JP2000283919A - Infrared gas analyzer - Google Patents

Infrared gas analyzer

Info

Publication number
JP2000283919A
JP2000283919A JP11090321A JP9032199A JP2000283919A JP 2000283919 A JP2000283919 A JP 2000283919A JP 11090321 A JP11090321 A JP 11090321A JP 9032199 A JP9032199 A JP 9032199A JP 2000283919 A JP2000283919 A JP 2000283919A
Authority
JP
Japan
Prior art keywords
pressure
gas analyzer
infrared
measuring
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11090321A
Other languages
Japanese (ja)
Inventor
Noriaki Kanamaru
訓明 金丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP11090321A priority Critical patent/JP2000283919A/en
Publication of JP2000283919A publication Critical patent/JP2000283919A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive infrared gas analyzer mass productive and having a uniform detection performance between lots. SOLUTION: A piezo-resistance type semiconductor pressure sensor composed by forming a diaphragm (pressure receiving face) 2 by thinning a silicon single crystal substrate 1 from the back face by etching or the like, and by forming a piezo-resistance (gauge resistance) thereon by diffusion or ion implantation, is used as a gas concentration detecting part of this infrared gas analyzer. Thus, the inexpensive infrared gas analyzer capable of mass production, and having a uniform detection performance between lots, high sensitivity and high reliability, can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被測定成分ガスの
赤外スペクトル吸収に伴うガス圧変動を利用して特定ガ
ス種の濃度を計測する赤外線ガス分析計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared gas analyzer for measuring the concentration of a specific gas species by utilizing the gas pressure fluctuation accompanying the infrared spectrum absorption of a component gas to be measured.

【0002】[0002]

【従来技術】2つ以上の異なる原子から成る異核分子の
多くは、波長1〜20μmの赤外光を照射すると,その化学
種に特有の振動および回転の運動エネルギー準位の遷移
がおこり,特定の赤外線スペクトルを吸収し、内部エネ
ルギーや体積あるいは圧力の増加など、熱力学的な変化
を引き起こす。非分散型赤外線分析計はこの様なガス成
分の特性を利用して、その濃度を計測する機器である。
2. Description of the Related Art Many heteronuclear molecules consisting of two or more different atoms are irradiated with infrared light having a wavelength of 1 to 20 μm, and the transition of vibrational and rotational kinetic energy levels specific to the chemical species occurs. Absorbs certain infrared spectra and causes thermodynamic changes, such as an increase in internal energy, volume, or pressure. A non-dispersive infrared spectrometer is a device that measures the concentration of a gas component by utilizing such characteristics of the gas component.

【0003】シングルビーム式赤外線ガス分析計の構成
を図8に示す。図に示すように赤外線ガス分析計は、一
般に、赤外光を発生するための光源部42、試料が導入
されるセル部44、セル部を通過した赤外光の強度を計
測するディテクター部46の3点からなり、試料ガス濃
度を計測している。
FIG. 8 shows the configuration of a single-beam infrared gas analyzer. As shown in the figure, an infrared gas analyzer generally comprises a light source section 42 for generating infrared light, a cell section 44 into which a sample is introduced, and a detector section 46 for measuring the intensity of infrared light passing through the cell section. And the sample gas concentration is measured.

【0004】光源部42は赤外光を発生をさせ、発生源
であるヒーター48と赤外光を断続してセル部44および
ディテクター部46に入射させるためのチョッパー50
から構成される。セル部44は、試料が導入される部位
であって,パイプの前後を赤外線が広いスペクトル域で
透過可能な赤外透過性ガラスやCaF2等の窓54で封止
し、パイプ側面などに一端からもう一端へガスが流せる
ようガスの入出孔56を備え、またその内面は赤外光を
効率よく反射するために、鏡面仕上げや金などのコーテ
ィングが施されている。
A light source section 42 generates an infrared light, and a chopper 50 for intermittently intermitting the infrared light with a heater 48 as a generation source to enter a cell section 44 and a detector section 46.
Consists of The cell portion 44 is a portion into which the sample is introduced, and the front and rear of the pipe are sealed with a window 54 made of infrared-transmissive glass or CaF2 capable of transmitting infrared rays in a wide spectral range. A gas inlet / outlet 56 is provided to allow gas to flow to the other end, and the inner surface thereof is mirror-finished or coated with gold or the like in order to efficiently reflect infrared light.

【0005】ディテクター部46の詳細図を図9に示
す。ディテクター部は前後2室24、26に分割され、
少なくとも前室24の正面ならびに前室24と後室26
との間の隔壁が赤外光を透過する窓28で仕切られ、こ
れら2室は微少流量のガス移動が可能なバイパス30で
接続された構造を有する。また、前後室の圧力差を計測
するために、これら両室の隔壁、あるいは導入管32を
介して圧力検知部34に接続されている。この圧力検知
部34には、メンブレンコンデンサと呼ばれる静電容量
計測型の電気式ダイヤフラム等が用いられている。これ
は2枚の電極の片側をダイヤフラムとし、圧力が加わる
とダイヤフラムがたわみ、電極の間隔が変化することで
静電容量が変化する現象を利用したものである。更にこ
れら2室には、赤外線分析の被測定対象となる例えばCO
2等の化学種のみ、あるいはこの化学種をAr,He,N2等の
不活性ガスで希釈されたガスが充填されている。
FIG. 9 shows a detailed view of the detector section 46. The detector part is divided into two front and rear chambers 24 and 26,
At least the front of the front room 24 and the front room 24 and the rear room 26
The partition between them is separated by a window 28 that transmits infrared light, and these two chambers have a structure connected by a bypass 30 that allows a small flow of gas. In addition, in order to measure the pressure difference between the front and rear chambers, it is connected to the pressure detection unit 34 via the partition walls of these two chambers or the introduction pipe 32. As the pressure detecting unit 34, an electric diaphragm or the like of a capacitance measuring type called a membrane capacitor is used. This utilizes a phenomenon in which one side of two electrodes is a diaphragm, the diaphragm bends when pressure is applied, and the capacitance changes due to a change in the distance between the electrodes. Furthermore, these two chambers contain, for example, CO
It is filled with only a chemical species such as 2 or a gas obtained by diluting the chemical species with an inert gas such as Ar, He, or N2.

【0006】光源から発した赤外光は、セル部44を通
過してディテクター部46に入射する。この時セル内部
に被測定成分が存在すると、セル内のガス濃度に応じ
て、入射した赤外光の一部がセル内のガスに吸収され
る。残りの赤外光はディテクターに入射する。ディテク
ター前室正面から入射した赤外光は、前室24および後
室26で吸収され、このエネルギー吸収によって生じる
前後室の圧力差によって、ディテクターへの入射前の赤
外光強度、すなわちの被測定成分濃度を計測することが
できる。
[0006] The infrared light emitted from the light source passes through the cell unit 44 and enters the detector unit 46. At this time, if the component to be measured is present in the cell, a part of the incident infrared light is absorbed by the gas in the cell according to the gas concentration in the cell. The remaining infrared light is incident on the detector. The infrared light incident from the front of the detector front chamber is absorbed by the front chamber 24 and the rear chamber 26, and due to the pressure difference between the front and rear chambers caused by the energy absorption, the infrared light intensity before incidence on the detector, that is, the measured light intensity The component concentration can be measured.

【0007】[0007]

【発明が解決しようとする課題】このような赤外線分析
のディテクターにおいて、前後室の圧力差を計測するた
めに使われてきたメンブレンコンデンサは、高感度では
あるが、その製作には人手による熟練技術が必要である
ため、生産性に劣り、必然的に単価の上昇が免れず、ま
たロット間のばらつきも大きかった。本発明は、上記課
題を解決するために創案されたものであり、大量生産が
可能で、安価でロット間の性能が均一な赤外線分析計を
提供することを目的とする。
In such a detector for infrared analysis, a membrane capacitor which has been used for measuring a pressure difference between the front and rear chambers has a high sensitivity, but the manufacturing thereof requires a skilled technique by hand. , The productivity was inferior, the unit price was inevitably increased, and the lot-to-lot variation was large. The present invention has been made to solve the above problems, and has as its object to provide an infrared analyzer that can be mass-produced, is inexpensive, and has uniform performance between lots.

【0008】[0008]

【課題を解決するための手段】上記問題を解決するため
に、本発明の赤外線分析計は、 測定セルの一端側に測
定セルに赤外線の測定光を照射する光源部が配置され、
測定セルの他端側には測定セルを通過した測定光を透過
した測定光を受光する位置で2つの受光室が測定光の光
軸方向に直列に配置され、その2つの受光室は小さいバ
イパス部を介して連通しているとともに、2つの受光室
間の圧力差が電気信号に変換される前後室型検出器を構
成している赤外線分析計において、前記検出器としてピ
エゾ抵抗型半導体圧力センサを用いたことを特徴とす
る。また、ピエゾ抵抗型半導体センサとしては、差圧計
測式、絶対圧計測式、ゲージ圧計測式等が用いられる。
In order to solve the above problems, an infrared spectrometer according to the present invention is provided with a light source for irradiating an infrared measuring light to a measuring cell at one end of the measuring cell.
At the other end of the measurement cell, two light receiving chambers are arranged in series in the optical axis direction of the measurement light at a position for receiving the measurement light transmitted through the measurement cell, and the two light reception chambers have a small bypass. A piezoresistive semiconductor pressure sensor as the detector, wherein the infrared spectrometer comprises a front and rear chamber type detector which communicates via a unit and converts a pressure difference between two light receiving chambers into an electric signal. Is used. As the piezoresistive semiconductor sensor, a differential pressure measurement type, an absolute pressure measurement type, a gauge pressure measurement type, or the like is used.

【0009】[0009]

【発明の実施の形態】以下、本発明を図面に従って説明
する。図1は、本発明の赤外線ガス分析計のガス濃度検
出を行う検出器部分を示したものであり、ピエゾ抵抗式
電子式ダイヤフラム型圧力センサー(以下ピエゾ圧力セ
ンサー)の概要である。ピエゾ圧力センサーは、シリコ
ン単結晶基板1を裏面からエッチングなどで薄くするこ
とでダイヤフラム(受圧面)2とし、この上に拡散やイ
オン打ち込みでピエゾ抵抗(ゲージ抵抗)3を形成した
ものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 shows a detector portion for detecting a gas concentration of an infrared gas analyzer of the present invention, and is an outline of a piezoresistive electronic diaphragm type pressure sensor (hereinafter, piezo pressure sensor). The piezo pressure sensor has a diaphragm (pressure receiving surface) 2 formed by thinning a silicon single crystal substrate 1 from the back surface by etching or the like, and a piezo resistor (gauge resistor) 3 formed thereon by diffusion or ion implantation.

【0010】図2は、ピエゾ圧力センサーの動作原理を
説明したものである。先ず基本となるピエゾ抵抗効果で
あるが、上記ピエゾ抵抗に応力が加わると、結晶格子に
歪が生じ、半導体内のキャリア数や移動度が変化するこ
とで電気伝導率、すなわち電気抵抗が変化する現象であ
る。
FIG. 2 explains the operation principle of the piezo pressure sensor. First, the basic piezoresistive effect. When stress is applied to the piezoresistor, a crystal lattice is distorted, and the number of carriers in the semiconductor and the mobility change, so that the electrical conductivity, that is, the electrical resistance changes. It is a phenomenon.

【0011】各ピエゾ抵抗(ゲージ抵抗)3はダイヤフ
ラム2の中心部に平行に2ヶ所、円周近辺に対抗して2
ヶ所形成されており、圧力がかかってダイヤフラム2が
歪むと、各ピエゾ抵抗は歪んだ量に応じた応力が発生
し、この応力に比例してピエゾ抵抗R1〜R4が変化す
る。これら4つのゲージ抵抗で図3の様にホイーストン
ブリッジを形成し,電圧や電流を印加すると,圧力に比
例した出力電位差が得られる。今,円周近辺の抵抗をR
1,R3、中心部の抵抗をR2、R4とし,定電流駆動した時の
電位差V0は,次式で得ることができる。 V0 = (R1R3−R2R4) / (R1+R2+R3+R4) * I 図4は,差圧検知型センサーの構造図で,センサー筐体
6はセンサー7で2室に前室分割され、前室4、後室5
の各々にガス圧を導入するための圧力管14aが形成さ
れており、各室に導入されるガスの圧力差を検知する。
Each piezoresistor (gauge resistor) 3 has two locations parallel to the center of the diaphragm 2 and 2 opposed to the circumference.
When the diaphragm 2 is distorted by applying pressure, a stress corresponding to the amount of distortion is generated in each piezoresistor, and the piezoresistors R1 to R4 change in proportion to the stress. When a Wheatstone bridge is formed by these four gauge resistors as shown in FIG. 3 and a voltage or current is applied, an output potential difference proportional to pressure is obtained. Now, let the resistance around the circumference be R
The potential difference V0 at the time of constant current drive with 1, R3 and the resistance of the central part being R2, R4 can be obtained by the following equation. V0 = (R1R3−R2R4) / (R1 + R2 + R3 + R4) * I FIG. 4 is a structural diagram of a differential pressure detection type sensor. Room 4, rear room 5
A pressure tube 14a for introducing a gas pressure is formed in each of the chambers, and detects a pressure difference between gases introduced into each chamber.

【0012】図5は,差圧型のピエゾ圧力センサーをシ
ングルビーム式の赤外線ガス分析計に応用した例であ
る。検出器部は,異径同心円の開孔部を有するアルミ製
ボディ9に,赤外光透過性のCaF2製窓12が接着され,
ディテクターを前後2室10、11に分割したものであ
る。ディテクターの背部には,外部からの赤外入射を防
ぐため,黒色のバックプレート15を配した。また,必
要に応じ両室間には,微小流量のガスの流れを可能とす
るバイパス13が設置される。CO2測定用とする場合,
両室には同濃度のAr,N2等の不活性ガスで希釈したCO2ガ
スが封入される。また,両室にはガス導入管14bが設
置され,これらにピエゾ圧力センサー16の圧力管14a
が接続される。ピエゾ圧力センサー16は,フルスケー
ルで±1kPa〜±5kPaのものを使用した。ピエゾ圧力セン
サーユニットには,演算処理をおこなう電子回路8が組
込まれているので、これに必要な電圧を印加すれば,所
定のフルスケールで出力信号を得ることができる。
FIG. 5 shows an example in which a differential pressure type piezo pressure sensor is applied to a single beam type infrared gas analyzer. The detector section has an infrared-transparent CaF2 window 12 bonded to an aluminum body 9 having concentric holes of different diameters.
The detector is divided into two front and rear chambers 10 and 11. On the back of the detector, a black back plate 15 was arranged to prevent infrared light from entering from outside. In addition, a bypass 13 is provided between the two chambers as needed, which allows a very small flow of gas. When measuring CO2,
Both chambers are filled with CO2 gas diluted with the same concentration of an inert gas such as Ar or N2. Gas inlet pipes 14b are installed in both chambers.
Is connected. As the piezo pressure sensor 16, a sensor having a full scale of ± 1 kPa to ± 5 kPa was used. Since the piezo pressure sensor unit incorporates an electronic circuit 8 for performing arithmetic processing, an output signal can be obtained at a predetermined full scale by applying a necessary voltage thereto.

【0013】検出器部前面より入射した赤外光は,まず
前室10でその多くが吸収され,残りは後室11で吸収
される。ディテクター部の前後室は,熱力学的にほぼ定
容系であるので,結果各部屋で圧力が上昇し、2室間で
の圧力差が生じる。これを前記ピエゾ圧力センサー16
で検知することで,赤外線ガス分析計の検出器として機
能する。
Most of the infrared light incident from the front of the detector is absorbed by the front chamber 10 and the rest is absorbed by the rear chamber 11. Since the front and rear chambers of the detector section are thermodynamically almost constant-volume systems, as a result, the pressure increases in each room, and a pressure difference occurs between the two chambers. This is connected to the piezo pressure sensor 16.
By functioning as a detector, it functions as a detector for infrared gas analyzers.

【0014】図6は,図5で説明した差圧センサーを用
いた機構を,2つのゲージ圧、或いは絶対圧型ピエゾ圧
力センサー17で実施した例である。このように複数の
センサーを配置することで,差圧センサーと同等の効果
を得ることができる。図7は,従来のサンプル用とリフ
ァレンス用の2つのセルを用いる、タンデムセル型に本
発明を適用した例である。図中のSはサンプル(試料ガ
ス)用セルの位置を、Rはリファレンス(比較ガス)用
セルの位置を示し、この各々のセルに対して検出部側は
赤外光透過性のCaF2製窓18を持つ試料光室19a、参
照光室19bが設けられている。試料光室19aのガス
圧と参照光室19bのガス圧との差が圧力センサー21
で検出される。
FIG. 6 shows an example in which the mechanism using the differential pressure sensor described in FIG. 5 is implemented by two gauge pressure or absolute pressure type piezo pressure sensors 17. By arranging a plurality of sensors in this manner, an effect equivalent to that of a differential pressure sensor can be obtained. FIG. 7 shows an example in which the present invention is applied to a tandem cell type using two conventional cells for sample and reference. In the figure, S indicates the position of a sample (sample gas) cell, and R indicates the position of a reference (comparison gas) cell. A sample light chamber 19a having a reference light chamber 18 and a reference light chamber 19b are provided. The difference between the gas pressure of the sample light chamber 19a and the gas pressure of the reference light chamber 19b is determined by the pressure sensor 21.
Is detected by

【0015】[0015]

【発明による効果】本発明によれば、大量生産が可能
で、安価でロット間の検出性能が均一、高感度、高信頼
性な赤外線ガス分析計を提供することができる。
According to the present invention, an infrared gas analyzer which can be mass-produced, is inexpensive, has uniform detection performance between lots, has high sensitivity, and has high reliability can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の赤外線ガス分析計のセンサー部分の構
成図である。
FIG. 1 is a configuration diagram of a sensor part of an infrared gas analyzer of the present invention.

【図2】本発明の赤外線ガス分析計のセンサー部の動作
図である。
FIG. 2 is an operation diagram of a sensor unit of the infrared gas analyzer of the present invention.

【図3】本発明の赤外線ガス分析計のセンサー部の等価
回路図である。
FIG. 3 is an equivalent circuit diagram of a sensor unit of the infrared gas analyzer of the present invention.

【図4】本発明の赤外線ガス分析計の差圧検知型センサ
ーの構成図である。
FIG. 4 is a configuration diagram of a differential pressure detection type sensor of the infrared gas analyzer of the present invention.

【図5】本発明の赤外線ガス分析計の検出器部の構成図
である。
FIG. 5 is a configuration diagram of a detector section of the infrared gas analyzer of the present invention.

【図6】本発明の赤外線ガス分析計の検出器部の他の実
施例である。
FIG. 6 is another embodiment of the detector section of the infrared gas analyzer of the present invention.

【図7】本発明の赤外線ガス分析計の検出器部の他の実
施例である。
FIG. 7 is another embodiment of the detector section of the infrared gas analyzer of the present invention.

【図8】一般の赤外線ガス分析計の構成図である。FIG. 8 is a configuration diagram of a general infrared gas analyzer.

【図9】従来の赤外線ガス分析計ディテクター部の構成
図である。
FIG. 9 is a configuration diagram of a detector section of a conventional infrared gas analyzer.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】測定セルの一端側に測定セルに赤外線の測
定光を照射する光源部が配置され、測定セルの他端側に
は測定セルを通過した測定光を透過した測定光を受光す
る位置で2つの受光室が測定光の光軸方向に対し、直列
または並列に配置され、その2つの受光室は小さいバイ
パス部を介して連通しているとともに、2つの受光室間
の圧力差が電気信号に変換される、前後室型または左右
室型検出器を構成している赤外線分析計において、前記
検出器としてピエゾ抵抗型半導体圧力センサを用いたこ
とを特徴とする赤外線ガス分析計。
1. A light source for irradiating an infrared measuring light to a measuring cell is disposed at one end of the measuring cell, and the measuring light transmitted through the measuring cell is received at the other end of the measuring cell. At the position, two light receiving chambers are arranged in series or in parallel with respect to the optical axis direction of the measurement light, and the two light receiving chambers communicate with each other via a small bypass portion, and a pressure difference between the two light receiving chambers is reduced. An infrared gas analyzer comprising a front-rear or left-right chamber type detector which is converted into an electric signal, wherein a piezoresistive semiconductor pressure sensor is used as the detector.
【請求項2】圧力検出器として少なくとも1個以上の差
圧計測式ピエゾ抵抗型半導体圧力センサを用いて、前室
と後室の差圧を計測することを特徴とする請求項1記載
の赤外線ガス分析計。
2. The infrared sensor according to claim 1, wherein at least one or more differential pressure measuring piezoresistive semiconductor pressure sensors are used as pressure detectors to measure the differential pressure between the front chamber and the rear chamber. Gas analyzer.
【請求項3】圧力検出器として少なくとも2個以上の絶
対圧計測式ピエゾ抵抗型半導体圧力センサを用いて、前
室と後室の圧力を個別に計測することを特徴とする請求
項1記載の赤外線ガス分析計。
3. The method according to claim 1, wherein at least two or more absolute pressure measuring piezoresistive semiconductor pressure sensors are used as pressure detectors to individually measure the pressures in the front chamber and the rear chamber. Infrared gas analyzer.
【請求項4】請求項1に於て、圧力検出器として少なく
とも2個以上のゲージ圧計測式ピエゾ抵抗型半導体圧力
センサを用いて、前室と後室の圧力を個別に計測するこ
とを特徴とする請求項1記載の赤外線ガス分析計。
4. The method according to claim 1, wherein at least two or more gauge pressure measuring piezoresistive semiconductor pressure sensors are used as pressure detectors to individually measure the pressures in the front chamber and the rear chamber. The infrared gas analyzer according to claim 1, wherein
JP11090321A 1999-03-30 1999-03-30 Infrared gas analyzer Pending JP2000283919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11090321A JP2000283919A (en) 1999-03-30 1999-03-30 Infrared gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11090321A JP2000283919A (en) 1999-03-30 1999-03-30 Infrared gas analyzer

Publications (1)

Publication Number Publication Date
JP2000283919A true JP2000283919A (en) 2000-10-13

Family

ID=13995274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11090321A Pending JP2000283919A (en) 1999-03-30 1999-03-30 Infrared gas analyzer

Country Status (1)

Country Link
JP (1) JP2000283919A (en)

Similar Documents

Publication Publication Date Title
US5923421A (en) Chemical detection using calorimetric spectroscopy
US8240189B2 (en) Thermal selectivity multivariate optical computing
US10466174B2 (en) Gas analyzer including a radiation source comprising a black-body radiator with at least one through-hole and a collimator
CN110044824A (en) A kind of double spectroscopic gas detection devices and method based on quartz tuning-fork
Goldan et al. An acoustically resonant system for detection of low‐level infrared absorption in atmospheric pollutants
JP2011527006A (en) Arrangement suitable for spectral analysis
EP2344862B1 (en) An arrangement adapted for spectral analysis of high concentrations of gas
WO2022213584A1 (en) Differential photoacoustic spectroscopy gas detection device based on single cantilever beam
EP2762856A1 (en) Physical/chemical sensor, physical/chemical phenomenon sensing device, and method for manufacturing same
US4598201A (en) Infrared fluid analyzer employing a pneumatic detector
JPS5892843A (en) Nondispersion type infrared analyzer for measurement of two components
JP2000283919A (en) Infrared gas analyzer
US20190195834A1 (en) Apparatuses and methods for using the photoacoustic effect
CN100419408C (en) Infrared-ray gas analyser
JP2001311697A (en) Method and apparatus for measurement of surface state
JPH0529061B2 (en)
CN101907567A (en) Infrared gas detection method based on vacuum tunnel current detection and detection device thereof
CN113075154A (en) Non-dispersive infrared gas concentration detection device and detection method based on platinum resistor
JP3909396B2 (en) Infrared gas analyzer
CN109696413A (en) Sample gas chamber, the infrared gas sensor based on QPSO algorithm and atmospheric pressure compensating method
JP2855841B2 (en) Infrared analyzer
CN219957333U (en) Micro infrared light source and photoacoustic gas sensor for multi-gas measurement
JP3347264B2 (en) Concentration analyzer
RU2207546C2 (en) Photothermoacoustic gas analyzer
JP2000356592A (en) Pneumatic type infrared detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071106