JP2000282865A - Swirl generating mechanism due to level difference of combustion chamber in internal combustion engine - Google Patents

Swirl generating mechanism due to level difference of combustion chamber in internal combustion engine

Info

Publication number
JP2000282865A
JP2000282865A JP11127535A JP12753599A JP2000282865A JP 2000282865 A JP2000282865 A JP 2000282865A JP 11127535 A JP11127535 A JP 11127535A JP 12753599 A JP12753599 A JP 12753599A JP 2000282865 A JP2000282865 A JP 2000282865A
Authority
JP
Japan
Prior art keywords
combustion chamber
piston
level difference
combustion
vortex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11127535A
Other languages
Japanese (ja)
Inventor
Tetsuji Matsumori
哲司 松森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11127535A priority Critical patent/JP2000282865A/en
Publication of JP2000282865A publication Critical patent/JP2000282865A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/24Pistons  having means for guiding gases in cylinders, e.g. for guiding scavenging charge in two-stroke engines

Abstract

PROBLEM TO BE SOLVED: To generate swirls in an combustion chamber in order to enhance the combustion by controlling a jet stream, which are generated through the vertical motion of a piston with the use of a groove cut in between a level differences formed by notching the upper end of the piston and a ring-like level difference overhanging from the upper end of the combustion chamber. SOLUTION: In a swirl generating mechanism, the outer periphery of the upper end of a piston 1 is notched so as to form a ring-like level difference. Meanwhile, on the combustion chamber side, as shown in a part A of a cylinder head 2 or in a part B in a cylinder 3, a ring-like level difference is formed, overhanging into the combustion chamber. A surface, where the level difference of the piston 1 and the level difference of the combustion chamber overlap with each other, is formed therein the gap with a groove 4 carved in it, through which a jet stream is generated and the direction there of is controlled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、自動車等に使用する往
復ピストン内燃機関で、燃焼室内に渦流を発生させ、燃
焼を改善する機構に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reciprocating piston internal combustion engine for use in automobiles and the like, which generates a vortex in a combustion chamber to improve combustion.

【0002】[0002]

【従来の技術】従来、燃焼室内に渦流を発生させるため
には、吸気通路の一方を閉鎖する等、吸気系統で渦流を
発生させる方法がとられていた。
2. Description of the Related Art Conventionally, in order to generate a vortex in a combustion chamber, a method of generating a vortex in an intake system, such as closing one side of an intake passage, has been adopted.

【0003】[0003]

【発明が解決しようとする課題】吸気系統で渦流を発生
させる方法では、圧縮行程で渦流が減衰する、吸気系統
の抵抗により体積効率が低下する、吸気可変機構等のコ
ストが高い、渦流のコントロールが難しい等の課題があ
る。
In the method of generating a vortex in the intake system, the vortex is attenuated in the compression stroke, the volume efficiency is reduced by the resistance of the intake system, the cost of the variable intake mechanism is high, and the vortex control is high. Is difficult.

【0004】[0004]

【課題を解決するための手段】本発明の構成を、図1
に、二分割した燃焼室とピストンとを組合せた状態図に
示し、説明すると。図1のピストン1に示すよう、ピス
トンの上端外周をリング状に切り欠き段差をつけ、その
段差の外周に噴流の方向をコントロールする溝4を刻
む。図1のシリンダヘッド2のA部、又はシリンダ3の
B部に示すよう、燃焼室の上端をリング状に内側へ張り
出す段差をつけ、その段差の内周に噴流の方向をコント
ロールする溝4を刻む。なお、この段差の張り出しは、
Aのようにシリンダヘッド2側でもよいし、Bのように
シリンダ3側でもよい。ピストン上部段差の外径より、
燃焼室上部段差内の内径を少し大きくすることにより段
差間に隙間をつくり、その隙間から、ピストンの上下動
により、噴流を発生させる構造とする。噴流の方向をコ
ントロールする溝4をつける位置については、ピストン
側又は、燃焼室側又は、その双方のいずれでも良い。
The structure of the present invention is shown in FIG.
Next, a state diagram in which a combustion chamber divided into two parts and a piston are combined will be described. As shown in the piston 1 of FIG. 1, the outer periphery of the upper end of the piston is cut out in a ring shape to form a step, and a groove 4 for controlling the direction of the jet is formed in the outer periphery of the step. As shown in part A of the cylinder head 2 or part B of the cylinder 3 in FIG. 1, a step is formed to project the upper end of the combustion chamber inward in a ring shape, and a groove 4 for controlling the direction of the jet flow is formed on the inner periphery of the step. Engrave The overhang of this step is
A side may be the cylinder head 2 side, or B side may be the cylinder 3 side. From the outer diameter of the upper step of the piston,
A gap is created between the steps by slightly increasing the inner diameter of the step inside the upper combustion chamber, and a jet is generated from the gap by the vertical movement of the piston. The position where the groove 4 for controlling the direction of the jet is formed may be on the piston side, the combustion chamber side, or both.

【0005】[0005]

【作用】段差による噴流発生作用を、図2に示し説明す
ると。左図のようにピストン1が上死点近くまで上昇
し、ピストン段差上部と、燃焼室の段差下部が重なる
と、これら段差の間に空間Cが出来る、その空間Cはピ
ストンの上昇に伴い狭くなることから、空間内の空気が
ピストン段差と燃焼室段差との間の狭い隙間Dから勢い
よく燃焼室内へ吐出され、ここで噴流が発生する。逆
に、右図のようにピストン1が上死点から下降すると、
段差間の空間Cが広がり、燃焼室内の空気を段差間の空
間Cへ吸い込む流れが発生する。4サイクル機関で各行
程における本発明の作用を、図3から図6に示し説明す
ると。図3吸気行程に示すように、左図の吸気の初期に
は、吸気弁から空気を吸い込むと共に、段差空間の吸込
みによる流れが燃焼室内に発生する。さらに、吸気行程
が進み右図の状態になると、吸気が段差空間の吸込みに
よる流れにより、燃焼室内で外周に広げられると共に、
段差の溝により発生する渦流により攪拌される。図4圧
縮行程に示すように、左図圧縮行程の後半で、段差空間
からの空気の噴出により、渦流が発生し、燃焼室内は撹
拌される。右図圧縮行程の最後には、渦流が最も強くな
り、燃焼が促進させる。さらに、この時の噴流(スキッ
シュ流)によるエンドガス冷却効果で、ノッキングの発
生も低減される。図5点火膨張行程に示すように、左図
点火行程では、ピストンの段差により、燃焼室の径は小
さく、コンパクトで、火炎伝播距離が短く、燃焼が短時
間で完了することから、ノッキングが発生しにくくな
る。このコンパクト燃焼室は、右図のように膨張行程の
初期まで続く。また、右図膨張行程では、ピストン下降
による、燃焼室外周での段差空間の空気を吸い込み力に
より、点火直後のエンドガス圧力上昇が抑制され、エン
ドガスの自己発火によるノッキングの発生が低減され
る。さらに、点火直後で燃焼室の圧力が最も高くなる時
には、ピストンと燃焼室との段差によりできる空間が、
燃焼室とクランク室との間で、狭い隙間と、広い隙間の
組み合わせによるラビリンスパッキンとして機能するこ
と。さらに、段差空間のピストン下降による内圧低下と
の相乗効果により、ピストンとシリンダ間のシール性が
向上するため、燃焼室からクランク室に通り吹き抜ける
ブローバイガスを減少させる。図6排気行程に示すよう
に、左図排気の後半には、段差空間から噴流が発生し、
右図の状態になると、噴流により燃焼室の排ガスを隅々
まで排出させる。段差隙間の溝により噴流の方向を制御
する作用を図7から図9に示し説明すると。図7に示す
ように、溝を段差に等間隔で斜めに付けると、溝からの
噴流で、横方向の渦(スワール流)が発生する。図8に
示すように、溝を段差の一部に集中させ垂直に付ける
と、溝からの噴流で、縦方向の渦(タンブル流)が発生
する。図9に示すように、溝を段差の一部に集中させ斜
めに付けると、溝からの噴流で、斜め方向の渦が発生す
る。以上の方法のように、溝の刻み方、位置を変えるこ
とにより、発生させる渦流の方向を自在にコントロール
できる。
The operation of generating a jet by a step will be described with reference to FIG. As shown in the left figure, when the piston 1 rises to near the top dead center and the upper part of the piston step and the lower part of the combustion chamber overlap, a space C is formed between these steps. The space C becomes narrower as the piston rises. Therefore, the air in the space is vigorously discharged from the narrow gap D between the piston step and the combustion chamber step into the combustion chamber, where a jet is generated. Conversely, when piston 1 descends from top dead center as shown in the right figure,
The space C between the steps expands, and a flow of sucking air in the combustion chamber into the space C between the steps occurs. The operation of the present invention in each stroke in a four-stroke engine will be described with reference to FIGS. As shown in the intake stroke in FIG. 3, at the beginning of the intake in the left diagram, air is sucked from the intake valve, and a flow due to the suction of the step space is generated in the combustion chamber. Further, when the intake stroke advances and reaches the state shown in the right figure, the intake air is spread to the outer periphery in the combustion chamber by the flow caused by the intake of the step space,
It is agitated by the vortex generated by the step grooves. As shown in the compression stroke in FIG. 4, in the latter half of the compression stroke on the left, vortex is generated by the ejection of air from the step space, and the combustion chamber is stirred. At the end of the compression stroke on the right, the vortex is strongest and promotes combustion. Further, knocking is reduced due to the end gas cooling effect of the jet (squish flow) at this time. As shown in Fig. 5 ignition expansion stroke, in the ignition stroke on the left, knocking occurs because the diameter of the combustion chamber is small, compact, the flame propagation distance is short, and combustion is completed in a short time due to the step of the piston. It becomes difficult to do. This compact combustion chamber continues until the beginning of the expansion stroke as shown in the right figure. Further, in the expansion stroke on the right, the rise of the end gas pressure immediately after ignition is suppressed by the suction force of the air in the step space around the combustion chamber due to the lowering of the piston, and the occurrence of knocking due to self-ignition of the end gas is reduced. Furthermore, when the pressure in the combustion chamber becomes highest immediately after ignition, the space created by the step between the piston and the combustion chamber becomes
To function as a labyrinth packing by a combination of a narrow gap and a wide gap between the combustion chamber and the crank chamber. Further, a synergistic effect with a decrease in the internal pressure due to the lowering of the piston in the step space improves the sealing performance between the piston and the cylinder, so that blow-by gas flowing from the combustion chamber to the crank chamber is reduced. As shown in the exhaust stroke in FIG. 6, in the latter half of the exhaust in the left diagram, a jet flow is generated from the step space,
In the state shown in the right figure, the exhaust gas from the combustion chamber is exhausted to every corner by the jet. The operation of controlling the direction of the jet by the groove of the step gap will be described with reference to FIGS. As shown in FIG. 7, when the grooves are obliquely formed at the steps at equal intervals, a lateral vortex (swirl flow) is generated in the jet flow from the grooves. As shown in FIG. 8, when the grooves are concentrated on a part of the step and are vertically formed, a vertical vortex (tumble flow) is generated by the jet flow from the grooves. As shown in FIG. 9, when the grooves are concentrated on a part of the step and formed obliquely, a vortex in an oblique direction is generated by the jet from the grooves. As described above, the direction of the vortex to be generated can be freely controlled by changing the notch and the position of the groove.

【0006】[0006]

【実施例】ガソリンエンジンにおいては、燃焼室内に渦
流を発生させることにより、希薄燃焼でも安定した燃焼
が可能となる。ディーゼルエンジンにおいては、燃焼室
内に渦流を発生させることにより、着火速度を速め、完
全燃焼させ黒煙の発生を抑制させることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a gasoline engine, stable combustion can be performed even in lean combustion by generating a vortex in a combustion chamber. In a diesel engine, by generating a vortex in the combustion chamber, it is possible to increase the ignition speed and complete combustion to suppress the generation of black smoke.

【0007】[0007]

【発明の効果】ガソリンエンジンにおいては、点火直前
に燃焼室内の渦流が最も強くなり、希薄燃焼でも安定し
た燃焼が可能となる。また、火炎伝播距離が短いコンパ
クトな燃焼室室による速い燃焼、スキッシュガス流動に
よる冷却効果、段差空間の吸込みによる燃焼室外周の圧
力低下等の作用により、エンドガス自然発火で発生する
ノッキングを低減できる。ディーゼルエンジンにおいて
は、点火直前に燃料を直接燃焼室へ噴射するため、燃料
と空気との混合が十分でなく、不完全燃焼で黒煙が発生
しやすいが、本発明機構で発生する渦流により混合気が
攪拌されるため、燃焼が促進され、黒煙の発生が抑制さ
れる。段差によるラビリンス構造により、ブローバイガ
スが減少することから、HC発生および潤滑油の劣化が
抑制される。ピストンと燃焼室の形状を変えるだけの簡
単な構造で、低コストで採用できる。吸気系で空気の流
入抵抗が増加しないことから、多くの空気を吸気でき体
積効率が良い。吸排気工程での段差空間の吸排気による
燃焼室外周の空気流動により、排気と新気とのガス交換
が良くなる。段差空間の体積、段差隙間の巾、段差溝の
位置、方向の設定により、渦流の強さ、方向を自在にコ
ントロールできる。
In a gasoline engine, the vortex in the combustion chamber becomes strongest immediately before ignition, and stable combustion can be performed even in lean combustion. In addition, knocking caused by spontaneous ignition of end gas can be reduced by the effects of rapid combustion by a compact combustion chamber having a short flame propagation distance, a cooling effect by squish gas flow, a pressure drop around the combustion chamber due to suction of a stepped space, and the like. In a diesel engine, fuel is injected directly into the combustion chamber immediately before ignition.Therefore, the fuel and air are not sufficiently mixed, and black smoke is likely to be generated due to incomplete combustion. Since the air is agitated, combustion is promoted and generation of black smoke is suppressed. The blow-by gas is reduced by the labyrinth structure by the step, so that HC generation and deterioration of the lubricating oil are suppressed. It can be adopted at low cost with a simple structure that simply changes the shape of the piston and combustion chamber. Since the inflow resistance of the air does not increase in the intake system, much air can be taken in and the volume efficiency is good. The gas flow between the exhaust and fresh air is improved by the air flow around the combustion chamber due to the intake and exhaust of the step space in the intake and exhaust process. The strength and direction of the vortex can be freely controlled by setting the volume of the step space, the width of the step gap, the position and direction of the step groove.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明、燃焼室とピストンの形状を示す図面で
二分割した燃焼室の中にピストンを組合せた状態を示
す。
FIG. 1 is a view showing the shapes of a combustion chamber and a piston according to the present invention, showing a state where a piston is combined in a combustion chamber divided into two parts.

【図2】本発明、段差空間の噴流発生作用を説明するた
めの、段差空間を拡大した断面図で、左図にピストン上
昇状態を、右図にピストン下降状態を示す。
FIG. 2 is a cross-sectional view in which the step space is enlarged in order to explain the jet flow generation action of the step space according to the present invention.

【図3】本発明の吸気行程における作用を示す図面であ
る。
FIG. 3 is a view showing an operation in an intake stroke of the present invention.

【図4】本発明の圧縮行程における作用を示す図面であ
る。
FIG. 4 is a view showing an operation in a compression stroke of the present invention.

【図5】本発明の点火膨張行程における作用を示す図面
である。
FIG. 5 is a view showing the operation of the present invention in the ignition expansion stroke.

【図6】本発明の排気行程における作用を示す図面であ
る。
FIG. 6 is a view showing an operation in an exhaust stroke of the present invention.

【図7】横方向の渦を発生させる、溝の形状を示す図面
である。
FIG. 7 is a view showing a shape of a groove for generating a lateral vortex.

【図8】縦方向の渦を発生させる、溝の形状を示す図面
である。
FIG. 8 is a drawing showing a shape of a groove for generating a vertical vortex.

【図9】斜め方向の渦を発生させる、溝の形状を示す図
面である。
FIG. 9 is a view showing a shape of a groove for generating a diagonal vortex.

【符号の説明】[Explanation of symbols]

1 はピストン 2 はシリンダヘッド 3 はシリンダ 4 は溝 5 はピストンピン 6 はコネクティングロッド A はシリンダヘッド側につけた段差張り出し B はシリンダ側につけた段差張り出し C は段差空間 D は段差隙間 1 is a piston 2 is a cylinder head 3 is a cylinder 4 is a groove 5 is a piston pin 6 is a connecting rod A is a step overhang attached to the cylinder head side B is a step overhang attached to the cylinder side C is a step space D is a step gap

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年6月26日(1999.6.2
6)
[Submission date] June 26, 1999 (1999.6.2
6)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】全図[Correction target item name] All figures

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

【図2】 FIG. 2

【図3】 FIG. 3

【図4】 FIG. 4

【図5】 FIG. 5

【図6】 FIG. 6

【図7】 FIG. 7

【図8】 FIG. 8

【図9】 FIG. 9

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】往復ピストン内燃機関で、ピストン上端を
リング状に切り欠くと共に、燃焼室の上端をリング状に
張り出す段差構造とし、この段差の組み合わせから、ピ
ストンの上下動で発生する噴流により、燃焼室に渦流を
発生させ、燃焼を促進させる機構
In a reciprocating piston internal combustion engine, a step structure is provided in which an upper end of a piston is cut out in a ring shape and an upper end of a combustion chamber is extended in a ring shape. , A mechanism to generate eddy currents in the combustion chamber and promote combustion
【請求項2】請求項1の段差構造より、噴流が発生する
通路に溝を刻み、その溝により噴流の流れ方向を変え、
渦流をコントロールする機構
2. The step structure according to claim 1, wherein a groove is formed in a passage in which the jet flow is generated, and the flow direction of the jet flow is changed by the groove.
Mechanism to control eddy current
JP11127535A 1999-03-29 1999-03-29 Swirl generating mechanism due to level difference of combustion chamber in internal combustion engine Pending JP2000282865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11127535A JP2000282865A (en) 1999-03-29 1999-03-29 Swirl generating mechanism due to level difference of combustion chamber in internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11127535A JP2000282865A (en) 1999-03-29 1999-03-29 Swirl generating mechanism due to level difference of combustion chamber in internal combustion engine

Publications (1)

Publication Number Publication Date
JP2000282865A true JP2000282865A (en) 2000-10-10

Family

ID=14962427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11127535A Pending JP2000282865A (en) 1999-03-29 1999-03-29 Swirl generating mechanism due to level difference of combustion chamber in internal combustion engine

Country Status (1)

Country Link
JP (1) JP2000282865A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016089651A (en) * 2014-10-30 2016-05-23 本田技研工業株式会社 Internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016089651A (en) * 2014-10-30 2016-05-23 本田技研工業株式会社 Internal combustion engine

Similar Documents

Publication Publication Date Title
JP5741594B2 (en) Piston arranged to reciprocate in the combustion engine cylinder
JPS5949407B2 (en) Combustion chamber of internal combustion engine
US10619594B2 (en) Combustion system for an internal combustion engine
US4211189A (en) Internal combustion engine with dual induction system and more particularly to combustion chamber design thereof
US5771872A (en) Combustion chamber of an internal combustion engine
CN110630400A (en) Piston for gas engine and gas engine with same
US4191136A (en) Combustion chamber of an internal combustion engine
EP0911500A2 (en) Direct injection diesel engine
JPS5838610B2 (en) internal combustion engine
JP2000282865A (en) Swirl generating mechanism due to level difference of combustion chamber in internal combustion engine
JP2019039419A (en) Combustion chamber structure of engine
JPS5853628A (en) Internal-combustion engine
JP2006152825A (en) Combustion chamber of internal combustion engine
JP2003278548A (en) Prechamber type lean-combustion gas engine
JPH033920A (en) Direct injection type diesel engine
JP2005139988A (en) Combustion chamber structure for cylinder direct injection type internal combustion engine
WO2023084747A1 (en) Internal combustion engine and method for controlling internal combustion engine
JP6565968B2 (en) engine
JP4872885B2 (en) Internal combustion engine
JP6489157B2 (en) Engine combustion chamber structure
JPS5924818Y2 (en) Combustion device for split combustion internal combustion engine
GB2570725A (en) Piston for an internal combustion engine
JP6610631B2 (en) Engine combustion chamber structure
JP4520113B2 (en) Internal combustion engine
JPS6218663Y2 (en)