output terminal POL if the display data I1 is positive, and outputs “L” of the vss potential if the display data I1 is negative. An analog switch SWLV is connected to the X1 terminal such that either I1 or the inverted and amplified output is selected by POL and an absolute value is output.

【0017】図2は請求項1記載の発明に係る液晶装置
の第1実施例の要部を示している。MOSトランジスタ
NREF1,NX1,NADJの3個は同一特性を持つ
ように作り上げてある。またMOSトランジスタPRE
F1,PX1の2個が同一特性を持つように作り上げて
ある。動作点制御端子REFには、MOSトランジスタ
NREF1が飽和領域の動作となり、かつI1入力の絶
対値1相当の電圧を印加する。するとドレインとゲート
が接続されているMOSトランジスタPREF1はゲー
ト−ドレイン間ショートによりNREF1に流れるドレ
イン電流で決まる飽和領域の状態になる。MOSトラン
ジスタPX1はPREF1と同一特性として作り込みカ
レントミラー回路を構成している。従ってドレイン電流
IPX1はNREF1を流れるドレイン電流INREF
1と同じである。一方流れ下るINX1は表示データ入
力の絶対値X1に応じて決定される。IPX1−INX
1の電流差はINADJとしてMOSトランジスタNA
DJを流れ下る。その際にNADJのドレイン−ソース
間の電圧は出力ADJとして取り出される。
FIG. 2 shows a main part of a first embodiment of the liquid crystal device according to the first aspect of the present invention. The three MOS transistors NREF1, NX1, and NADJ are made to have the same characteristics. MOS transistor PRE
F1 and PX1 are made to have the same characteristics. To the operating point control terminal REF, the MOS transistor NREF1 operates in the saturation region, and a voltage corresponding to the absolute value 1 of the I1 input is applied. Then, the MOS transistor PREF1 whose drain and gate are connected enters a state of a saturation region determined by a drain current flowing through NREF1 due to a short circuit between the gate and the drain. The MOS transistor PX1 has the same characteristics as PREF1 and forms a current mirror circuit. Therefore, the drain current IPX1 is equal to the drain current INREF flowing through NREF1.
Same as 1. On the other hand, the falling INX1 is determined according to the absolute value X1 of the display data input. IPX1-INX
1 is INADJ and the MOS transistor NA
Down the DJ. At that time, the voltage between the drain and source of NADJ is taken out as output ADJ.

【0018】上述のような構成にすれば、文献Ruckmong
athan,T.N.,"Addressing Techniquefor RMS Responding
LCDs-A Review," Proceedings of Japan Display '92,
pp.77-80,Oct.1992及びConner,A.R.and Schffer, T.J,
"Pulse Height Modulation (PHM) Gray Shading Method for Passive Matrix LCDs," Proc
eedings of Japan Display '92,,pp.69-72,Oct.1992に
示されている階調表示の階調補正演算が非常に簡単な回
路構成で実現できる。階調表示の階調補正演算の原理に
ついては上記の2文献に説明されているのでここでは省
略する。
According to the configuration described above, the document Ruckmong
athan, TN, "Addressing Technique for RMS Responding
LCDs-A Review, "Proceedings of Japan Display '92,
pp. 77-80, Oct. 1992 and Conner, ARand Schffer, TJ,
"Pulse Height Modulation (PHM) Gray Shading Method for Passive Matrix LCDs," Proc
The gradation correction calculation of gradation display shown in eedings of Japan Display '92, pp. 69-72, Oct. 1992 can be realized with a very simple circuit configuration. The principle of the gradation correction calculation for gradation display has been described in the above two documents and will not be described here.

【0019】さらに動作について詳細に説明する。The operation will be further described in detail.

【0020】図1に示したNREF0のMOSトランジ
スタによってMOSトランジスタPX1を流れる電流は
MOSトランジスタNREF1を流れる電流と等しくそ
の値は飽和領域の電流特性で次のように現される。
With the MOS transistor NREF0 shown in FIG. 1, the current flowing through the MOS transistor PX1 is equal to the current flowing through the MOS transistor NREF1, and its value is expressed as follows in a saturation region current characteristic.

【0021】[0021]

【数2】 (Equation 2)

【0022】またMOSトランジスタNX1の飽和領域
での動作は数式で次のように現される。
The operation of the MOS transistor NX1 in the saturation region is expressed by the following equation.

【0023】[0023]

【数3】 (Equation 3)

【0024】この特性によりMOSトランジスタNX1
のゲート電圧入力X1は係数がかけられて二乗された電
流INX1に変換される。+1及び−1以外の中間表示
データつまり電流量IPX1にINX1が不足する場合
はMOSトランジスタNADJに次式で現される電流が
流れる。
Due to this characteristic, the MOS transistor NX1
Is converted to a current INX1 which is multiplied by a coefficient and squared. When INX1 is insufficient for the intermediate display data other than +1 and −1, that is, for the current amount IPX1, the current expressed by the following equation flows through the MOS transistor NADJ.

【0025】[0025]

【数4】 (Equation 4)

【0026】2式と3式を4式に代入すると次式とな
る。
By substituting equations 2 and 3 into equation 4, the following equation is obtained.

【0027】[0027]

【数5】 (Equation 5)

【0028】こうして階調補正量ADJは演算される。
GRAY0というトランジスタのVth分オフセットが
あって演算されているので、入力X1,出力ADJとも
にGRAY0の電位を基準に入出力させる。電流源が安
定する回路全体のチャージまででアナログ演算は終了す
る。実際の回路では数十nsで完了する。従ってデジタ
ルデータで演算する際の消費電力大・長演算時間・大規
模回路に比べ、はるかに低消費・短演算時間・小規模回
路で済む。
Thus, the gradation correction amount ADJ is calculated.
Since the calculation is performed with GRAY0 being offset by the transistor Vth, both the input X1 and the output ADJ are input / output based on the GRAY0 potential. The analog operation is completed until the entire circuit in which the current source is stabilized is charged. In an actual circuit, it is completed in several tens of ns. Therefore, compared to the large power consumption, long operation time, and large-scale circuit when performing the operation using digital data, much smaller power consumption, short operation time, and a small-scale circuit are required.

【0029】[実施例2]図3は請求項2記載の発明に
係る液晶装置の第2実施例の要部を示す図である。
[Embodiment 2] FIG. 3 is a view showing a main part of a second embodiment of the liquid crystal device according to the second aspect of the present invention.

【0030】同時選択数としては2,3,4,5…任意
に選べるが、ここでは同時選択数を4として説明する。
まず構成を説明する。MOSトランジスタNREF1,
NX1〜4,NADJの6個は同一特性を持つように作
り上げてある。またMOSトランジスタPREF1,P
X1〜4の5個が同一特性を持つように作り上げてあ
る。動作点制御端子REFには、MOSトランジスタN
REF1が飽和領域で動作し、かつI1入力の絶対値1
相当の電圧を印加する。するとドレインとゲートが接続
されているMOSトランジスタPREF1はNREF1
に流れるドレイン電流で決まる飽和領域の状態になる。
MOSトランジスタPX1〜4はPREF1と同一特性
として作り込まれているのでカレントミラー回路を構成
している。従ってドレイン電流IPX1〜IPX4それ
ぞれはNREF1を流れるドレイン電流INREF1と
同じである。一方流れ下るINX1は表示データ入力の
絶対値X1に応じて決定される。同時にINX2〜4も
それぞれの表示データ入力の絶対値X2〜4に応じて決
定される。(IPX1+IPX2+IPX3+IPX4
−INX1−INX2−INX3−INX4)の電流差
はINADJとしてMOSトランジスタNADJを流れ
下る。その際にNADJのドレイン−ソース間の電圧は
出力ADJとして取り出される。
The number of simultaneous selections can be arbitrarily selected as 2, 3, 4, 5... Here, the number of simultaneous selections will be described as four.
First, the configuration will be described. MOS transistors NREF1,
Six of NX1 to NX4 and NADJ are made to have the same characteristics. In addition, MOS transistors PREF1, P
Five of X1 to X4 are made to have the same characteristics. The operating point control terminal REF has a MOS transistor N
REF1 operates in the saturation region, and the absolute value of the I1 input is 1
Apply a considerable voltage. Then, the MOS transistor PREF1 whose drain and gate are connected becomes NREF1
Into a saturated region determined by the drain current flowing through the device.
The MOS transistors PX1 to PX4 have the same characteristics as PREF1 and thus constitute a current mirror circuit. Therefore, each of the drain currents IPX1 to IPX4 is the same as the drain current INREF1 flowing through NREF1. On the other hand, the falling INX1 is determined according to the absolute value X1 of the display data input. At the same time, INX2-4 are also determined according to the absolute values X2-4 of the respective display data inputs. (IPX1 + IPX2 + IPX3 + IPX4
-INX1-INX2-INX3-INX4) flows through the MOS transistor NADJ as INADJ. At that time, the voltage between the drain and source of NADJ is taken out as output ADJ.

【0031】前段部は基本的には実施例1と同じであ
る。但し表示データ入力が4入力(I1〜I4)に増え
る。図1に示したNREF0のMOSトランジスタによ
ってMOSトランジスタPX1を流れる電流はMOSト
ランジスタNREF1を流れる電流と等しくその値は飽
和領域の電流特性で次のように現される。
The former part is basically the same as that of the first embodiment. However, the number of display data inputs increases to four inputs (I1 to I4). The current flowing through the MOS transistor PX1 by the MOS transistor NREF0 shown in FIG. 1 is equal to the current flowing through the MOS transistor NREF1, and its value is expressed by the current characteristic in the saturation region as follows.

【0032】[0032]

【数6】 (Equation 6)

【0033】またMOSトランジスタNX1〜4の飽和
領域での動作は数式で次のように現される。
The operation of the MOS transistors NX1 to NX4 in the saturation region is expressed by the following equation.

【0034】[0034]

【数7】 (Equation 7)

【0035】[0035]

【数8】 (Equation 8)

【0036】[0036]

【数9】 (Equation 9)

【0037】[0037]

【数10】 (Equation 10)

【0038】この特性によりMOSトランジスタNX1
〜4のゲート電圧X1〜X4は二乗された電流INX1
〜4に変換される。+1及び−1以外の中間表示データ
つまり電流量IPX1〜4にINX1〜4が不足する場
合はMOSトランジスタNADJに次式で現される電流
が流れる。
Due to this characteristic, the MOS transistor NX1
Gate voltages X1 to X4 are squared currents INX1
44. When the intermediate display data other than +1 and −1, that is, INX1 to INX4 are insufficient for the current amounts IPX1 to IPX4, the current expressed by the following equation flows through the MOS transistor NADJ.

【0039】[0039]

【数11】 [Equation 11]

【0040】3式,7〜9式を10式に代入すると次式
となる。
By substituting the equations (3) and (7-9) into the equation (10), the following equation is obtained.

【0041】[0041]

【数12】 (Equation 12)

【0042】こうして階調補正量ADJは演算される。Thus, the gradation correction amount ADJ is calculated.

【0043】同時選択数がいくつになっても電流源が安
定する回路全体のチャージまででアナログ演算は終了す
る。従ってデジタルデータで演算する際の消費電力大・
長演算時間・大規模回路に比べ、はるかに低消費・短演
算時間・小規模回路で済む。
Regardless of the number of simultaneous selections, the analog operation is completed up to the charging of the entire circuit in which the current source is stabilized. Therefore, the power consumption when calculating with digital data is large.
Compared to long operation time and large-scale circuits, much lower power consumption, short operation time and small-scale circuits are required.

【0044】[実施例3]図4は請求項4記載の発明に
係る液晶装置の第3実施例の要部を示す図である。
[Embodiment 3] FIG. 4 is a view showing a main part of a third embodiment of the liquid crystal device according to the present invention.

【0045】同時選択数としては2,3,4,5…任意
に選べるが、ここでは同時選択数を4として説明する。
実際の回路はクロック信号によって図4の状態から図5
の状態へアナログスイッチによって切り替えられる。1
例として図7にアナログスイッチSWLVの接続例の一
部を示す。機能を説明するために図4、図5ではアナロ
グスイッチは繁雑となるので省略して各状態での接続の
みを示す。図4はコンデンサC1〜C4に表示データ
(+1〜−1)に対応した絶対値電荷Q1〜Q4を蓄え
た状態を示している。C1〜C4及びCADJは同一容
量(c[F])で作り上げておく。実際のICでは数p
F〜数百fFが現実的であるが、応用する液晶装置の仕
様やIC等の素子の特性に応じてもう少し広い幅で容量
値を決める場合もある。表示データの極性は乗算ベクト
ルに反映させておく。各CADJには階調補正演算結果
が電荷QADJとして蓄えられている。この接続状態か
ら図5の接続状態となる。図5の状態は請求項5記載の
発明に係る液晶装置の1実施例である。各電位を保って
演算を行っている。図5に従ってさらに詳細に説明す
る。図4で示していたX1〜X4及びADJの入力端子
は省略しているが実際はアナログスイッチによって切り
離されている状態となっている。ベクトル(Q1,Q
2,Q3,Q4,QADJ)に対して乗算ベクトル(+
1,−1,+1,+1,+1)のベクトル演算を行って
いる。求めたい結果は(Q1−Q2+Q3+Q4+QA
DJ)である。このベクトル演算動作を説明する。乗算
ベクトルに応じてアナログスイッチにより接続状態が決
定される。図5の実施例では+1との積であるC1,C
3,C4,CADJは正方向に積み重ねられ、−1との
積であるC2は負方向に積み重ねられる。演算が終わり
OUTに演算結果の電圧(Q1−Q2+Q3+Q4+Q
ADJ)/cが出力される。
The number of simultaneous selections can be arbitrarily selected from 2, 3, 4, 5....
The actual circuit changes the state of FIG.
The state is switched by the analog switch. 1
As an example, FIG. 7 shows a part of a connection example of the analog switch SWLV. In order to explain the function, the analog switch is omitted in FIGS. 4 and 5 because it is complicated, and only the connection in each state is shown. FIG. 4 shows a state in which the capacitors C1 to C4 store the absolute value charges Q1 to Q4 corresponding to the display data (+1 to -1). C1 to C4 and CADJ are created with the same capacity (c [F]). Several p in actual IC
F to several hundred fF is realistic, but the capacitance value may be determined in a slightly wider range depending on the specifications of the liquid crystal device to be applied and the characteristics of elements such as ICs. The polarity of the display data is reflected in the multiplication vector. Each CADJ stores a gradation correction calculation result as a charge QADJ. The connection state is changed to the connection state shown in FIG. FIG. 5 shows an embodiment of the liquid crystal device according to the fifth aspect of the present invention. The calculation is performed while maintaining each potential. This will be described in more detail with reference to FIG. Although input terminals of X1 to X4 and ADJ shown in FIG. 4 are omitted, they are actually separated by analog switches. Vector (Q1, Q
2, Q3, Q4, QADJ) with a multiplication vector (+
1, -1, + 1, + 1, + 1). The desired result is (Q1-Q2 + Q3 + Q4 + QA
DJ). This vector operation will be described. The connection state is determined by the analog switch according to the multiplication vector. In the embodiment of FIG. 5, C1, C which are products of +1
3, C4, CADJ are stacked in the positive direction, and C2, which is the product of -1, is stacked in the negative direction. When the operation is completed, the voltage (Q1-Q2 + Q3 + Q4 + Q)
ADJ) / c is output.

【0046】さらに細かい説明をすると図7では極性コ
ントロール信号CONTが正負の方向を決めている。ベ
クトル演算結果である電圧総和は基準電位VCに対して
出力OUTとして取り出される。階調表示同時選択駆動
で不可欠なアナログベクトル演算が1クロックででき
る。デジタル演算では消費電力大・長演算時間・大規模
回路に比べ、はるかに低消費・短演算時間・小規模回路
で済む。かつ高画質な多階調表示を実現できた。
More specifically, in FIG. 7, the polarity control signal CONT determines the positive or negative direction. The voltage sum that is the vector operation result is taken out as an output OUT with respect to the reference potential VC. An analog vector operation indispensable for the gradation display simultaneous selection drive can be performed in one clock. Digital computation requires much lower power consumption, shorter computation time, and smaller circuits than large power consumption, long computation time, and large-scale circuits. In addition, high-quality multi-tone display was realized.

【0047】[実施例4]階調補正演算のいらない請求
項3記載の演算では図4,図5でCADJが省略される
ことで実現できる。
[Embodiment 4] In the calculation according to the third aspect which does not require the gradation correction calculation, it can be realized by omitting CADJ in FIGS.

【0048】[実施例5]図6は請求項6記載の発明に
係る液晶装置の第5実施例の要部を示す図である。請求
項5がコンデンサの電位を保っての演算に対して、電荷
を保っての演算を行う。実際の回路はクロック信号によ
って図4の状態から図6の状態へアナログスイッチによ
って切り替えられる。機能を説明するためにアナログス
イッチは繁雑となるので省略して各状態での接続のみを
示す。図4はコンデンサC1〜C4に表示データ(+1
〜−1)に対応した絶対値電荷Q1〜Q4を蓄えた状態
を示している。C1〜C4及びCADJは同一容量(c
[F])で作り上げておく。表示データの極性は乗算ベ
クトルに反映させておく。CADJには階調補正演算結
果が電荷QADJとして蓄えられている。この接続状態
から図6の接続状態となる。X1〜X4及びADJの入
力端子は省略しているが実際はアナログスイッチによっ
て切り離されている状態となっている。ベクトル(Q
1,Q2,Q3,Q4,QADJ)に対して乗算ベクト
ル(+1,−1,+1,+1,+1)のベクトル演算を
行っている。乗算ベクトルに応じてアナログスイッチに
より接続状態が決定される。+1との積であるC1,C
3,C4,CADJは順方向にVC−OUT間に共通接
続され、−1との積であるC2は逆方向にVC−OUT
間に共通接続される。電荷の総和はC1等の5倍の容量
をもつコンデンサに蓄えられることになる。ベクトル演
算結果の電圧は基準電位VCに対して出力OUTとして
取り出される。OUTに演算結果の電圧(Q1−Q2+
Q3+Q4+QADJ)/(5c)が出力される。階調
表示同時選択駆動で不可欠なアナログベクトル演算が1
クロックでできる。消費電力大・長演算時間・大規模回
路に比べ、はるかに低消費・短演算時間・小規模回路で
済む。かつ高画質な多階調表示を実現できた。
[Embodiment 5] FIG. 6 is a view showing a main part of a fifth embodiment of the liquid crystal device according to the present invention. According to a fifth aspect of the present invention, the operation while maintaining the electric charge is performed in contrast to the operation while maintaining the potential of the capacitor. The actual circuit is switched from the state of FIG. 4 to the state of FIG. 6 by an analog switch in response to a clock signal. In order to explain the function, the analog switches are complicated and omitted, and only the connection in each state is shown. FIG. 4 shows display data (+1) on capacitors C1 to C4.
1 shows a state in which absolute value charges Q1 to Q4 corresponding to -1) are stored. C1 to C4 and CADJ have the same capacity (c
[F]). The polarity of the display data is reflected in the multiplication vector. The CADJ stores a gradation correction calculation result as a charge QADJ. The connection state is changed to the connection state shown in FIG. Although the input terminals of X1 to X4 and ADJ are omitted, they are actually disconnected by analog switches. Vector (Q
1, Q2, Q3, Q4, QADJ) are subjected to the vector operation of the multiplication vector (+1, -1, +1, +1, +1). The connection state is determined by the analog switch according to the multiplication vector. C1, C which is the product of +1
3, C4 and CADJ are commonly connected between VC and OUT in the forward direction, and C2 which is the product of -1 is VC-OUT in the reverse direction.
Are connected in common. The sum of the charges is stored in a capacitor having a capacitance five times that of C1 or the like. The voltage resulting from the vector operation is extracted as an output OUT with respect to the reference potential VC. The voltage of the operation result (Q1-Q2 +
Q3 + Q4 + QADJ) / (5c) is output. One analog vector operation indispensable for simultaneous selection of gradation display
You can do it with a clock. Compared to large power consumption, long operation time, and large-scale circuits, much smaller power consumption, short operation time, and small-scale circuits are required. In addition, high-quality multi-tone display was realized.

【0049】[0049]

【発明の効果】請求項1記載の発明によれば、単純マト
リックスパネルで1ライン選択駆動方法を用い、階調表
示データに対応した実効値を画素に与えるために信号電
極のパルス高さを可変させ、階調表示データが中間値
(ONでもOFFでもない状態)の際に必要とされる電
圧の補正量をMOSトランジスタの電圧−電流特性を利
用した。従って電流源が安定する回路全体のチャージま
ででアナログ演算は終了する。デジタルデータで演算す
る場合の消費電力大・長演算時間・大規模回路に比べ、
はるかに低消費・短演算時間・小規模回路で済む。かつ
高画質な多階調表示を実現できた。
According to the first aspect of the present invention, the pulse height of the signal electrode is varied in order to give the pixel an effective value corresponding to the gradation display data by using the one-line selection driving method in the simple matrix panel. The amount of voltage correction required when the grayscale display data is an intermediate value (a state that is neither ON nor OFF) uses the voltage-current characteristics of the MOS transistor. Therefore, the analog operation is completed up to the charging of the entire circuit in which the current source is stabilized. Compared to large power consumption, long operation time, and large-scale circuits when operating on digital data
It requires much lower power consumption, shorter operation time, and smaller circuits. In addition, high-quality multi-tone display was realized.

【0050】請求項2記載の発明によれば、単純マトリ
ックスパネルで複数同時選択駆動方法を用い、階調表示
データに対応した実効値を画素に与えるために信号電極
のパルス高さを可変させ、かつ階調表示データが中間値
(ONでもOFFでもない状態)の際に必要とされる電
圧の階調補正量をMOSトランジスタの電圧−電流特性
を利用した。従って電流源が安定する回路全体のチャー
ジまででアナログ演算は終了する。デジタルデータで演
算する場合の消費電力大・長演算時間・大規模回路に比
べ、はるかに低消費・短演算時間・小規模回路で済む。
かつ高画質な多階調表示を複数同時選択駆動方法におい
ても実現できた。
According to the second aspect of the present invention, the pulse height of the signal electrode is varied in order to give an effective value corresponding to the gradation display data to the pixel by using a plurality of simultaneous selection driving method in the simple matrix panel. The voltage-current characteristic of the MOS transistor is used for the gradation correction amount of the voltage required when the gradation display data is an intermediate value (a state that is neither ON nor OFF). Therefore, the analog operation is completed up to the charging of the entire circuit in which the current source is stabilized. Compared to a large power consumption, a long operation time, and a large-scale circuit when performing an operation using digital data, much smaller power consumption, a short operation time, and a small-scale circuit are required.
In addition, a high-quality multi-gradation display can be realized even in the multiple simultaneous selection driving method.

【0051】請求項3記載の発明によれば、単純マトリ
ックスパネルを複数同時選択駆動方法で駆動する際のベ
クトル演算をコンデンサに保持したアナログ電荷量のベ
クトル演算で行うことを利用した。そのためデジタルデ
ータで演算する場合の消費電力大・長演算時間・大規模
回路に比べ、はるかに低消費・短演算時間・小規模回路
で済む。かつ高画質な多階調表示を実現できた。
According to the third aspect of the present invention, the method utilizes the fact that the vector operation when the simple matrix panel is driven by the plural simultaneous selection driving method is performed by the vector operation of the analog charge amount held in the capacitor. Therefore, compared to a large-scale circuit with a large power consumption and a long calculation time when a calculation is performed using digital data, much smaller power consumption, a short calculation time, and a small-scale circuit are required. In addition, high-quality multi-tone display was realized.

【0052】請求項4記載の発明によれば、ベクトル演
算をコンデンサに保持したアナログ電荷量のベクトル演
算で行うこと利用した。よってデジタルデータで演算す
る場合の消費電力大・長演算時間・大規模回路に比べ、
はるかに低消費・短演算時間・小規模回路で済む。かつ
高画質な多階調表示を実現できた。
According to the fourth aspect of the present invention, the vector operation is performed by the vector operation of the analog charge amount held in the capacitor. Therefore, compared to large power consumption, long operation time, and large-scale circuits when performing calculations using digital data,
It requires much lower power consumption, shorter operation time, and smaller circuits. In addition, high-quality multi-tone display was realized.

【0053】請求項5記載の発明によれば、コンデンサ
に保持したアナログ電荷量のベクトル演算を、各コンデ
ンサの電位差を表示データとして各コンデンサの電位差
を保ちベクトル演算を行うことを利用した。よってデジ
タルデータで演算する場合の消費電力大・長演算時間・
大規模回路に比べ、はるかに低消費・短演算時間・小規
模回路で済む。かつ高画質な多階調表示を実現できた。
According to the fifth aspect of the present invention, the vector operation of the amount of analog charge held in the capacitor is performed by performing the vector operation while maintaining the potential difference of each capacitor using the potential difference of each capacitor as display data. Therefore, when calculating with digital data, large power consumption, long calculation time,
Compared to large-scale circuits, much lower power consumption, shorter operation time, and smaller circuits are required. In addition, high-quality multi-tone display was realized.

【0054】請求項6記載の発明によれば、コンデンサ
に保持したアナログ電荷量のベクトル演算を、各コンデ
ンサの電荷を表示データとして各コンデンサの電荷のベ
クトル演算の総和電位を演算結果とすることを利用し
た。よってデジタルデータで演算する場合の消費電力大
・長演算時間・大規模回路に比べ、はるかに低消費・短
演算時間・小規模回路で済む。かつ高画質な多階調表示
を実現できた。
According to the sixth aspect of the present invention, the vector operation of the amount of analog charge held in the capacitor is performed by using the charge of each capacitor as display data and using the total potential of the vector operation of the charge of each capacitor as the calculation result. used. Therefore, compared to large power consumption, long operation time, and a large-scale circuit in the case of operation using digital data, much smaller power consumption, short operation time, and a small-scale circuit are required. In addition, high-quality multi-tone display was realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1実施例の階調補正演算の前段部を示
す回路図。
FIG. 1 is a circuit diagram showing a first part of a gradation correction operation according to an embodiment of the present invention.

【図2】本発明の1実施例の1ライン選択階調補正演算
の要部を示す回路図。
FIG. 2 is a circuit diagram showing a main part of a one-line selection gradation correction operation according to one embodiment of the present invention.

【図3】本発明の1実施例の複数ライン選択階調補正演
算の要部を示す回路図。
FIG. 3 is a circuit diagram showing a main part of a multiple line selection gradation correction operation according to one embodiment of the present invention.

【図4】本発明の1実施例のベクトル演算の演算前の状
態を示す回路図。
FIG. 4 is a circuit diagram showing a state before a vector operation according to an embodiment of the present invention;

【図5】本発明の1実施例の電位差保持ベクトル演算の
演算後の状態を示す回路図。
FIG. 5 is a circuit diagram showing a state after calculation of a potential difference holding vector calculation according to one embodiment of the present invention.

【図6】本発明の1実施例の電荷保持ベクトル演算の演
算後の状態を示す回路図。
FIG. 6 is a circuit diagram showing a state after calculation of a charge holding vector calculation according to one embodiment of the present invention.

【図7】本発明の1実施例のベクトル演算回路の最小単
位を示す回路図。
FIG. 7 is a circuit diagram showing a minimum unit of the vector operation circuit according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

vdd.正側電源 vss.負側電源 PLOAD.MOSトランジスタ NREF0.MOSトランジスタ GRAY0.しきい値電圧 I1.表示データ OP1.オペアンプ COMPA.コンパレータ SWLV.アナログスイッチ X1〜X4.絶対値表示データ POL.極性信号 REF.単位電圧 PREF1.MOSトランジスタ NREF1.MOSトランジスタ INREF1.ドレイン電流 PX1〜4.MOSトランジスタ NX1〜4.MOSトランジスタ INX1.ドレイン電流 NADJ.MOSトランジスタ INADJ.ドレイン電流 ADJ.階調補正電圧 C1〜C4.表示データ用コンデンサ Q1〜Q4.電荷 CADJ.補正電圧用コンデンサ QADJ.補正電荷 VC.センター電圧 OUT.ベクトル演算出力 CALC.ベクトル演算クロック INP.入力ゲート信号 CONT.極性コントロール信号 vdd. Positive power supply vss. Negative power supply PLOAD. MOS transistor NREF0. MOS transistor GRAY0. Threshold voltage I1. Display data OP1. Operational amplifier COMPA. Comparator SWLV. Analog switch X1 to X4. Absolute value display data POL. Polarity signal REF. Unit voltage PREF1. MOS transistor NREF1. MOS transistor INREF1. Drain current PX1-4. MOS transistors NX1-4. MOS transistor INX1. Drain current NADJ. MOS transistor INADJ. Drain current ADJ. Gradation correction voltages C1 to C4. Display data capacitors Q1 to Q4. Charge CADJ. Correction voltage capacitor QADJ. Correction charge VC. Center voltage OUT. Vector operation output CALC. Vector operation clock INP. Input gate signal CONT. Polarity control signal

フロントページの続き Fターム(参考) 2H093 NA07 NA43 NA53 NC13 NC21 ND06 ND39 ND49 ND60 5C006 AA16 AC23 AF42 AF46 BB12 BC03 BC12 BF14 BF24 BF25 BF28 BF34 BF37 FA23 FA36 FA41 FA47 FA56 5C080 AA10 BB05 DD06 DD10 DD22 DD26 EE29 FF09 JJ02 JJ03Continuation of the front page F term (reference) 2H093 NA07 NA43 NA53 NC13 NC21 ND06 ND39 ND49 ND60 5C006 AA16 AC23 AF42 AF46 BB12 BC03 BC12 BF14 BF24 BF25 BF28 BF34 BF37 FA23 FA36 FA41 FA47 FA56 5C080 AA29 BB05 DD26 DD10

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】単純マトリックスパネルで1ライン選択駆
動方法を用い、階調表示データに対応した実効値を画素
に与えるために信号電極のパルス高さを可変させ、階調
表示データが中間値(ONでもOFFでもない状態)の
際に必要とされる階調補正演算をMOSトランジスタの
電圧−電流特性を利用したアナログ演算回路により求め
ることを特徴とする液晶表示装置。
A simple matrix panel uses a one-line selection driving method, and varies a pulse height of a signal electrode to give an effective value corresponding to gradation display data to a pixel. A liquid crystal display device characterized in that a gradation correction operation required in the case of neither ON nor OFF is obtained by an analog operation circuit utilizing a voltage-current characteristic of a MOS transistor.
【請求項2】請求項1記載の液晶表示装置の駆動方法が
複数同時選択駆動方法であることを特徴とする液晶表示
装置。
2. A liquid crystal display device according to claim 1, wherein the method of driving the liquid crystal display device is a method of simultaneously selecting and driving a plurality of liquid crystal display devices.
【請求項3】単純マトリックスパネルを複数同時選択駆
動方法で駆動する際のベクトル演算をコンデンサに保持
したアナログ電荷量のベクトル演算で行うことを特徴と
する液晶表示装置。
3. A liquid crystal display device wherein a vector operation when driving a plurality of simple matrix panels by a simultaneous selection driving method is performed by a vector operation of an analog charge amount held in a capacitor.
【請求項4】請求項2記載の液晶表示装置の駆動方法で
使用するベクトル演算をコンデンサに保持したアナログ
電荷量のベクトル演算で行うことを特徴とする液晶表示
装置。
4. A liquid crystal display device according to claim 2, wherein the vector operation used in the driving method of the liquid crystal display device according to claim 2 is performed by a vector operation of an analog charge amount held in a capacitor.
【請求項5】請求項3記載および請求項4記載のコンデ
ンサに保持したアナログ電荷量のベクトル演算を、各コ
ンデンサの電位差を表示データとして各コンデンサの電
位差を保ちベクトル演算を行うことを特徴とする液晶表
示装置。
5. A vector operation of an analog charge amount held in a capacitor according to claim 3 or 4, wherein a vector operation is performed while maintaining a potential difference of each capacitor by using a potential difference of each capacitor as display data. Liquid crystal display.
【請求項6】請求項3記載および請求項4記載のコンデ
ンサに保持したアナログ電荷量のベクトル演算を、各コ
ンデンサの電荷を表示データとして各コンデンサの電荷
のベクトル演算の総和電位を演算結果とすることを特徴
とする液晶表示装置。
6. A vector operation of the amount of analog electric charge held in the capacitor according to claim 3 or 4, wherein the electric charge of each capacitor is used as display data, and a total potential of the vector operation of electric charge of each capacitor is used as an operation result. A liquid crystal display device characterized by the above-mentioned.
JP11094068A 1999-03-31 1999-03-31 Liquid crystal display device and electronic equipment Withdrawn JP2000284762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11094068A JP2000284762A (en) 1999-03-31 1999-03-31 Liquid crystal display device and electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11094068A JP2000284762A (en) 1999-03-31 1999-03-31 Liquid crystal display device and electronic equipment

Publications (1)

Publication Number Publication Date
JP2000284762A true JP2000284762A (en) 2000-10-13

Family

ID=14100202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11094068A Withdrawn JP2000284762A (en) 1999-03-31 1999-03-31 Liquid crystal display device and electronic equipment

Country Status (1)

Country Link
JP (1) JP2000284762A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10222848B2 (en) 2014-03-14 2019-03-05 Semiconductor Energy Laboratory Co., Ltd. Analog arithmetic circuit, semiconductor device, and electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10222848B2 (en) 2014-03-14 2019-03-05 Semiconductor Energy Laboratory Co., Ltd. Analog arithmetic circuit, semiconductor device, and electronic device
US11137813B2 (en) 2014-03-14 2021-10-05 Semiconductor Energy Laboratory Co., Ltd. Analog arithmetic circuit, semiconductor device, and electronic device

Similar Documents

Publication Publication Date Title
US7079127B2 (en) Reference voltage generation circuit, display driver circuit, display device, and method of generating reference voltage
US6232948B1 (en) Liquid crystal display driving circuit with low power consumption and precise voltage output
US7324079B2 (en) Image display apparatus
US8330750B2 (en) Liquid crystal drive device and liquid crystal display device using the same
US20020018059A1 (en) Voltage generating circuit, and common electrode drive circuit, signal line drive circuit and gray-scale voltage generating circuit for display devices
JP2003233357A (en) Reference voltage generation circuit, display driving circuit, display device, and reference voltage generation method
JP2002041001A (en) Picture display device and driving method thereof
JPH0822267A (en) Liquid crystal driving circuit and liquid crystal display device
US4779956A (en) Driving circuit for liquid crystal display
JPH07306397A (en) Display device and liquid crystal display device
KR0171169B1 (en) Multiple voltage circuit for driving lcd panel
JP4235900B2 (en) Flat display device
JPH09230829A (en) Output circuit for source driver
JP2000284762A (en) Liquid crystal display device and electronic equipment
JP3295953B2 (en) Liquid crystal display drive
JPH0954309A (en) Liquid crystal display device
JPH10153761A (en) Liquid crystal display device
JP3981526B2 (en) Power supply circuit for driving liquid crystal, and liquid crystal device and electronic apparatus using the same
JP2004350256A (en) Offset compensation circuit, drive circuit with offset-compensation function using the same, and liquid-crystal display device
JPH0720821A (en) Multigradation thin-film transistor liquid-crystal display
JP2965822B2 (en) Power circuit
JPH07281648A (en) Liquid crystal display device
JPH10177367A (en) Liquid crystal driving circuit
JP3059050B2 (en) Power supply circuit
JPH07114001A (en) Liquid crystal display device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606